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Study and comparison of non linear and LPV control approaches for vehicle
stability control.

S. Fergani1∗, L. Menhour2, O. Sename1, L. Dugard1, B. D’Andrea Novel 3

Abstract— This paper proposes a study and a comparison
between two efficient and relatively recent vehicle control
dynamics strategies, namely, the non linear Flatness control
strategy and the LPV/H∞ control strategy. The first one
concerns a controller based on the differential algebraic flatness
of non linear systems and an algebraic non linear estimation
applied to commercial vehicles. The second one is a LPV/H∞

(Linear Varying Parameter with the H∞ norm ) control
using a stability monitoring system to achieve the vehicle
dynamics control objective. These two strategies use Active
Steering and Electro-Mechanical Braking actuators and aim at
improving the vehicle stability and steerability by designing a
multivariable controller that acts simultaneously on the lateral
and longitudinal dynamics of the car.
Simulations are performed on a complex nonlinear full vehicle
model, the same driving scenario is applied for the two control
strategies. The model parameters are those of a Renault Mégane
Coupé, obtained by identification with real data. Promising
simulations results are obtained. Comparison between the two
proposed strategies and the uncontrolled vehicle show the
reliability and the robustness of the proposed solutions, even if
one is developed within the linear control framework while the
other one is a non linear control approach.

I. INTRODUCTION

Road safety is a major challenge in the automotive indus-
try, that, together with road improvements and passive safety
(car mechanical structure, safety belts ...) can be reached
thanks to the intelligent control of new actuators that change
the vehicle dynamical behavior on-line (such as active
steering, braking, suspensions, ...). Recently, research works
focused on preventing the car from critical situations such as
drifting, spinning or rolling over. While automotive systems
involve several dynamics, vehicle safety is mainly linked
to lateral and longitudinal movements. Many recent works
have dealt either with longitudinal car behavior through slip
and wheel dynamics leading to many efficient strategies as
ABS and ESP [1]–[4], or with the lateral and yaw based
control for handling and safety performance improvements.
In the latter case the control structure may include either
steering actuators (mainly front and rear) [5]–[8] or braking
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actuators (eventually at the four wheels) [9], [10]. Few recent
works have been concerned with the use of both steering and
braking actions as explained in [11]. Let us mention, among
others, [12] where control allocation is considered for the
optimal distribution of the control actions, or [13] where an
a posteriori braking/steering control distribution is devised.

This paper focuses on collaborative multivariable control,
as in the authors previous works [14], [15], and [16] using
both braking and steering actuators, which remains a very
interesting issue for the global chassis control improvements.
In this work, two approaches for the global chassis control
are compared: the first one is an LPV/H∞ control strategy
involving Active Steering and Electro-Mechanical Braking
actuators. This approach uses a stability index, based on
a sideslip dynamics monitoring system [9], to schedule
the activation of the braking and/or steering actuators. It
allows a hierarchical use of these actuators depending on
driving situation and stability evaluation of the vehicle. The
second strategy is a non linear flatness based control. It
uses the differential flatness of the nonlinear models [17]
(see also [18], [19] for a related approach) and the algebraic
nonlinear estimation techniques [20], [21]. This approach
is based on a non linear three degrees-of-freedom model.
It also uses the algebraic estimation techniques to estimate
the derivatives and filtering of noisy signals. This control is
suitable to perform some coupled maneuvers like obstacle
avoidance via steering control combined with stop-and-go
control via braking or driving wheel torque.

The paper is organised as follows: Section I provides the
introduction and the notations used in the paper. Section II
briefly presents the vehicle models used for synthesis and
validation purpose, namely, an extended bicycle model (for
the LPV strategy) and a 3DoF-NLTWVM ("3DoF Nonlinear
Two Wheels Vehicle Control Model" for the flatness strat-
egy). Section III is devoted to the controllers design, for
both LPV/H∞ and flatness control strategies, to enhance the
vehicle performances and improve car’s dynamics.

The performance analysis is done in Section IV with
time domain results simulations for the two proposed
approaches performed on the complex nonlinear full vehicle
model subject to the same driving scenario. Conclusions
and discussions are given in the last Section.

