
Synchronous Extensions to
Operation-Centric Hardware Description Languages

Grace Nordin and James C. Hoe

Carnegie Mellon University
Pittsburgh, USA

{yhn, jhoe}@ece.cmu.edu

Abstract

The Abstract Transition System (ATS) is a high-level
hardware description framework. ATS’s operation-centric
abstraction permits perspicuous descriptions of complex
concurrent hardware behavior as a sequence of atomic
state transitions. However, non-determinism in the ATS
semantics prevents it from capturing the behavior of sys-
tems whose correctness depends upon both function and ex-
act synchronous timing. To address this shortcoming, we
present two extensions to ATS—committing transitions and
synchronously delayed expressions—to support the specifi-
cation of synchronous behaviors and interfaces. The new
synchronous extensions compose naturally with the origi-
nal ATS. We describe a compilation strategy for the syn-
chronous extensions that leverages existing ATS synthesis
capabilities. We also evaluate the new extensions’ ease of
description and synthesis quality in several design exam-
ples.

1. Introduction

The Abstract Transition System (ATS), which shares
similar semantics as Term Rewriting Systems (TRS) [2]
and guarded commands [7], was previously proposed for
high-level hardware description and synthesis [9, 10]. ATS
hardware description is operation-centric because the de-
scription of behavior is organized into atomic operations
that each affect multiple state elements (rather then next-
state equations that each control one state element). An
ATS consists of a set of state elements and a set of state
transitions. An ATS transition comprises a predicate and a
set of state-update actions. In a state where the predicates
of several transitions are simultaneously true, any one of
those transitions can be selected non-deterministically. The
state-update actions of an ATS transition are applied atom-

00-7803-8509-804$20.00 c©2004 IEEE

ically; that is, in each round of state transitions, all transi-
tions read all state values in one instantaneous step before
the one selected transition writes all state elements in an-
other instantaneous step. Thus, the execution of an ATS can
be abstractly interpreted as a sequence of atomic applica-
tions of transitions, where each transition produces a state
that satisfies the predicate of the next transition.

The atomic and sequential semantics of ATS do not
prevent a correct implementation from executing several
transitions concurrently. References [9] and [10] describe
a method for synthesizing ATS into a highly-concurrent
clock-synchronous implementation that efficiently executes
multiple transitions per clock cycle but still maintain the
appearance of a sequential and atomic execution. Addi-
tional details of ATS and its compilation are described in
Section 2.

Despite its various advantages, the non-deterministic se-
mantics of ATS presents an obstacle to describing hardware
designs that require synchronous and deterministic opera-
tion. The non-deterministic semantics of ATS says that any
enabled transition is permitted, but not committed, to exe-
cute. Hence, an ATS designer could not guarantee that a
transition will execute in a particular clock cycle, or even
at all. To address this shortcoming, we propose two syn-
chronous extensions to ATS that permit the specification of
synchronous behavior and compose naturally with the orig-
inal ATS.

The two extensions are committing transitions and syn-
chronously delayed expressions. The resulting ATS+ is in-
tended to simplify the description of a hardware system
where only a small portion of the overall activity must
be synchronous. For example, in a layered communica-
tion stack, the activities in the upper layers interact with
asynchronous handshakes (e.g., request/grant), and only the
bottom-most physical layer must match the timing of the
physical medium. When describing a controller for such
a protocol, we can simplify the specification of the upper-
layers using the original ATS’s simplifying atomic and se-
quential semantics. At the same time, where necessary, the

AT S = 〈S, So, X〉
S = 〈R1,.., A1,.., F 1,..〉
So = 〈vR1 , .., vA1 , .., vF1 , ..〉
X = 〈T1,..,TM 〉
T = 〈π,α〉
π = exp
α = 〈aR1 , .., aA1 , .., aF1 , ..〉
aR = ε ‖ set(exp)
aA = ε ‖ aset(expidx, expdata)
aF = ε ‖ enq(exp) ‖ deq()

‖ endeq(exp) ‖ clear()
exp = constant ‖ R.get()

‖ PrimitiveOp(exp1, .., expn)
‖ A.aget(expidx) ‖ F.first()
‖ F.notfull() ‖ F.notempty()

Figure 1. ATS summary

physical layer can be described synchronously using the
new ATS+ extensions. The two portions of the design can
nevertheless be interpreted together under a simple sequen-
tial and atomic interpretation as in the original ATS.

