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Abstract—The wide spread of Automatic Identification System
(AIS) has motivated several maritime analytics operations. Vessel
Location Forecasting (VLF) is one of the most critical operations
for maritime awareness. However, accurate VLF is a challenging
problem due to the complexity and dynamic nature of mar-
itime traffic conditions. Furthermore, as privacy concerns and
restrictions have grown, training data has become increasingly
fragmented, resulting in dispersed databases of several isolated
data silos among different organizations, which in turn decreases
the quality of learning models. In this paper, we propose an
efficient VLF solution based on LSTM neural networks, in two
variants, namely Nautilus and FedNautilus for the centralized
and the federated learning approach, respectively. We also
demonstrate the superiority of the centralized approach with
respect to current state of the art and discuss the advantages and
disadvantages of the federated against the centralized approach.

Index Terms—Machine Learning, Privacy Preservation, Fed-
erated Learning, Mobility Data Analytics, Vessel Location Fore-
casting

I. INTRODUCTION

Vessel Location Forecasting (VLF) is a critical task in the
maritime domain because it can be used in several aspects of
maritime mobility awareness, including, among others, fishing
effort/pressure forecasting [1], traffic flow management [2],
future collision avoidance [3], as well as co-movement pattern
discovery [4]. Informally, given a look-ahead time interval
∆tnext, the goal is to predict the future location of a moving
vessel sj at ∆tnext time after current timestamp t

sj
i . Figure 1

illustrates such an example, where given the vessels’ current
routes (black solid lines), VLF predicts their corresponding
future locations (green points).

Nevertheless, the vast spread of IoT-enabled devices, such
as sensors, smartwatches, smartphones, and GPS trackers,
has led to the production of vast amounts of data, including
mobility data. The availability of this volume of data is
crucial to the success of Machine Learning (ML) technologies,

which can perform a variety of tasks that may sometimes
exceed human performance [5]. Nevertheless, the information
generated by the edge devices inherently consists of sensitive
data and is frequently dispersed among numerous entities.
These characteristics present novel challenges regarding the
effective storage, analysis, and extraction of valuable insights
from such data [6], [7].

Centralizing data to a certain location (e.g., data center)
may become quite a cumbersome task because of the high
storage/bandwidth costs (e.g., commercial maritime traffic sys-
tems monitor thousands of vessels per day, receiving several
TBs of AIS information). In addition, sharing data entails
several risks including disclosure of commercial information,
trade secrets, and customer personal information1. Therefore,
in some domains, collecting and sharing data may become
quite difficult, if not outright impossible, thus forcing data
owners to store them in isolated data silos. Alternatively,
delegating the training process to the edge devices and/or data
silos, so that each party can use an ML-based model using
their own datasets, may impact the models’ performance, with
sub-optimal performance (e.g., under-fitting) or a biased target
distribution (e.g., over-fitting), depending on the datasets’ size
and features’ distribution, respectively.

In order to solve the aforementioned challenges and train
an ML-based model that does not rely on collecting all data
to a centralized storage, McMahan et al. [8] and Konečný
et al. [9] propose the Federated Learning (FL) paradigm,
where a centralized model is trained on decentralized data.
In particular, each edge device (or data silo, depending on
the problem architecture) receives a seminal model from the
server and proceeds to train it using its corresponding data.
Afterwards, all updated models are uploaded to the server,
where they are aggregated, thus producing a new model.

1c.f., for instance, the General Data Protection Regulation (GDPR) in
European Union: https://ec.europa.eu/info/law/law-topic/data-protection en.
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Repeating the process for several cycles may eventually cause
the global model to converge, producing an ML model that
competes, in terms of quality, the (local) model that each party
can learn on its own [5].

Using FL, the decentralized nature of the data is maintained,
as the edge devices / data silos collaboratively train an ML
model, only sending weight updates (i.e., gradients) to the
aggregation server. Because of that, every participant keeps
control of its own data, as it essentially never “leaves” the
device / silo, therefore making it harder for an adversary to
extract sensitive information. Distributing the training work-
load to multiple edge devices / silos, FL allows for potentially
“smarter” models, lower inference latency, less overall power
consumption, and by extension, lighter environmental impact
[10].

Fig. 1. Predicting the future locations of three moving objects (e.g., vessels in
the maritime domain) s1, s2 and s3. Given the vessels’ current routes up to
t
sj
n (solid lines), VLF is used to predict vessels’ future locations (green points)

at three discrete timestamps, t
sj
n + ∆tnext, t

sj
n + ∆t′next, and t

sj
n + ∆t′′next,

respectively.