Paper notations:

Throughout the paper, the following notations will be
adopted: indices i = {f, r} and j = {l, r} are used
to identify vehicle front, rear and left, right positions re-



Symbol Value Unit Signification

ms 350 kg suspended mass
musfj 35 kg front unsprung mass
musrj 32.5 kg rear unsprung mass
Ix; Iy ; Iz 250; 1400; 2149 kg.m2 roll, pitch, yaw inertia
Iw 1 kg.m2 wheel inertia
tf ; tr 1.4; 1.4 m front, rear axle
lf ; lr 1.4; 1 m COG-front, rear distance
R 0.3 m nominal wheel radius
h 0.4 m chassis height

Vx, Vy - km/h longi/lateral speeds
ax, ay - m/s2 longi/lateral accelerations
ψ - [rad/s] yaw angle
ψ̇ - [rad] yaw rate
ωi - [rad/s] wheel i angular speed
Tω - [Nm] wheel torque
Tm - [Nm] wheel traction torque
Tb - [Nm] wheel braking torque
Tbf - [Nm] front braking torques
Tbr - [Nm] rear braking torques
δ - [deg] wheel steer angle
F(x,y)i - [N ] longi/lateral forces
F(x,y) - [N ] longi/lateral forces
Mz - [Nm] yaw moment

TABLE I

RENAULT MÉGANE COUPÉ PARAMETERS

spectively. Then, index {s, t} holds for forces provided by
suspensions and tires respectively. {x, y, z} holds for forces
and dynamics in the longitudinal, lateral and vertical axes
respectively. Then let v =

√

v2x + v2y denote the vehicle

speed, Rij = R − (zusij − zrij ) the effective tire radius,
m = ms+musfl +musfr +musrl +musrr the total vehicle
mass, δ = δd+δ

+ is the steering angle (δd, the driver steering
input and δ+, the additional steering angle provided by the
steering actuator (see Section III) and Tbij the braking torque
provided by the braking actuator (see Section III).

The model parameters are those of a Renault Mégane
Coupé (see TABLE. I; more parameters values can be found
in [14]), obtained during a collaborative study with the MIPS
laboratory in Mulhouse, through identification with real data.

II. VEHICLE MODELING

In this section, two models are introduced. A 3-DOF
bicycle nonlinear vehicle model is used to design a coupled
nonlinear flat vehicle control. The other one is an extended
bicycle model used for the proposed LPV/H∞ control strat-
egy. Some simplifying hypotheses are assumed for both of
them:

• Longitudinal speed considered as different from zero
(Vx > ǫ).

• Low steering angles: cos(δ) ≃ 1

Moreover, for the LPV/H∞ control, some additional as-
sumptions are needed to linearize the model:

• Low sideslip angles: |β| < 7deg
• Low longitudinal slip ratios: |λ| < 0.1

A. 3DoF Nonlinear Two Wheels Vehicle Control Model

The 3DoF-NLTWVM provides a sufficient approximation
of the longitudinal and lateral dynamics of the vehicle. The 3-
DOF which compose this model are: longitudinal Vx, lateral
Vy and yaw ψ̇ motions (see TABLE. I for notations). The
coupled equations of this model are:







max = m(V̇x − ψ̇Vy) = (Fx1 + Fx2)

may = m(V̇y + ψ̇Vx) = (Fy1 + Fy2)

Izψ̈ =Mz1 +Mz2

(1)

The forces and moments of equations (1) in the vehicle
coordinates considering the kinetics coupling are:






Fx1 = Fxf cos(δ)− Fyf sin(δ) and Fx2 = Fxr
Fy1 = Fxf sin(δ) + Fyf cos(δ) and Fy2 = Fyr
Mz1 = lf (Fyf cos(δ) + Fxf sin(δ)) and Mz2 = −lrFyr

(2)
In Eq. (1) the longitudinal forces are computed using the
dynamical model of the wheels. Considering the small
angles assumption, and replacing the forces expressions in
the model yield:

ẋ = f(x, t) + g(x)u+ g1u1u2 + g2u
2
2 (3)

where

f =











ψ̇Vy −
Ir
mR

(ω̇r + ω̇f )

−ψ̇Vx +
1
m

(

−Cf
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)

− Cr
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1
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Vx

)

0 (CfR− Irω̇f )/mR
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, g1 =







0
1
mR

Lf
IzR






,

g2 =





−Cf
m

0
0





T

, x =





Vx
Vy
ψ̇





T

, u =

[

u1
u2

]

where the longitudinal movement is controlled via the
traction Tm and braking Tb wheel torque u1 = Tω = Tm−Tb
with Tb = Tbf +Tbr, and the lateral movement is controlled
via the steering angle u2 = δ (see [18] for more details on
this model).