Paper outline. Section 2 provides additional back-
ground on ATS. Section 3 introduces ATS+ extensions.
Section 4 explains the compilation of ATS+ for hardware
synthesis. Section 5 presents an evaluation of ATS+; this
evaluation compares ATS+ to Verilog RTL and Esterel. Sec-
tion 6 discusses prior work in operation-centric and syn-
chronous HDLs. Finally, Section 7 presents a summary and
our conclusions.

2. ATS primer

In this section, we present the ATS abstraction. ATS
is an intermediate hardware representation used to support
the compilation of operation-centric source-level languages
such as TRSpec [9] and Bluespec [1]. We use ATS to
present the ideas in this paper to avoid the complications
of source-level languages.

2.1. Overview

ATS is a state-based abstract hardware representation
with operation-centric state transitions. The structure of
ATS is summarized in Figure 1. At the top level, an ATS is
a triple 〈S, So, X〉. S is a list of explicitly declared state el-
ements, including registers (R), arrays (A), and FIFOs (F).
So is a list of initial values for the elements in S. X is
a list of transitions, 〈π,α〉. In a transition, π is a boolean
predicate expression and α is a list of concurrent actions,
with exactly one action for each state element in S. (An
acceptable action for all statement types is the null action

‘ε’.) In an ATS, if π of transition Tx is enabled in a state
s (abbreviated as πTx

(s)=true, or simply πTx
(s)), then the

concurrent actions prescribed by αTx
can be applied atom-

ically to update s to δTx
(s). We use the notation δTx

(s) to
mean the resulting state s’ after applying αTx

to s; in other
words, δTx

is the functional equivalent of αTx
. Recall from

Section 1, the operation-centric transition semantics is non-
committing, that is an enabled transition is permitted, but
not committed to execute.

An R-type register state element can store an integer
value up to a specified maximum word size. The value
stored in a register R can be referenced using the side-effect-
free get() query and set to v using the set(v) action. (In our
examples, we abbreviate R.get() simply as R and R.set(v)
as R:=v.) Figure 1 lists the actions supported for arrays and
FIFOs; a complete description of ATS, including I/O ele-
ments, is given in [9]. Without loss of generality, this paper
focuses on systems with only R elements.

2.2. Compilation

Basic strategy. This paper is concerned with mapping
ATS to a clock-synchronous implementation. In the as-
sumed mapping strategy, the elements of S—registers in
this case—are instantiated from a design library and the
transitions in X are combined to form the next-state logic
for the instantiated state elements. In each clock cycle, the
π expressions of all transitions are evaluated combination-
ally and some subset of transitions whose π expression is
asserted is selected to update the state elements on the next
clock edge.

In a naive implementation, only one transition is selected
in each clock cycle—this automatically satisfies the sequen-
tial and atomic semantics of operation-centric transitions.
This naive implementation is functionally correct but in-
efficient due to a lack of hardware concurrency. The im-
plementation produced by an ATS compiler in reality em-
ploys an arbitration logic that selects multiple enabled tran-
sitions to update state elements concurrently in each clock
cycle, provided the resulting new state values correspond to
some valid sequence of atomic execution of the same con-
stituent transitions. The ATS compiler generates such an
arbitration logic based on a static analysis of conflict-free
(<>CF) and sequentially-composability (<SC) properties
among the ATS transitions.

Arbiter synthesis. <>CF is a symmetric relationship
between two transitions that ensures two transitions could
be executed correctly in the same clock cycle in a clock-
synchronous implementation. Given Ta and Tb are both ap-
plicable in state s, Ta <>CF Tb implies that

1. applying one transition before the other does not can-
cel the applicability of the other (i.e., πTa

(δTb
(s)) ∧

πTb
(δTa

(s))), and

(a) T1: A==0 → B:=1
T2: C==0 → D:=1

(b) T3: true → B:=A
T4: true → A:=1

(c) T5: true → B:=A
T6: true → A:=B

Figure 2. Examples of (a) <>CF , (b) <SC , and
(c) conflicting rules. (assume A, B, C, D are
boolean registers.)

2. the two transitions can be applied in either order, in
two successive steps, to produce the same final state
(i.e., s’=δTb

(δTa
(s))=δTa

(δTb
(s))).