In this paper, we propose Nautilus, an efficient VLF solution
based on Neural Networks (NN), in particular the Long
Short-Term Memory (LSTM) model, which will be shown
(in Section IV) to outperform current state-of-the-art [11] in
the vast majority of cases at a prediction horizon ∆tnext up
to 60 min. Moreover, with the FL paradigm in mind, we
extend Nautilus to an FL-oriented architecture, called FedNau-
tilus, geared towards collaboratively training the LSTM model
across multiple data silos (i.e., vessel traffic controllers, fleet
owners, maritime ICT industries, etc.).

The approach described in this paper meets the industrial
needs of vessel tracking and maritime intelligence companies,

like Kpler. Kpler owns the largest terrestrial network of AIS
receivers worldwide as well as MarineTraffic2, one of the best
known platforms for real-time vessel tracking, which is based
on AIS. However, AIS is a collaborative maritime reporting
system, so sometimes vessels might become untraceable via
AIS, for the following reasons: (a) equipment malfunction, (b)
the vessel navigates into an area that is out of AIS coverage,
(c) the vessel has its AIS transponder switched-off (e.g., when
engaging in illegal activities). VLF gives us the opportunity to
estimate the future location(s) of a vessel given the last known
positions.

The main motivation behind the FL approach is that since
AIS data are collected using a de-centralized network of AIS
receivers, scattered all over the world, the use of FL allows
for reducing the data that needs to be transferred from the
receivers to the centralized server, enabling the creation of
local VLF models which are then aggregated into a global
model in federated fashion. In addition, due to the diversity of
the participating parties’ datasets, the global model can also
extract knowledge of certain behaviours (e.g., tight maneuver-
ing) that may not be available to all parties. Nevertheless, the
FL problem in our setting is challenging since, apart from the
inherent difficulty of forecasting, we also need to define the
FL communication protocol (e.g., FedAvg [8]), which is not
a straightforward procedure at all.

In summary, the main contributions of this work are as
follows:

• We propose an efficient VLF architecture based on
LSTM, in two variants, namely Nautilus and FedNautilus,
for the centralized and the (cross-silo) federated learning
approach, respectively.

• We demonstrate the efficiency of the proposed archi-
tecture, in terms of prediction accuracy in short-term
prediction horizon (up to 60 min.), using three large-
volume real-world maritime AIS datasets.

• We study the effect of FL on the task at hand, i.e., the
performance of FedNautilus with respect to FL aggrega-
tion hyper-parameters.

The rest of this paper is organized as follows: Section II
discusses related work. Section III formulates the problem at
hand and presents the proposed (Fed)Nautilus architecture in
its two variants (centralized vs. federated learning). Section
IV presents our experimental study, where it is shown that
our solution outperforms state-of-the-art. Finally, Section V
concludes the paper, also giving hints for future work.

II. RELATED WORK

A. Vessel Location Forecasting

Considering the VLF problem, current state-of-the-art in-
cludes an adequate number of research works. More specif-
ically, one line of work includes clustering-based prediction
techniques. Petrou et al. [12] utilize the work done by [13]
on distributed subtrajectory clustering, in order to extract
individual subtrajectory patterns from big mobility data; these

2MarineTraffic: Global Ship Tracking Intelligence. www.marinetraffic.com

www.marinetraffic.com


patterns are subsequently utilized in order to predict the future
location of the moving objects in parallel. In a more recent
work, Zygouras et al. [14] introduce EnvClus∗, a novel data-
driven framework which performs trajectory forecasting via a
mobility graph which models vessels’ most likely movements
among two ports.

Wang et al. [15] aiming at predicting the movement trend
of vessels in the crowded port water of Tianjin port, pro-
posed a vessel berthing trajectory prediction model based on
bidirectional GRU (Bi-GRU) and cubic spline interpolation.
Capobianco et.al. [16] provided an NN-based approach for
vessel trajectory prediction. In particular, they predict the
vessels’ future locations using a temporal window within an
area of interest, and an encoder-decoder LSTM using the
attention mechanism.

Suo et al. [17] present an RNN-based model to predict
vessel trajectories based on the DBSCAN [18] clustering algo-
rithm to derive main trajectories, and a symmetric segmented-
path distance approach to eliminate the influence of a large
number of redundant data and optimize incoming trajectories.

Liu et al. [19] propose “Spatio-Temporal GRU”, a trajec-
tory classifier for modeling spatio-temporal correlations and
irregular temporal intervals prevalently presented in spatio-
temporal trajectories. More specifically, a segmented convo-
lutional weight mechanism was proposed to capture short-
term local spatial correlations in trajectories along with an
additional temporal gate to control the information flow related
to the temporal interval information.

Most recently, Chondrodima et al. [11] propose a novel
LSTM-based VLF framework, specially designed for handling
vessel data by addressing some major GPS-related obstacles,
such as variable sampling rate and sparse trajectories. More-
over, in order to improve the predictive power of VLF, they
propose a novel trajectory data augmentation method based on
the well-known Douglas-Peucker line simplification algorithm
[20]. This work is considered, to the best of our knowledge,
the state of the art in (short-term) VLF achieving an accuracy
error around 2 km in 30 min. prediction horizon.