B. Extended bicycle model

This model highlights the main non linear dynamics that
influence vehicle safety and manoeuvrability, namely, the
side-slip (β) and yaw (ψ) dynamics, given by:






mvβ̇ = Ftyf + Ftyr +mvψ̇

Izψ̈ = lf
(

− Ftxf sin(δ) + Ftyf cos(δ)
)

− lrFtyr
−∆Ftxr tr +Mdz

(4)
where Ftyf = Ftyfl + Ftyfr , Ftyr = Ftyrl + Ftyrr and
∆Ftxr = Ftxrl − Ftxrr are the front, rear tire lateral
forces and longitudinal rear differential forces, respectively.



δ and Mdz denote the steering angle and the yaw moment
disturbance, respectively. ∆Ftxr may be rewritten as,

∆Ftxr = Ftxrl − Ftxrr =
α

2
(Tbrl − Tbrr ) (5)

where, α = QµRmrg: is used o deduce the provided braking
torque from the tire forces. The model used for the LPV/H∞

control design is given by (6):
Remark 1: The authors stress that the differences between

the two model are due to the architecture of each control.
Indeed, the flatness control is a non linear control strategy
based on a non linear model while the LPV/H∞ one uses a
linearized model. Also, to cope with each strategy’s design,
the authors have chosen different state space representations,
but with the same control inputs (δ and Tb).

III. DESIGN OF THE VEHICLE DYNAMICS CONTROL

STRATEGIES

This section is devoted to the description of the main result
of this paper, namely, the multivariable vehicle dynamics
controller involving front active steering, rear braking with
the two proposed strategies.
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Fig. 1. Design of The Vehicle dynamics Control Strategies

A. Coupled longitudinal/lateral vehicle non linear control

based on flatness property

The proposed non linear flatness control strategy, shown
in fig.2, involves two main parts: the first one consists on
the filtering and numerical differentiation of the flat outputs,
while the second illustrates the different parts of the flat non
linear vehicle control design.

1) Algebraic nonlinear estimation: In this work, the al-
gebraic estimation techniques are used for their interesting
properties in filtering and numerical differentiation of the
noisy signals. This estimation is performed using the recent
advances in [20], [21], which yield efficient real-time filters.

Step 1: Filtering and derivatives of flat outputs using algebraic 

nonlinear estimation  

St
ep

 2
: C

ou
pl

ed
 n

on
lin

ea
r f

la
t c

on
tro

l Tracking 

feedback 

control 

Flat 

Outputs 

of 

vehicle 

models 

Nonlinear 

Vehicle 

model 

                          ( )221 ,, yyy &f

                             ( )221

1 ,,Δ yyy &
-

wT

d
+ 

- 

Tracking 

feedback 

control

                            ( )            
2
      

2
            

1 ,      , y            y      y &f(

                           ( )      
2

            
2

            
1

1 ,      ,      Δ y            y            y &
-

T
+

-

Coupled nonlinear flat control 

Flat 

Outputs 

of 

vehicle

models

Nonlinear

Vehicle

model

    

w

Nonlinear vehicle model and flat 

outputs 

Filtering and derivatives of noisy signals 

xV yV y&

Fig. 2. Diagram block of coupled longitudinal and lateral vehicle control

Here, these estimators are used to design the flat control (11)
and the feedback loop (12). The following formulae may be
used to estimate the 1st order derivative of y:

ˆ̇y(t) = −
3!

n3

∫ t

t−n

(2n(t− τ)− n)y(τ)dτ (7)

the filtered version of y is:

ŷ(t) =
2!

n2

∫ t

t−n

(3(t− τ)− n)y(τ)dτ (8)

Note that the sliding time window [t− n, t] may be quite
short and n is the sample period.