On the other hand, <SC is an asymmetric relationship
between two transitions that also ensures two transitions can
be correctly executed in the same clock cycle. The <SC re-
lationship is less strict than <>CF in that it only requires
the concurrent execution to agree with one order of exe-
cution. Figure 2 gives examples of <>CF , <SC , and con-
flicting transitions that cannot be executed in the same clock
cycle. In these examples, we write a transition 〈π,α〉 con-
cretely as

π → R1:=exp1; ... RNR:=expNR;
In this notation, we omit registers whose action is ‘ε’ from
the register-action list. In the <>CF example (a), T1 and
T2 read and write two disjoint sets of registers. In the <SC

example (b), T3 and T4 have a read-write dependence on
register A, but concurrent execution of T3 and T4 gives the
same result as if T3 is applied before T4 in sequence. In the
conflicting example (c), a circular dependence between T5

and T6 prevents the two transitions from producing a valid
result if executed concurrently.

Formal definitions of <SC and <>CF are given in [9].
The same reference also gives theorems that states it is cor-
rect for an ATS compiler to devise an arbitration logic that,
on each clock cycle, selects an arbitrary subset of enabled
transitions provided

1. each pair of transitions is related either by <>CF or
<SC , and

2. a partial order with respect to <SC exists for the se-
lected transitions.

Bluespec compiler. The synthesis results in this pa-
per are produced by the Bluespec Compiler (BSC) [1].
The theorems mentioned above are applied in BSC to pro-
duce highly concurrent clock-synchronous implementations
from a sequentially conceived and interpreted operation-
centric hardware description. The BSC synthesized im-
plementations have two important characteristics. First,
in each clock cycle, although the implementation appears

to execute a number of transitions in sequence, the exe-
cution of those transitions all observe the same state val-
ues as latched on the previous clock edge. The second
characteristic—a direct consequence of the first—is that the
critical delay path of a multi-transition-per-cycle implemen-
tation is still determined only by the combinational delay of
the single worst-case transition.

2.3. Limitations of operation-centric semantics

An enabled ATS transition is permitted, but not commit-
ted, to execute. When multiple ATS transitions are enabled
together, ATS’s abstract semantics allows any one transi-
tion to be selected nondeterministically. Hence, an ATS
accepts multiple “correct” versions of deterministic clock-
synchronous implementations. In fact, this freedom is taken
by the ATS compiler to select a subset of non-conflicting
transitions to execute in each clock cycle. The downside of
this freedom is that although a transition is guaranteed to
execute only when enabled, a transition is never guaranteed
to execute on a particular clock cycle, or even at all.

Consequently, ATS lacks the ability to describe a sys-
tem whose correctness depends both on functionality and
the exact timing of events. In BSC, this limitation is ad-
dressed by an assert pragma which, when applied to a tran-
sition, informs the compiler that the transition must execute
if its predicate is enabled. If the compiler cannot correctly
guarantee the assertion (e.g., the user labels two conflicting
transitions), then the compilation should fail with an error.
This assert pragma, in essence, imparts synchronous seman-
tics to the labeled transitions. The assert pragma has been
successfully used to specify designs with synchronous be-
havioral constraints. In this paper, we formalize the assert
pragma as committing transitions. We also develop the no-
tation and compilation procedure to enable intuitive integra-
tion of synchronous committing transitions with the origi-
nal non-committing transitions in the same representation
framework.

3. Synchronous extensions in ATS+

We propose two extensions to ATS to support the specifi-
cation of synchronous behavior. The current formulation of
these two extensions assumes the particular synthesis strat-
egy given in [9] and briefly described in Section 2.2. The
resulting extended system is called ATS+. The first exten-
sion is a new class of transitions with committing execu-
tion semantics. The second extension adds support for syn-
chronously delayed expressions that enable a transition’s
predicate and actions to read past values of state elements.
Figure 3 summarizes the structure of ATS+ where it differs
from ATS. As an intermediate representation, the extensions

AT S+ = 〈S, So, X , Xc〉
Xc = 〈Tc1

,...,TcM
〉

Tc = 〈π,α〉
exp = ... “ATS expressions” ...

‖ exp[expt]
‖ exp[⊕ : expt..expt]

Figure 3. ATS+ summary

in ATS+ enable analogous extensions to be introduced in the
source-level languages.