B. Federated Learning

While distributed ML [21] can help us scale up the training
process across multiple computational nodes, it can only
be used on centralized data. On the other hand, FL trains
centralized models using decentralized data [22], as such, FL
algorithms are primarily geared towards data privacy.

Considering the characteristics of the data owners, we
distinguish two major FL variants, namely, cross-silo and
cross-device FL [23]. Cross-device FL can be considered when
the participating devices (clients) are typically large in number
(up to 1010) and have slow or unstable internet connection;
a principal motivating example arises when the training data
comes from users’ interaction with mobile applications [24].
On the other hand, cross-silo FL can be considered when a
relatively small group (usually 2–100) of organizations share
a common incentive to collaboratively train an ML model
based on their data, but cannot share them directly, due to

Fig. 2. Client-drift in FedAvg is illustrated for 2 clients with 3 local steps
(N = 2, K = 3). The local updates yi (in blue) move towards the individual
client optima x∗

i (orange square). The server updates (in green) move towards
1
N

∑
i x

∗
i instead of to the true optimum x∗ (black square; [25]).

e.g, storage cost or legal constraints. Another key difference
between cross-device and cross-silo FL lies within the privacy
requirements of the FL framework. In cross-device FL, data
privacy is of the utmost importance, as the trained ML model
will be available to virtually everyone, whereas in cross-silo
FL, the trained ML model most likely be available for internal
use among the participating parties, therefore the concerns
about “virtually everyone” are less important in the life cycle
of the ML model.

Except network and communication efficiency and client
availability [9], another key challenge of federated optimiza-
tion is the training parties’ heterogeneity with respect to
their local datasets [24]. In order to address the first two
issues, FedAvg [8] performs multiple local updates on the
available clients before communicating to the server. While
this approach works well with high convergence guarantees (in
applications where the participating parties’ datasets are homo-
geneous), when the clients are heterogeneous these guarantees
fail to hold. By each step, the parties’ locally fitted ML model
will converge to different local optima, therefore introducing
slow and unstable convergence to the global model, as Figure
2 illustrates. This phenomenon is known as “client-drift”, and
in order to avoid it, fewer local updates and/or lower learning
rates must be used, actions that have a significant impact on
the convergence stability of FedAvg.

Towards this direction, the authors in [25] acknowledge
the aforementioned issue and propose a new federated op-
timization framework called SCAFFOLD, which uses control
variates (variance reduction) in order to approximate an ideal
unbiased update, therefore considering the “client-drift” in
its local updates. By experimenting on various optimization
settings, the authors prove that SCAFFOLD is resilient to
client sampling (i.e., independent of the amount of client
heterogeneity) and consistently outperforms FedAvg on non-
convex experiments. Further following this line of research,
FedProx [26] presents an extension to FedAvg which adds
a regularization term in the clients’ cost function in order
to restrict local updates to be closer to the initial (global)
model. In a similar fashion, the qFedAvg algorithm [27]
introduces a novel optimization objective inspired by fair
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Fig. 3. The proposed Nautilus architecture.

resource allocation in wireless networks that encourages a
more uniform accuracy distribution across devices in federated
networks. Closest to our work, however in the urban domain,
the authors in [28] propose ATPFL, a framework for predicting
pedestrian trajectories, combining FL with Automated Ma-
chine Learning (AutoML). Additionally, FAHEFL [29] is an
FL-based algorithm geared towards user/model privacy (via
Homomorphic Encryption) for vehicle trajectory prediction
and behaviour classification.

To the best of our knowledge, our work is the first in the
literature that experimentally evaluates centralized vs. feder-
ated VLF approaches over diverse (with respect to location
and activity) maritime data silos, providing insightful results.

III. PROBLEM FORMULATION AND PROPOSED
METHODOLOGY

In this section, we present the proposed Nautilus solution
and describe it under both centralized and federated learning
approaches.

A. Problem Definition

Before we proceed to the actual formulation of the problem,
we provide some preliminary definitions.

Definition 1. (Trajectory). A trajectory T = {p1, . . . pn} of
a moving object is defined as a sequence of timestamped
locations, pi = {xi, yi, ti}, 1 ≤ i ≤ n.

Definition 2. (Vessel Location Forecasting). Given a dataset
D of moving vessels’ trajectories, a trajectory T s and the type
stype of vessel s, and a prediction horizon ∆tnext, the goal is
to train a data-driven model over D, which will be able to pre-
dict the vessels’ future location psn+1 = {xs

n+1, y
s
n+1, t

s
n+1}

at timestamp tsn+1 = tsn +∆tnext.