2) The non linear flatness control problem formulation: In
order to design a coupled longitudinal and lateral flat vehicle
control, consider the following flat outputs:

{

y1 = Vx

y2 = LfmVy − Izψ̇
(9)

The flatness property [17], [22]–[24] is used to show
the flatness of model (3) with flat outputs (9). Then, after
some algebraic manipulations the following flatness proofs
are obtained:

x =
[

Vx Vy ψ̇
]T

= A(y1, y2, ẏ2) =












y1

1
Lfm

(

y2 −
IzLfmy1ẏ2+IzCr(Lf+Lr)y2

Cr(Lf+Lr)(Iz−LrLfm)+(Lfmy1)2

)

−
(

Lfmy1ẏ2+Cr(Lf+Lr)y2
Cr(Lf+Lr)(Iz−LrLfm)+(Lfmy1)2

)













(10)
and

[

ẏ1
ÿ2

]

= ∆(y1, y2, ẏ2)

(

u1
u2

)

+Φ(y1, y2, ẏ2)

⇒

[

u1
u2

]

= ∆−1(y1, y2, ẏ2)

([

ẏ1
ÿ2

]

− Φ(y1, y2, ẏ2)

)

(11)
The terms ∆11, ∆12, ∆21, ∆22, Φ1 and Φ2 of the matrices

∆ and Φ are detailed in [18]. Finally, the system (3) is flat
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δ
Mdz
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(6)

with the flat outputs (9). Then, it is considered to control y1
and y2 via the control signals u1 = Tω and u2 = δ. Then,
in order to track the desired output yref1 and yref2 , set

[

ẏ1
ÿ2

]

=

[

ẏref1 +K1
1ey1 +K2

1

∫

ey1dt

ÿref2 +K1
2 ėy2 +K2

2ey2 +K3
2

∫

ey2dt

]

(12)

where, ey1 = yref1 − y1 and ey2 = yref2 − y2. The
choice of the gain parameters K1

1 , K2
1 , K1

2 , K2
2 and K3

2

is straightforward.

B. LPV/H∞ control design based on the braking/steering

monitoring system

In this part, the LPV/H∞ strategy proposed for vehicle
stabilization and performance improvement is presented in
Fig. 3, involving front active steering, rear braking, scheduled
by a stability index parameter based on lateral side-slip
dynamic monitoring.

zr

δ

Tbrj

β β̇ ψ̇ v

Non Linear Full Vehicle Model

Road profil

Steer input

+ +

Steering Controller Braking Controller

eψ̇ ρ

δ+

v δ0 ψ̇ ρ

Tbrj

v δ0

ψ̇ref

Steering
+ Braking

ρ

+ -

Supervision strategy

LPV/Hinf

Controllers

Driving scenario

Monitor

Fig. 3. Global chassis control Implementation scheme.

1) LPV/H∞ control problem formulation: Many braking
and steering controls have been already introduced by the
authors as in [14]. The LPV/H∞ control synthesis follows
the given H∞ control problem in Fig. 4, where:

Σ
AS

EMB

K(ρ)

+
−

δ

Wδ

WMz

Mz

We
ψ̇

eψ̇

ψ̇ref(v)

ψ̇

z1

z2

z3

Mdz

Fig. 4. Generalized plant model.

• Σ, EMB and AS stand for the extended bicycle, electro-
mechanical braking and active steering actuators mod-
els, respectively.

• z1, the yaw rate error output signal, is the output of the
tracking error performance, weighted by:

We
ψ̇

=
1

2Ge

sGe/2πf1 + 1

s/2πf1 + 1
(13)

where f1 = 1Hz is the cut-off frequency of the high
pass filter. Ge = 0.1 is the attenuation level for low
frequencies (f < f1); in this case 0.1 means that the
steady state tracking error should be less than 10%.