3.1. Committing transitions

The definition of ATS+ includes a new class of commit-
ting transitions Xc=〈Tc1

,....TcN
〉. A committing transition

has the same structure 〈π,α〉 as the original ATS transi-
tions, which we now refer to as non-committing transitions.
In our examples, we write committing transitions with the
symbol ‘→c’ to differentiate from non-committing transi-
tions. Like non-committing transitions, synchronous tran-
sitions obey the invariant that they only execute when their
predicate is true. Furthermore, the execution semantics of
committing transitions remains atomic. Like ATS, the exe-
cution of an ATS+ implementation must still correspond to
an interleaving of atomic transitions (both committing and
non-committing), where each transition leads to a state that
enables the predicate of the next transition.

The sequential interleaving of transitions in ATS+ is,
however, sectioned into clock periods that each contains one
or more transitions. The clock periods correspond to the
real clock in a synthesized clock-synchronous implementa-
tion. If a committing transition’s predicate is satisfied at the
start of a clock period, then it must be executed in that clock
period. Consequently, for a valid ATS+, the set of commit-
ting transitions must be

1. pairwise <>ME
1, <>CF or <SC , and

2. have a partial-order with respect to <SC .

These two conditions ensure all committing transitions that
could potentially be enabled in the same clock cycle in an
implementation can be executed concurrently as required
by their committing semantics. On the other hand, if a non-
committing transition is enabled in a clock cycle but con-
flicts with another enabled committing transition, the non-
committing transition can always be correctly deferred to
the next clock cycle.

1Ta<>METb implies Ta and Tb have mutually exclusive predicate
conditions, i.e., ∀s ¬(πTa

(s)∧ πTb
(s)).

3.2. Synchronously delayed expressions

ATS+ with committing transitions has the ability to spec-
ify all synchronous hardware behaviors. Unfortunately, de-
scribing synchronous behaviors that span multiple clock pe-
riods can be tedious because a committing transition can
only relate states that are separated by one clock edge. Syn-
chronous behaviors that span multiple clock periods must
be constructed using a sequence of committing transitions
as basic building blocks. Below we introduce two syntactic
shorthands that simplify the specification of multiple-cycle
synchronous behavior in ATS+.

“was” expressions. According to the atomic execu-
tion semantics, a transition reads the state values before in-
stantaneously updating all state elements. In the synthe-
sized clock-synchronous implementation described in Sec-
tion 2.2, this atomicity is preserved for concurrently exe-
cuting transitions in the same clock cycle, even though all
transitions read the same state value latched on the previ-
ous clock edge. This allows us to define a synchronously
delayed expression exp[t] where (t≥ 0). exp[t] refers to the
value of exp evaluated t clock cycles ago (in the degenerate
case, exp[0] is effectively exp).

“interval” expressions. Another shorthand is
exp[⊕:t..t’] where t’ ≥ t ≥ 0 and exp[⊕:t..t’] means

((...((exp[t’]⊕exp[t’-1])⊕exp[t’-2])⊕...)⊕exp[t]).
The user can specify any reduction operator ⊕ appropri-

ate for the datatype of exp. For example, if X is a Boolean
expression, X[&:1..5] is true if X is true for all five previous
cycles; X[|:1..5] is true if X is true for at least one of the last
five cycles.

Example. We show a trivial example to further illustrate
the syntax and semantics of ATS+ extensions. Additional
examples are given in Section 5. Consider T1 and T2,

T1: X[10] & !(Y[&:0..10]) →c A:=B
T2: !X → B:=A

X, Y, A and B are Boolean registers. T1 is a committing tran-
sition that enforces the synchronous behavior which says “A
gets B’s value if X was true 10 clock cycles ago and Y has
not been true within the last 10 clock cycles.” T2 is a non-
committing transition that says “if X is false then B should
get A’s value.” However, T2 only executes in a clock cycle
when the predicate of T1 is false, since T1 and T2 conflicts in
their actions. If T2 were written with ‘→c’ as a committing
transition, then T1 and T2 together would not be valid.

4. ATS+ compilation

Our goal is to map an ATS+ description to a clock-
synchronous Verilog RTL description. Our ATS+ compiler
is a meta-compiler layered on top of the Bluespec Compiler
(BSC). As shown in Figure 4, the ATS+ compiler compiles

Verilog

Compiler

Bluespec
Committing

Non−Committing

ATS+

Delayed
Expressions

Committing

De−Sugar

to−Source

Source

Non−committing

with ASSERT

Translation

Figure 4. Compilation overview

an ATS+ description into the equivalent ATS description by

1. de-sugaring synchronously delayed expressions, and

2. translating committing transitions to Bluespec’s non-
committing transitions with the assert pragma.