If we recall Figure 1, it provides an illustration of Definition
2. More specifically, we know the movement of three moving
objects up to t

sj
n . Our goal, given ∆tnext, is to predict the

anticipated location of these vessels at tsjn +∆tnext.

B. The proposed Nautilus architecture

To address the VLF problem, we propose an extension of
the LSTM-based model employed in [11] for predicting the
future location of moving vessels in the short-term, which
considers their kinematic characteristics and their correspond-
ing type; Figure 3 illustrates the architecture of the proposed
model. More specifically, Nautilus architecture consists of the
following layers: a) an input layer of six neurons, one for
each input variable, b) a single LSTM hidden layer composed
of 350 neurons, c) an embedding layer with six dimensions
for vectorizing the vessel’s type, d) a Dropout layer with
probability p = 0.25 for model regularization, e) a fully-
connected hidden layer composed of 150 neurons, and f) an
output layer of two neurons, one for each output variable.

The input variables consist of the differences (i.e., deltas)
in the Cartesian space (∆x,∆y), speed ∆v and course ∆ϕ
over ground, current time ∆tcurr, as well as the temporal
horizon ∆tnext for which we want to predict the vessels’ future
location. On the other hand, the output variables consist of the
differences in space (∆xnext, ∆ynext) of the predicted locations
with respect to the current locations.

With respect to the employed LSTM, each cell includes
three gates, namely, “forget”, “input”, and “output”, which are
responsible for what information we are going to drop from the
cell state ct−1, store from the cell state ct−1, and output to the
next cell state ct, respectively. Eqs. 1–6 briefly state the update
rules for the employed LSTM layer [30]. Additionally, details
for the Back-Propagation Through Time (BPTT) algorithm,
can be found in [31].

ft = σ (Wfxt +Rfht−1 + bf ) (1)
it = σ (Wixt +Riht−1 + bi) (2)
ot = σ (Woxt +Roht−1 + bo) (3)
c̃t = tanh (Wcxt +Rcht−1 + bc) (4)
ct = ft ⊙ ct−1 + it ⊙ c̃t−1 (5)
ht = gt ⊙ tanh (ct) (6)



TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTAL STUDY, AFTER THE PREPROCESSING PHASE (WITH TWO DIFFERENT TRAJECTORY

SEGMENTATION THRESHOLDS, t max = 30 MIN. AND 60 MIN., RESPECTIVELY).

Spatial Range
Temporal
Range

#Records
#Vessels
(i.e., distinct IDs)

#Trajectories
Sampling Rate (sec.)
(min.; avg.; max)

#Points per Trajectory
(min.; avg.; max.)

Brest
lon ∈ [−9.71,−1.09]

lat ∈ [45.00, 50.24]

2015-10-01 –
2016-03-31

4,408,217 (30 min.)
4,504,533 (60 min.)

1,654 (30 min.)
1,895 (60 min.)

14,418 (30 min.)
13,155 (60 min.)

10; 26; 1,800 (30 min.)
10; 36; 3,600 (60 min.)

20; 306; 13,638 (30 min.)
20; 342; 15,557 (60 min.)

Piraeus
lon ∈ [23.02, 23.80]

lat ∈ [37.50, 38.04]

2019-01-01 –
2019-03-30

1,903,582 (30 min.)
1,951,356 (60 min.)

1,321 (30 min.)
1,324 (60 min.)

12,895 (30 min.)
10,588 (60 min.)

10; 35; 1,800 (30 min.)
10; 48; 3,600 (60 min.)

20; 148; 5,659 (30 min.)
20; 184; 5,659 (60 min.)

Aegean
lon ∈ [24.46, 26.59]

lat ∈ [36.08, 39.49]

2018-11-01 –
2018-11-30

1,216,691 (30 min.)
1,226,136 (60 min.)

2,901 (30 min.)
2,907 (60 min.)

8,143 (30 min.)
7,741 (60 min.)

11; 165; 1,800 (30 min.)
11; 169; 3,600 (60 min.)

20; 149; 1,302 (30 min.)
20; 158; 1,600 (60 min.)

where ht is the hidden state at time t, ct (c̃t) is the (inter-
mediate) cell state at time t, xt is the input at time t, ht−1 is
the hidden state of the LSTM cell at time t− 1 or the initial
hidden state at time 0, and it, ft, gt, ot are the input, forget,
cell, and output gates, respectively. W, R and b are the input
weight matrices, the recurrent weight matrices and the bias
terms, respectively. σ is the sigmoid function and ⊙ is the
Hadamard product.

For the centralized training approach, we train our model
using the Adam [32] optimization algorithm with learning rate
η = 10−4 and the Root Mean Squared Error (RMSE) loss
function for 100 epochs. To prevent over-fitting, we use the
well-known early stopping [33] mechanism with a patience of
10 epochs.