• z2, the yaw moment control signal attenuation, is the
output of the braking control, weighted by:

WMz
(ρ) = ρ

s/(2πf2) + 1

s/(α2πf2) + 1
(14)

where f2 = 10Hz and α = 100 are the braking actuator
bandwidth and the roll-off parameters, respectively.
These parameters are chosen to handle the dynami-
cal braking actuator limitations. WMz

(ρ) is linearly
parametrized by the considered varying parameter ρ(.),
where ρ ∈

{

ρ ≤ ρ ≤ ρ
}

(with ρ = 0 and ρ = 1).
Then, when ρ = ρ, the braking input is penalized, on
the contrary, when ρ = ρ the braking control signal is
relaxed.
Remark 2: Notice that the braking torques Tbrl and
Tbrr can be easily reconstructed through:

∆Tbr = Tbrl − Tbrr =
2M∗

zRw
tr

. (15)

where tr is the vehicle’s rear axle length, and Rw is the
effective tire radius.



• z3, the steering control signal attenuation, is the output
of the steering control performance, weighted by:

Wδ = G0
δ

(s/2πf3 + 1)(s/2πf4 + 1)

(s/α2πf4 + 1)2

G0
δ = Gδ

(∆f/α2πf4 + 1)2

(∆f/2πf3 + 1)(∆f/2πf4 + 1)
∆f = 2π(f4 + f3)/2

(16)

where Gδ = 5.10−3, f4 = 10Hz is the steering actuator
bandwidth and f3 = 1Hz is lower limit of the actuator
intervention.

The generalized plant is given by:

Σ :







ξ̇(t) = Aξ(t) +B1w(t) +B2(ρ)u(t)
z(t) = C1(ρ)ξ(t) +D11w(t) +D12(ρ)u(t)
y(t) = C2ξ(t) +D21w(t)

(17)
with :

w(t) = [ψ̇ref (v)(t),Mdz(t)]
T the exogenous inputs

u(t) = [δ∗(t),M∗

z (t)]
T the control inputs

y(t) = eψ̇(t) the measurements
z(t) = [z1(t), z2(t), z3(t)]

T the controlled outputs
(18)

ξ(t) contains the state variables of the vehicle model, actu-
ators and parameter dependent weighting functions.
The LPV controller is given by :

K(ρ)







ẋc(t) = Ac(ρ)xc(t) +Bc(ρ)y(t)
(

δ∗(t)
M∗

z

)

= Cc(ρ) xc(t)
(19)

where xc(t) is the controller state, y(t) = eψ̇ , u(t) =

[δ∗(t) M∗

z ]
T .

Remark 3: The design of the LPV/H∞ controller pre-
sented here, is achieved thanks to the LMI’s resolution (for
more detail see [25]).

2) Lateral braking/steering monitoring system for

Scheduling parameter generation: This supervision strategy
(as in [26]) is based on the supervision of the lateral stability
of the vehicle. The stability bound defined in [27] and used
here, is formulated as:

χ < 1, (20)

where χ =
∣

∣

∣
2.49β̇ + 9.55β

∣

∣

∣
is the "Stability Index".

Therefore, when the vehicle states move beyond the control
boundaries and enter the unstable region, braking actuators
will be involved to generate an additive corrective yaw
moment, pulling the vehicle back into the stable region.
According to [27], one of the significant benefits of this
stability index is that the reference region defined in (20)
is largely independent of the road surface conditions and
hence, the accurate estimation of the road surface coefficient
of friction is not required.

In this control strategy, the varying parameter is scheduled
as a function of χ the activation of the actuators:

ρ(χ) :=























































ρ (steering control
steering control task)

χ− χ

χ− χ
ρ+

χ− χ

χ− χ
ρ (steering + braking)

ρ (steering + braking
stability control task)

(21)
where χ = 0.8 (user defined) and χ = 1.
Remark 4: To generate the stability index χ used in this

approach, a side-slip dynamics observer is used to evaluate
β̇ and β (the sideslip) in real-time ( β is not available using
standard sensors, and thus, it must be estimated).