The resulting ATS description is sent to BSC for conflict
analysis and then synthesis to Verilog RTL. We use com-
mercial tools to complete the synthesis flow below the RTL
level.

4.1. Delayed expressions

The first pass of ATS+ compilation expands delayed ex-
pressions into a set of committing transitions without de-
layed expressions.

“was” expressions. A was expression, exp[t], refers to
the value of exp at t cycles ago. First consider the transition,

T0: pred[[exp[t]]] →c action

where “pred[[exp[t]]]” means exp[t] appears in the boolean
pred expression. Assuming (t>0), the ATS+ compiler ex-
pands this transition to

T1: true →c Rt:=Rt−1, ..., R2:=R1,R1:=exp
T2: pred[[Rt / exp[t]]] →c action

where pred[[Rt / exp[t]]] means pred with all occurrences
of exp[t] replaced by Rt. (If t==0, exp[0] simply becomes
exp.)

T1 creates the equivalent of a shift register chain of
length t to hold the delayed values of exp from the last t
cycles. In T2, all references to exp[t] in pred have been re-
placed by explicit references to Rt. The expansion is analo-
gous for a was expression in the actions of a transition.

“interval” expressions. Next consider a transition that
uses an interval expression exp[⊕: t..t’] in its predicate, that
is

T0: pred[[exp[⊕ : t..t′]]] →c action

Assuming (t>0), the expansion of this transition is

T1: true→cR′
t:=Rt′−1,...,Rt:=Rt−1,...,R2:=R1,R1:=exp

T2: pred[((...((Rt′ ⊕ Rt′−1) ⊕ Rt′−2) ⊕ ...) ⊕ Rt) /
(exp[⊕ : t..t′])] →c action

Again T1 creates the equivalent of a shift register chain with
length t’ to hold the delayed values of exp. T2 replaces the
occurrences of exp[⊕:t..t’] in the pred by a direct reduction
of the delayed values between t and t’. The (t==0) case
requires a trivially different special case.

4.2. Committing transitions

The delayed expressions in an ATS+ are expanded one
at a time until only committing and non-committing tran-
sitions without delayed expressions remain. In the sec-
ond pass of ATS+ compilation, every committing transi-
tion is recast into a non-committing transition annotated by
BSC’s assert pragma. The committing transitions need to
be checked for validity according to the requirement posed
in Section 3.1 (i.e., the committing transitions should be
pairwise <>ME , <>CF , or <SC). By design, this validity
check coincides with BSC’s existing check for the schedul-
ing of asserted transitions. If BSC cannot schedule all of
the asserted transitions, it will generate an error. The com-
mitting transitions generated by the ATS+ compiler during
the delayed expression expansion cannot change the valid-
ity of an ATS+. However, because BSC’s conflict analysis
is a conservative approximation, it is possible for a valid set
of committing transitions to fail compilation. This issue is
discussed as the latter of the two optimizations described
next.

4.3. Optimizations

Interval optimization. For delayed intervals with large
upper bounds, the shift register chain introduces a high area
overhead. A Boolean interval expression using the reduc-
tion operator ‘&’ can be optimized by computing the reduc-
tion using a saturation counter. This optimization replaces
a (t’-t+1)-bit section of the shift register chain with a dlog2

(t’-t+2)e-bit counter. This optimization is expressed in the
expansion below. Given

T0: pred[[exp[&: t..t′]]] →c action

the optimized expansion assuming (t>0) is

T1: !exp →c Rctr := (t’-t+1)
T2: exp & Rctr!=0 →c Rctr := Rctr - 1
T3: pred[[(Rctr == 0)[t − 1]/(exp[& : t..t′])]]→caction

Rctr is 0 only if exp has been true for the previous (t’-t+1)
consecutive cycles. Thus, exp[&:t..t’] equals (Rctr==0)[t-
1]. Again, the (t==0) requires a trivially different special
case.