Our model extends [11] by dividing its architecture into two
parts based on the type of mobility information: internal and
external. The former is related to the input of the recurrent
layer, which encodes vessels’ trajectories, whereas the latter
enriches the projection of the vessels’ input trajectory at a fully
connected layer. In terms of internal information, we include
additional factors related to vessels’ movement, such as ∆v
and ∆ϕ. Furthermore, in terms of external information, we
enrich the projection of the input trajectory with information
related to the type of the vessel via a separate embedding layer
that is jointly trained with the model.

C. Extending to FedNautilus

Figure 4 illustrates the FL workflow of FedNautilus. In
general, we have N clients, each of which trains a (lo-
cal)FedNautilus instance with their own data (stored in sepa-
rate data silos). Afterwards, they share the parameters (i.e.,
weights) of their local models to the aggregation server,
which generates the (global)FedNautilus model and returns
it to the participating clients. Moreover, in order to tailor (lo-
cal)FedNautilus’ decisions to the clients’ needs, we fine-tune
the (local)FedNautilus model for a – usually – small number of
epochs, a technique known as Personalized Federated Learning
(PerFL) [34], which will be explained further in the following
paragraphs.

In our FL environment, each data silo corresponds to the
transmitted locations of a certain AIS-enabled fleet. Each silo
contains an instance of our Nautilus model, which is trained
using only their respective data. For training the local model

instances, we use the same optimization algorithm with the
centralized approach, while for the optimization of the global
model we use the FedProx [26] algorithm for 70 FL rounds
with µprox = 10−3, empirically selected based on the values
listed at [26] and overall training progress of the corresponding
(local)Nautilus models.

Furthermore, to further address the client-drift issue, we
exploit on Personalized Federated Learning (PerFL) [34].
PerFL is a branch of FL that aims to address these issues by
customizing the global model for each client in the federation.
In a nutshell, it aims to leverage the collective wisdom of
clients’ data in order to create models that are tailored to the
data distributions of individual clients. In this paper, we follow
the approach described in [35], which is to fine-tune the global
model for a certain number of epochs (10 in our case) using the
clients’ corresponding datasets, and extend it by using early
stopping [33] mechanism with a patience of 3 epochs, in order
to avoid over-fitting.

IV. EXPERIMENTAL STUDY

In this section, we evaluate our VLF model on various
centralized and federated learning schemes using three real-
world maritime mobility datasets, and present our experimen-
tal results3.

A. Experimental Setup, Datasets and Preprocessing

In our experimental study, we use three large-scale real-
world maritime AIS datasets, referred to as “Brest”4, “Pi-
raeus”5, and “Aegean”6, respectively. Figure 5 provides a
visualization of these datasets on the map. All conducted
experiments were implemented in Python. More specifically,
the aforementioned models were implemented using PyTorch7

and trained using Flower8 for FL, via a GPU cluster equipped
with 2 Nvidia A100 GPUs, 128 CPUs, and 1TB of RAM.

3The corresponding source code used in our experimental study is available
at: https://github.com/DataStories-UniPi/Nautilus

4The dataset is publicly available at https://doi.org/10.5281/zenodo.11675
94.

5The dataset is publicly available at https://doi.org/10.5281/zenodo.55626
29.

6The (proprietary) dataset has been kindly provided by Kpler for research
purposes, in the context of project MobiSpaces (https://mobispaces.eu).

7PyTorch: An Imperative Style, High-Performance Deep Learning Library.
https://pytorch.org

8Flower: A Friendly Federated Learning Framework. https://flower.dev

https://github.com/DataStories-UniPi/Nautilus
https://doi.org/10.5281/zenodo.1167594
https://doi.org/10.5281/zenodo.1167594
https://doi.org/10.5281/zenodo.5562629
https://doi.org/10.5281/zenodo.5562629
https://mobispaces.eu
https://pytorch.org
https://flower.dev
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Fig. 5. Snapshot of (a) Brest; (b) Piraeus; and (c) Aegean dataset, after the preprocessing phase.

Our data (pre-)processing stage consists of two phases. The
first phase is a process consistently followed in the literature
due to the noise, irregularity of sampling rate, etc. that are
typical in AIS datasets. The second phase (data preparation for
model training) on the other hand, uses the output of the first
phase as its input and is performed for ML-specific purposes,
i.e., to feed its output into our (Fed)Nautilus architecture.

In particular, the preprocessing phase includes (i) record de-
duplication, in which we eliminate duplicate AIS messages
based on their unique ID (Maritime Mobile Service Identity
- MMSI) and time of transmission, and (ii) dropping vessels
with invalid ID with respect to the first three digits of MMSI
that correspond to the country of origin (Maritime Identifica-
tion Digits - MID) [16]. In order to focus our model on the “big
picture” of maritime mobility, and avoid the effect of vessels’
micromovements, as an effect of the unstable sampling rate
of AIS9, we also subsample the vessels’ trajectories, so that
the minimum temporal difference between two points is set to
∆t min = 10 seconds.