IV. SIMULATION RESULTS

Simulations are performed on the full vehicle non linear
model of the Renalt Mégane coupé. The same simulation
scenario is applied for the two proposed control strategies:
The vehicle runs at 90km/h in straight line on wet road (µ =
0.5, where µ is a coefficient representing the road adhesion).
During this scenario, a line change manoeuvre is performed
by the driver.
In the following, a comparison between the different results
obtained by the two proposed methods and the uncontrolled
vehicle is shown.
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Fig.6 shows the performance results of the flat controller
to track the desired flat outputs y1 and y2. It is obvious that



the proposed control approach ensures a perfect tracking of
the desired outputs. Moreover, the abilities of this control
strategy to provide coupled and realistic control maneuvers
in terms of steering angle and braking torque are presented
in Fig.9.
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Fig. 7. the scheduling parameter : ρ

The Fig.7 shows the varying parameter that schedules the
activation of the braking and steering actuators through the
proposed LPV/H∞ conrol approach. The variation of this
parameter allows to use the most appropriate actuator control
to enhance optimally the stability of the vehicle.
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The Fig.8 shows a comparison between the longitudinal
velocity tracking of the two methods. It can be noticed that
the two control approaches improve well the tracking. The
non linear flatness controller seems to be very efficient for the
velocity tracking because of the design structure of strategy
which focuses on this objective.
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Fig. 9. Braking torques: LPV/H∞ and Non linear Flatness control.
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Fig. 10. Additive steering angle: LPV/H∞ and Non linear Flatness control.

Fig.9 presents the braking torques supplied by the con-
sidered Electro-Mechanical Braking actuators (no traction
is considered here, Tω = −Tb). Also, Fig.10 represents
the additive steering angles provided by the two perviously
presented strategies. In the LPV/H∞ case, the braking and
steering actuator’s controllers outputs are scheduled by the
previously presented varying parameter ρ xhich leads to
an effective and reduced use of the braking actions. The
provided controllers actions help to enhance the vehicle
safety in the dangerous driving situations.
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Fig. 11. Yaw rate: LPV/H∞ and Non linear Flatness control.

In Fig.11, it is clearly seen that either the LPV/H∞

strategy or the non linear Flatness control strategy enhances



very well the lateral behaviours of the vehicle. Unlike the
uncontrolled vehicle, simulations show that the yaw rate of
he controlled vehicle, in both cases, is close to the reference
car yaw rate. The reference car’s yaw rate is plotted, here,
to emphasize on the improvement brought by the proposed
controllers.
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Fig. 12. Evolution of the vehicle in the β-β̇ plane.

Fig.12 shows the main result of the paper in term of
vehicle stability. The evolution of the vehicle into the
stability region (bounded by the stability criteria, see
[27]) is highlighted. It can be clearly noticed that the
vehicle governed by the LPV/H∞ or the non linear Flatness
controller stays within the limits of the stability region while
the uncontrolled one, subject to the same conditions, goes
beyond these bounds. Hence, the stability of the controlled
car is completely ensured and the manoeuvrability of the
vehicle is maintained in the critical driving situations.

In that simulation framework, the LPV controller seems to
be more efficient than the non linear Flatness controller. Ac-
tually, it can be noticed that the yaw tracking performances in
the LPV case are as good as in the flatness control case while
using less steering and especially braking actuators and also
with less complicated controller design synthesis. Indeed,
part of the explanation may be also that the simulations are
performed on a full Non Linear vehicle model under wet
road conditions, while the design of the strategies has been
done on bicycle models under dry road conditions. Also,
the LPV strategy allows to activate the braking and steering
actuators, through the scheduling by the varying parameter
ρ, only when needed.
The LPV approach, which comes from the robust control
theory, seems here more robust than the non linear one.

V. CONCLUSION

This paper has presented two global chassis control strate-
gies, involving braking and steering actuators. The first one
is a non linear flatness control approach, the other one is an
LPV/H∞ control approach. The non linear flatness control is
based on an algebraic estimation while the LPV one is based

on a lateral stability monitoring system. The results have
proven the efficiency of the two strategies for the vehicle
stability improvement even if one is linear and the other one
is non linear. Indeed, the LPV/H∞ control strategy allows
a smooth transition between performance objectives, and to
treat non linearities in a simple way, while remaining robust
through the H∞ frame work.
Further works will try to combine the strength of the two
methods through the LPV/H∞ control based on an algebraic
estimation of some signals.
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