T1: X & Y →c A := B
T2: X & !Y →c B := A

T3: (X & Y)[3] →c A := B
T4: (X & !Y)[3] →c B := A

T5: X[3] & Y[3] →c A := B
T6: X[3] & !Y[3] →c B := A

Figure 5. Examples where delayed expres-
sions obscure dependence

Conflict analysis. First, consider T1 and T2 in Fig-
ure 5. BSC’s conflict analysis can easily recognize that the
two transitions have mutually exclusive predicates on the
value of Y. Therefore, T1 and T2 are valid and synthesiz-
able together even though their actions are neither <>CF

nor <SC . Next consider T3 and T4 with predicates that are
mutually exclusive delayed expressions. In this case, after
de-sugaring, the actions of T3 and T4 are each predicated
by values of delay registers that corresponds to the values
of (X&Y) and (X&!Y) from 3 cycles ago. In this case, BSC
would fail to recognize that the delayed predicate values are
mutually exclusive since they appear to be coming from two
uncorrelated registers. T3 and T4 would not be synthesiz-
able by BSC although they are valid together.

To fully expose the data dependencies between transi-
tions to BSC, the ATS+ compiler pushes the delay of an
expression down into its variables, as shown in transitions
T5 and T6. After common sub-expression elimination, the
expression Y[3] in the de-sugared version of both T5 and T6

would be replaced by references to the same delay register.
Thus, BSC would be able to deduce T5 <>ME T6, and suc-
cessfully synthesize these two transitions together. How-
ever, the push transformation increases the number of shift-
register chains in a design since each delayed variable uses
its own chain. Therefore, BSC is actually invoked twice
by our ATS+ compiler. First, pushed transitions are com-
piled by ATS+ compiler and then BSC to enable the most
precise conflict analysis possible. To produce the more ef-
ficient implementation, the ATS+ compiler and BSC are in-
voked again with the unmodified transitions, annotated with
pragmas to override BSC’s analysis.

5. Results

In this section, we compare ATS+ to hand-coded Ver-
ilog RTL, and the synchronous language Esterel [5] in terms
of ease of description. We compare ATS+ synthesis qual-
ity to Verilog RTL synthesis. The examples used include
standalone primitive statements as well as small examples.

Table 1. Area in um
2 after synthesis and lay-

out

Examples Verilog ATS+
1 true →c B:= A[5] 344 344
2 true →c B:= A[&:5..25] 1688 1688
3 Example 2 (optimized) 979 995
4 Shared Token 1 1020 1036
5 Shared Token 2 7897 8106

Table 2. Cycle time in nanoseconds after syn-
thesis and layout

Examples Verilog ATS+
1 true →c B:= A[5] 0.14 0.14
2 true →c B:= A[&:5..25] 0.15 0.15
3 Example 2 (optimized) 0.15 0.14
4 Shared Token 1 0.15 0.16
5 Shared Token 2 0.17 0.18

In Tables 1 and 2, we report the synthesized area and cy-
cle time of ATS+ and RTL Verilog examples. The results
are generated using Synopsis Design Compiler for a com-
mercial 0.18um standard cell library. In these examples,
the quality of the circuits generated from ATS+ description
through BSC and from hand-coded Verilog are very similar.
In the first two examples based on standalone primitives,
the circuits synthesized from ATS+ through BSC are es-
sentially identical to those synthesized directly from hand-
coded RTL and therefore have the same area and cycle time.
In addition, we synthesized the interval expression example
both with and without the optimization discussed in Sec-
tion 4.3. We compare the result to a Verilog counterpart that
has been manually converted to use counters. The counter
optimization achieves the expected area reduction. The de-
gree of impact from this optimization is a function of the
interval length.

Delayed expressions primitives. We first compare how
simple ATS+ delayed expressions would be expressed in
Verilog RTL and Esterel. The two primitive statements are

1. was expression: true →c B:= A[5]

2. interval expression: true →c B:= A[&:5..25]

Equivalent statements in Esterel and Verilog are given in
Figure 6.2 In both examples, because neither Esterel nor

2To conserve space, we omit the matching end statements in Esterel
and Verilog examples.