Because this operation may drop several – insignificant –

9MarineTraffic - How often do the positions of the vessels get updated on
MarineTraffic?, https://help.marinetraffic.com/hc/en-us/articles/217631867
-How-often-do-the-positions-of-the-vessels-get-updated-on-MarineTraffic-.
Last visited at Jan. 20, 2024.

AIS messages, out of the resulting trajectories we drop the
ones with less than min pts = 20 points. Afterwards, we drop
the AIS erroneous messages due to invalid speed (i.e., speed
over speed max = 50 knots) or stationarity (i.e., speed less
than speed min = 1 knot). Finally, we perform a trajectory
segmentation task when a successive pair of points with a
temporal difference higher than t max is detected (keeping,
also in this case, the property of at least min pts points per
trajectory). In our study, we experimented with two different
thresholds, t max = 30 min. and 60 min., in order to evaluate
the prediction accuracy of our model up to ∆tnext = 30 min.
and ∆tnext = 60 min., respectively. Table I illustrates the
statistics of the datasets (spatial and temporal range, number
of locations, trajectories, etc.) after the above mentioned steps.

Towards training the model in order to account the trajec-
tories’ variable length as well as their temporal dependencies,
we take the first order difference (slope) of the kinematic
features (i.e., location, speed, course) for each trajectory, and
then apply a semi-overlapping sliding window with length
(i.e., number of transitions) from length min = 18 up to
length max = 32 transitions. Since the aim is to predict
the next location, we select as label the next transition from
each window. Finally, to account for the unit difference in the
time series variables, we normalize their corresponding values

https://help.marinetraffic.com/hc/en-us/articles/217631867-How-often-do-the-positions-of-the-vessels-get-updated-on-MarineTraffic-
https://help.marinetraffic.com/hc/en-us/articles/217631867-How-often-do-the-positions-of-the-vessels-get-updated-on-MarineTraffic-


by subtracting the mean of each feature and dividing by its
variance (z-score standardization).

In the two sections that follow, we provide the experimental
results of our study, comparing the two variants, central-
ized and federated, of the proposed (Fed)Nautilus framework
presented in Section III, also with respect to the current
state-of-the-art [11]. The performance comparison is based
on a popular prediction quality measure, namely the Final
Displacement Error (FDE) defined in Eq. 7.

FDE =
1

n

∑
i

√√√√√√
(
∆xpred

i −∆xtrue
i

)2

+(
∆ypredi −∆ytruei

)2
(7)

B. Experimental Results on Nautilus

In this section, we demonstrate the results of our experimen-
tal study on Nautilus. Following the preprocessing outlined
in Section IV-A, we acquire 265,525, 109,906, and 70,201
sliding windows from the Brest, Piraeus, and Aegean datasets,
respectively. These windows will be used to train the model.
They are divided into training, validation, and test sets using a
split ratio of 50:25:25% (1 fold) with respect to the datasets’
temporal span (c.f., Table I). After training our VLF instances,
Table II illustrates the performance of Nautilus on the datasets’
test set with respect to FDE. We observe that our solution
outperforms the state-of-the-art method [11] in the majority
of cases; in particular, it is the clear winner on the Brest
and Piraeus datasets, especially when both models are trained
over the t max = 60 min. trajectory segmentation variant of
datasets, while it appears to be a balance between the two
models on the Aegean dataset.

Focusing on the results of Nautilus, and comparing the
two variants (i.e., 30 min. vs. 60 min. trajectory segmentation
threshold), we observe that the 30 min. variant yields slightly
better results on the Brest dataset, while the opposite happens
on the Piraeus and Aegean datasets. A first conclusion out
of this is that the segmentation threshold is not a critical
factor for the quality of the prediction; the original assumption
that by setting t max = 30 min. at the preprocessing phase
would lead to consistently better performance for predictions
up to ∆tnext = 30 min. was not confirmed in practice. This
behaviour can partially be attributed to the increase in the
population of the train set, in terms of target lookaheads, which
may introduce a regularization effect to the model.

C. Experimental Results on FedNautilus

Moving to the FL setting, let us assume that the participating
partners are in agreement to exchange the parameters of each
partner’s VLF model (i.e., local model), and aggregate them
into a single entity (i.e., global model) using the FedProx
algorithm [26] with µprox = 10−3, as presented in Section
III-B. After 70 rounds, Table III (rows titled ”FedNautilus”)
illustrates the performance of the (global) FedNautilus model
over the test set of the datasets at hand. Compared to the
prediction error of our centralized solution (c.f. Table II), we

(a)

(b) (c)

Fig. 6. Learning curve for (a) Brest, (b) Piraeus, and (c) Aegean local
FedNautilus instances compared to the global FedNautilus model. Solid blue
and orange lines correspond to participants’ training and validation loss,
respectively, while dashed green and red lines correspond to the global
FedNautilus training and validation loss, respectively.

observe that the prediction quality on all three datasets of the
global FedNautilus model has been decreased with respect to
the centralized results.

In order to further understand the reason behind this be-
haviour, Figure 6 illustrates the learning curve of the partners’
local VLF instances, compared to the learning curve of the
global FedNautilus model. In general, we observe that the
training/validation loss of the Aegean (c.f., Figure 6c) local
models diverges from the global FedNautilus model, a be-
haviour which is observed throughout the training process,
better known as “client-drift”.

The main cause behind “client-drift” lies within the partici-
pating parties’ heterogeneity. In particular, Figure 7 illustrates
the Kernel Density Estimation (KDE) of the first and second
principal components of the three datasets. We observe that the
estimated distributions of Brest and Piraeus datasets follow a
- seemingly - unimodal distribution, while on the other hand,
the multimodal distribution of the Aegean dataset, introduces a
high level of heterogeneity, which inhibits the training process
of global FedNautilus model from matching the participants’
performance target(s).

By adjusting the µprox parameter, we can be either more
“strict” or more “relaxed” with participating data silos whose
contributions (i.e., model weights) greatly deviate with re-
spect to the aggregated (global) model. Table IV illus-
trates the performance of (global)FedNautilus for µprox =



TABLE II
PREDICTION ERROR (FDE; METERS) OF NAUTILUS VS. STATE-OF-THE-ART PER DATASET (LESS IS BETTER).

(0,5] (5, 10] (10, 15] (15, 20] (20, 25] (25, 30] (30, 35] (35, 40] (40, 45] (45, 50] (50, 55] (55, 60]

B
re

st

VLF-LSTM [11] (30 min.) 13 308 602 802 1073 1316 N/A N/A N/A N/A N/A N/A
Nautilus (30 min.) 12 302 579 811 1139 1220 N/A N/A N/A N/A N/A N/A

VLF-LSTM [11] (60 min.) 14 366 781 1042 1210 1427 2926 2493 2699 1987 3991 4167
Nautilus (60 min.) 13 353 714 893 1032 1380 2654 2296 2119 1897 3627 4177

Pi
ra

eu
s

VLF-LSTM [11] (30 min.) 14 157 348 438 713 551 N/A N/A N/A N/A N/A N/A
Nautilus (30 min.) 14 154 353 442 685 601 N/A N/A N/A N/A N/A N/A

VLF-LSTM [11] (60 min.) 15 155 332 436 570 406 672 478 871 1458 1518 2620
Nautilus (60 min.) 15 144 334 409 537 332 639 353 723 1369 1346 2179

A
eg

ea
n

VLF-LSTM [11] (30 min.) 41 201 477 505 1036 1764 N/A N/A N/A N/A N/A N/A
Nautilus (30 min.) 43 198 494 501 902 1976 N/A N/A N/A N/A N/A N/A

VLF-LSTM [11] (60 min.) 43 190 499 348 1010 1302 967 2360 1460 2950 8369 5124
Nautilus (60 min.) 45 188 482 457 1053 1132 918 2684 1373 2860 9402 2848

TABLE III
PREDICTION ERROR (FDE; METERS) OF NAUTILUS VS. FEDNAUTILUS PER DATASET (LESS IS BETTER).

(0,5] (5, 10] (10, 15] (15, 20] (20, 25] (25, 30] (30, 35] (35, 40] (40, 45] (45, 50] (50, 55] (55, 60]

B
re

st

Nautilus (30 min.) 12 302 579 811 1139 1220 N/A N/A N/A N/A N/A N/A
(global)FedNautilus (30 min.) 14 332 667 968 1295 1577 N/A N/A N/A N/A N/A N/A
(Per)FedNautilus (30 min.) 12 291 547 802 1157 1170 N/A N/A N/A N/A N/A N/A

Nautilus (60 min.) 13 353 714 893 1032 1380 2654 2296 2119 1897 3627 4177
(global)FedNautilus (60 min.) 17 375 729 1033 1058 1579 2715 2480 2285 2222 3296 4308
(Per)FedNautilus (60 min.) 13 345 681 864 907 1250 2569 2411 1926 2040 3367 4215

Pi
ra

eu
s

Nautilus (30 min.) 14 154 353 442 685 601 N/A N/A N/A N/A N/A N/A
(global)FedNautilus (30 min.) 23 226 409 520 775 728 N/A N/A N/A N/A N/A N/A
(Per)FedNautilus (30 min.) 13 140 308 356 607 568 N/A N/A N/A N/A N/A N/A