ATS+ ATS+
true →c B:=A[5]; true →c B := A[&: 5..25];

Esterel Esterel
loop loop

present pre(A) trap T in
then emit A1 end; repeat 20 times

present pre(A1) pause;
then emit A2 end; present A else exit T end;
: loop

present pre(A4) pause;
then emit B end; present A then emit X

pause; else exit T end
‖ loop

present pre(X) then emit X1 end;
present pre(X1) then emit X2 end;
:
present pre(X4) then emit B end;
pause;

Verilog Verilog
always @(clk) begin always @(clk) begin

B <= A4; B <= A3
A4 <= A3; A3 <= A2;
: :
A1 <= A; A1 <= (ctr==0);

ctr <= A ? (ctr ? ctr - 1 : 0) : 21 ;

Figure 6. Code comparison of delayed expres-
sions primitives

ATS+
ReqA[&:0..10], Token !=A →c Token := A;
ReqB[&:0..10], Token !=B →c Token := B;
ReqA → Token := A;
ReqB → Token := B;

Esterel
loop

trap T in
repeat 10 times pause; present ReqA else exit T end;
end repeat;
loop

pause; present ReqA then emit TenReqAs else exit T end;
‖ (Similar Loop for TenReqBs)
‖ loop

present TenReqAs then
if not(?Token = 0) then pause; emit Token(0)
else present TenReqBs then

if not(?Token = 1) then pause; emit Token(1)
else present ReqA then pause; emit Token(0)

else present ReqB then pause; emit Token(1)
Verilog
always @(posedge CLK) begin

Token <= Tokennxt;
if (ReqA) ReqActr <= ReqActr + 1;
else ReqActr <= 0;
if (ReqB) ReqBctr <= ReqBctr + 1;
else ReqBctr <= 0;

always @(*) begin
if ((ReqActr == 10) && (Token != 0)) Tokennxt = 0;
else if ((ReqBctr == 10) && (Token != 1)) Tokennxt = 1;
else if (ReqA) Tokennxt = 0;
else if (ReqB) Tokennxt = 1;
else Tokennxt = Token;

Figure 7. Code comparison of arbiter in
shared token 1.

T0: true →c Token := (Token + 1) % 3;

T1: Token==0, Req0 →c Ack:=001, Free:=False;

T2: Token==1, Req1 →c Ack:=010, Free:=False;

T3: Token==2, Req2 →c Ack:=100, Free:=False;

T4: Free, Req0 → Ack:=001, Free:=False;

T5: Free, Req1 → Ack:=010, Free:=False;

T6: Free, Req2 → Ack:=100, Free:=False;

Figure 8. ATS+ description of the arbiter in
Shared Token 2.

Verilog support references to values more than one cycle
ago, the equivalent expression has to be explicitly con-
structed from single-cycle primitives.

Shared token example 1. This example is based on an
arbiter that manages the sharing of a common resource be-
tween two clients with the help of a token. A client is al-
lowed to use the resource if it logically possesses the token.
A client must maintain its request signal until it is granted
the token. This example has a hard synchronous require-
ment that a client must be granted a token within 10 cycles
or less. Excerpts of descriptions for this arbiter in ATS+,
Verilog and Esterel are shown in Figure 7.

The ATS+ description specifies the above requirements
with four transitions. The first two are committing tran-
sitions that specify the synchronous requirement, i.e., if a
client has been waiting for 10 cycles, then the token must
be taken from the other client. The last two non-committing
transitions say a client may get the token upon request,
provided there are no other committing or non-committing
transitions that conflict with the token grant.

The equivalent Esterel description consists of three par-
allel loops. We use the first two loops to keep track of ten
successive requests. It is important to point out that since
both Esterel and Verilog are deterministic, their descriptions
must fix a priority for what happens if both clients request
the token but neither has waited without a token for 10 cy-
cles.

Shared token example 2. We present another shared-
token arbiter. Only excerpts of the ATS+ description are
shown in Figure 8. This arbiter handles requests from three
clients for a shared resource and uses a circulating token
that cycles among the clients to determine priority. The
first transition circulates the token among the three clients.
The next three committing transitions indicate that a re-
quest from the client who currently holds the token will be
granted right away. The final three non-committing transi-
tions handle granting the request to a client without a to-
ken if the token holder is not requesting in the same cycle.
Non-committing transitions are ideal in these latter scenar-
ios since these events do not have hard synchronous require-
ments. This exemplifies the use of non-determinism to un-

burden the designer of “don’t care” decisions.

6. Related work

ATS is an high-level hardware representation based on
operation-centric state transitions. ATS descriptions are not
behavioral descriptions [4] in that an ATS description is not
a procedural description with sequential control flow (as in
C or behavioral Verilog.) ATS is developed as an interme-
diate representation for the compilation of TRSpec [9] and
is currently also used to support Bluespec [1]. Our synthe-
sis flow uses the Bluespec operation-centric language and
compiler.