Nautilus (60 min.) 15 144 334 409 537 332 639 353 723 1369 1346 2179
(global)FedNautilus (60 min.) 24 239 387 534 654 675 867 772 1238 1555 1708 2767
(Per)FedNautilus (60 min.) 15 144 298 363 537 412 636 542 914 1462 1347 2007

A
eg

ea
n

Nautilus (30 min.) 43 198 494 501 902 1976 N/A N/A N/A N/A N/A N/A
(global)FedNautilus (30 min.) 550 1810 3747 4035 5175 9096 N/A N/A N/A N/A N/A N/A
(Per)FedNautilus (30 min.) 43 211 541 482 1177 1608 N/A N/A N/A N/A N/A N/A

Nautilus (60 min.) 45 188 482 457 1053 1132 918 2684 1373 2860 9402 2848
(global)FedNautilus (60 min.) 528 1334 2976 3293 3109 8808 9400 4296 3226 7585 18786 21302
(Per)FedNautilus (60 min.) 45 203 465 358 886 914 1110 2981 1236 2882 10015 4391

{10−4, 10−3, 10−2, 10−1, 1}.
Combined with the insight given by Figure 7, we observe

that the Piraeus dataset has the most increase in performance,
presenting its best at µprox = 1.0, with µprox = 10−3 being
a close contender. On the other hand, we observe that the
Brest and Aegean datasets present an overall increase in FDE
up to 25 min., presenting their best at µprox = 10−1 and
µprox = 10−3, respectively. In other words, the more we
increase µprox, the more FedProx tends to benefit the Piraeus
dataset, and ignore the Brest and Aegean datasets, due to their
increasing complexity in terms of KDE.

Focusing on the FedNautilus instances trained with µprox =
10−3 (more or less, the same observations hold the other val-
ues of µprox used in our experimental study), Table III (rows

titled “(Per)FedNautilus”) illustrates the performance of the
global personalized FedNautilus instance, (Per)FedNautilus,
on the three datasets. Compared to the centralized and the
“global” federated approaches (rows titled “Nautilus” and
“(global)FedNautilus”, respectively, in Table III), it appears
that personalization clearly improved the prediction accuracy
of our model, not only against the global FL model but also
against the (local) models trained upon the partners’ datasets.
This is a key result of our performance study that confirms
the value of the FL paradigm.

D. A note on the communication cost

As mentioned in Section I, FL offers significant improve-
ments in communication costs compared to centralized ML,



(a)

(b) (c)

Fig. 7. Kernel Density Estimation (KDE) of 1st and 2nd principal components
of (a) Brest; (b) Piraeus; and (c) Aegean dataset.

especially when dealing with large datasets. Assume a hypo-
thetical scenario in which, rather than training an ML-based
model in a centralized (isolated) manner, each data silo pools
their own datasets and trains a centralized (unified) ML-based
model. The combined size of the Brest, Piraeus, and Aegean
datasets is up to 4.15 GB. The server sends the updated model
(6.7 MB, of which 2.2 MB is the size of the model parameters)
to participating data silos at each epoch, for a total of 6.7 * 3
* 70 = 1.37 GB for 70 epochs in the worst-case scenario (i.e.,
the early stopping mechanism is not activated). As a result,
the communication cost of the centralized training process is
5.52 GB.

On the other hand, FL trains the model locally on the
devices or servers where the data is stored. In this case, only
the updated model parameters, 2.2 MB in total, must be sent
from each data silo to the central server and vice versa. As a
result, the total communication cost for each training round in
FL is 6.6 MB (3 silos * 2.2 MB) * 2 (send/receive), or 0.90
GB for 70 FL rounds. This represents a significant reduction
in communication cost of 84% compared to the centralized
approach. As a result, FedNautilus can be considered a viable
solution for not only data silos but also edge devices with
limited bandwidth resources.

V. CONCLUSION

In this paper, we proposed (Fed)Nautilus, a VLF framework
extending current state-of-the-art [11], we trained it in two
variants, following the centralized ML and the FL paradigms,
respectively, and assessed the pros and cons of each approach.

In particular, through an extensive experimental study on three
real-world AIS datasets, we demonstrated the efficiency of
Nautilus in comparison with related work. We also evaluated
the benefits and open problems of the FL-based solution,
FedNautilus, as well as the usefulness of personalization over
heterogeneous datasets.

Following the research guidelines of the emerging Mobility
Data Science era [36], in the near future, we aim to further
adjust the architecture of the FedNautilus model by incorpo-
rating additional external factors, such as weather conditions
and itinerary information. In a parallel line of research, we
aim to transfer the FedNautilus model from the cross-silo
to the cross-device paradigm in order to assess the balance
between prediction quality and communication cost, based on
the preliminary findings about the latter, which were discussed
in Section IV-D. In the long-term, we aim to address the client-
drift issue of FedNautilus by either fine-tuning the existing
algorithms, or implementing newer ones, such as [37].
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