The ATS model of computation is inspired by Term
Rewriting Systems (TRS) [2], a well-known reduction for-
malism with lineage from Lambda calculus. ATS is also
similar to Dijkstra’s guarded commands [7]. Similar seman-
tics has also served as the basis of parallel programming
languages [6], hardware description languages for syn-
chronous and asynchronous design synthesis [13, 15, 16],
and languages for hardware design verification [12, 14].

ATS+ supports the natural specification of synchronous
and asynchronous behaviors in the same framework. The
synchronous subset of ATS+ is a simple synchronous lan-
guage. “Synchronous languages” [3] refer to a class of for-
mal specification/programming languages that are exempli-
fied by Esterel [5], Lustre [8] and Signal [11]. Synchronous
languages typically offer 1. a discrete model of time, 2.
explicit expressions of concurrency, and 3. a deterministic
compiled behavior.

7. Conclusions

In this paper, we presented committing transitions and
synchronously delayed expressions as two synchronous ex-
tensions to ATS. These two new synchronous language ele-
ments enable ATS+ to capture both synchronous and asyn-
chronous behaviors in the same hardware description. The
intent is to allow the original ATS’s simplifying atomic and
sequential semantics to assist in the description of com-
plex concurrent internal behaviors, and in the same de-
scription, the synchronous extensions are used to describe
synchronous interfaces to external modules or internal syn-
chronous IP blocks.

We described the compilation of the synchronous exten-
sions using existing ATS synthesis capabilities (i.e., BSC).
Namely, synchronously delayed expressions are expanded
into automatically generated committing transitions, and
both the user and the generated committing transitions
are translated into non-committing transitions annotated by
BSC’s assert pragma. In our evaluation, we compared ATS+
to Verilog RTL and Esterel in terms of ease of description

and to Verilog RTL in synthesis quality. We show that ATS+
enables compact descriptions of complex synchronous and
asynchronous behavior and permits efficient synthesis to
clock-synchronous implementations.

Acknowledgements

We like to thank Bluespec, Inc. for providing access and
support to the Bluespec language and compiler.

References

[1] L. Augustsson, et al. Bluespec: Language definition.
http://www.bluespec.org, 2001.

[2] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[3] A. Benveniste, et al. The synchronous languages twelve
years later. Proc of IEEE, 91(1), Jan 2003.

[4] R. A. Bergamaschi. Behavioral synthesis: An overview. TR
20944, IBM T.J. Watson Research Center, Aug 1997.

[5] G. Berry. Proof, Language and Interaction: Essays in Hon-
our of Robin Milner, chapter The Foundations of Esterel.
MIT Press, 2000.

[6] K. M. Chandy and J. Misra. Parallel Program Design.
Addison-Wesley, 1988.

[7] E. W. Dijkstra. Guarded commands, nondeterminacy, and
formal derivation of programs. In Comm of ACM, volume
18(8), Aug 1975.

[8] N. Halbwachs, et al. The synchronous data flow program-
ming language LUSTRE. Proc of IEEE, 79(9), Sept 1991.

[9] J. C. Hoe. Operation-Centric Hardware Description and
Synthesis. PhD thesis, Massachusetts Institute of Technol-
ogy, Jun 2000.

[10] J. C. Hoe and Arvind. Synthesis of operation-centric hard-
ware descriptions. In International Conference on Computer
Aided Design. IEEE, July 2000.

[11] P. Le Guernic, et al. Programming real-time applications
with SIGNAL. Proc of IEEE, 79(9), Sept 1991.

[12] T. Lee et al. Automatic verification of asynchronous circuits.
IEEE Design and Test of Computers, 12(1), Spring 1995.

[13] A. P. Ravn and J. Staunstrup. Synchronized transitions. TR
AAR-219, University of Aarhus, 1987.

[14] V. M. Rodrigues and F. R. Wagner. Synchronous transitions
and their temporal logic. In Proc. Workshop de Métodos
Formais, 1998.

[15] J. Staunstrup and M. R. Greenstreet. From high-level de-
scriptions to VLSI circuits. BIT, 28(3), 1988.

[16] J. Staunstrup and M. R. Greenstreet. Formal Methods for
VLSI Design, chapter 2. Kluwer, 1994.

