
In the early decades of software development, engineers
were sure that software has one big advantage over hard-
ware: it does not age. While the material used to build
hardware components degrades over time, decreasing

their reliability, this is not the case for software. Its code
statements are either correct or incorrect, and a piece of soft-
ware that works today will also do so in the future.

However, in the mid-1990s, two publications showed
that software can age. Indeed, they described two differ-
ent types of software aging: a fast one and a slow one. Al-
though there has been plenty of research on this topic,1,7

the notion that “software does not age” is still widespread.
In this column, we review the two types of software aging,
and we show that both of them played an important role in
a well-known and lethal case of a software failure—a fact
that has hardly been recognized so far.

FAST SOFTWARE AGING
The fast type of software aging was first studied analyti-
cally by Huang et al.,5 who referred to it as “process aging.”

This phenomenon relates to an in-
creasing failure rate or a decreasing

performance experienced with software systems that
have been running continuously for a few days or even
for just a few hours. It has also been observed for systems
that do not use any live patching. This begs the question:
Why should the behavior of such a system change over
time? After all, its code base remains unchanged, and
the introduction of new faults can thus be excluded as
an explanation.

To understand this type of software aging, we need to
take a closer look at how the static faults in the software
code can cause failures (that is, deviations of the dynamic
software behavior from the one specified in the require-
ments). The typical consequence of the activation of a
fault during software execution is an internal error state
in the running system, for example, a wrong value of a
variable kept in the random access memory. Such an error
can be propagated into further errors (such as incorrect
values of other variables) until it finally hits the front end
and causes an incorrect result or any other kind of failure
that can be noticed by the user.

Fast software aging is due to specific kinds of software
faults, known as aging-related bugs.4 In many cases, such
faults cause errors that first need to accumulate inside the

Digital Object Identifier 10.1109/MC.2021.3133121
Date of current version: 6 May 2022

Aging, Fast and Slow
Michael Grottke, GfK SE

Kishor S. Trivedi, Duke University

Software can show symptoms of two different

types of aging. Sometimes, it is even subject to

both types.

SOFTWARE ENGINEERING
EDITOR PHIL LAPLANTE
Penn State; plaplante@psu.edu

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y M AY 2 0 2 2 73

74	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

system before they can lead to a failure.
Since the probability that a sufficient
number of errors has accumulated be-
comes larger over time, the failure rate
increases. Consider the example of a
memory leak, that is, a software fault
due to which memory that has been re-
served and used is not released correctly.
Such an individual error of unreleased
memory in the running system will
hardly cause any immediate problem.
However, as increasingly more parts of
the memory are affected, the system is
likely to slow down until it finally fails
because of an out-of-memory condition.

Yet, the accumulation of errors is
not the only possible root cause of fast
software aging. For some aging-related
bugs, the rate at which they are acti-
vated or the rate at which the errors
caused by them are propagated into fail-
ures depends on the system runtime.

In fact, one of the most famous
cases of fast software aging falls into
this latter category. On 25 February
1991, the Patriot missile defense sys-
tem operating in Saudi Arabian Dhah-
ran failed to recognize and intercept
an Iraqi Scud missile. Twenty-eight
U.S. soldiers were killed, and more
than 90 were injured when this missile
hit their barracks.3

The Patriot system worked as follows.
After detecting an airborne object, it cal-
culated a range gate area in which an ob-
ject of the type to be recognized, in this
case a Scud missile, was to be expected
next. Only if the object should then be
found in this area, would this confirm
that it is indeed a Scud missile, and the
Patriot system would fire. To compute
the range gate area, the system used
the known velocity of the potential tar-
get and the length of time between the
last radar detection and the subsequent
check. While the length of this time
interval was required in seconds, the
system internally counted the tenths of
seconds that had passed since the last
restart. Because of the 24-bit registers
used, the conversion resulted in an error
that represented about 0.0001% of the
time span since the last system reboot
(see p. 42 of Huckle and Neckel6).

During the first few hours after a re-
start, such an error was not propagated
into a failure because the computed
range gate area still contained the Scud
missile to be intercepted. However, af-
ter a runtime of 20 h, the inaccuracy in
the time interval amounted to about
0.0687 s.3 A Scud missile traveling at
Mach 5 (approximately 3,750 mi/h)
covers more than 125 yards in this time
span, which was enough to make the
Patriot system look for the target in the
wrong place and thus prevent it from
correctly recognizing and intercepting
the Scud missile. When the incident
happened at Dhahran, the Patriot sys-
tem located there had been running
continuously for more than 100 h.3

SLOW SOFTWARE AGING
While the Patriot incident has often
been cited as an example of fast soft-
ware aging, the descriptions typically
fail to point out that slow software ag-
ing played a role as well. This type of
software aging, which usually takes
years or even decades to develop, was
first discussed in detail by Parnas.8 Its
root cause is often the fact that the user
requirements for a piece of software as
well as the environment in which it op-
erates change over the years. Failure to
account for these changes would ren-
der the software obsolete. However,
if the developers decide to adapt and
extend it in response to these changes,
this may lead to further problems.

Years after a software was initially
coded, even the original programmers
can hardly remember the design concept
and the implementation details, espe-
cially if proper documentation is lack-
ing. If the team composition should
have changed completely over the years,
none of the original developers would
still be around, and it is all the more dif-
ficult for new team members to under-
stand the code. Moreover, they may have
to deal with a legacy programming lan-
guage and old-fashioned design patterns
with which they are hardly familiar.

On the one hand, this poses the
direct risk of introducing bugs when
making changes. On the other hand,

the lack of understanding as well as the
usage of hacks when extending a soft-
ware often results in an erosion of its
design and architecture, such as viola-
tions of the “don’t repeat yourself” prin-
ciple (see p. 165 of Foote2), according to
which the same functionality must not
be implemented redundantly at several
places in the code. In combination with
the fact that the documentation might
not be updated to (fully) reflect the
changes, this significantly reduces the
maintainability of the software while
increasing the probability of involun-
tarily creating faults in the future.8

This is what happened with the Pa-
triot missile defense system. It had orig-
inally been developed in the 1960s to in-
tercept attacking aircraft.3 Several big
updates performed in 1988 and 1990 ex-
tended it to also defend against substan-
tially faster tactical ballistic missiles
(see pp. 40–41 of Huckle and Neckel6).
One of these updates introduced a new
routine using a pair of 24-bit registers
to improve the accuracy in converting
the tenths of seconds counted by the
system into seconds. Until then, both
the beginning and the end of the time
interval during which the potential
target was to be tracked had been con-
verted using a routine underestimating
the respective number of seconds by
about 0.0001%. When these two num-
bers were subtracted, the inaccuracies
partially canceled out, resulting in an
almost negligible 0.0001% error in the
computed length of the time interval.

Unfortunately, when changing the
20-year-old assembler code, the devel-
opers failed to replace all of the occur-
rences of the original conversion with
a call to the new routine (see p. 43 of
Huckle and Neckel6). Only the end of
the time interval, but not its begin-
ning, was now converted more accu-
rately, and therefore errors could no
longer cancel out. It was thus only af-
ter this update that the inaccuracies in
the calculated length of a time interval
amounted to 0.0001% of the time since
the last system restart. Slow software
aging had given rise to a system sub-
ject to fast software aging.

	 M AY 2 0 2 2 � 75

Interestingly, Parnas8 did mention
the possibility that slow software
aging may lead to the introduction

of memory leaks. However, it took one
more year before Huang et al.5 started
the research stream investigating the
various forms of fast software aging.

ACKNOWLEDGMENT
This work was supported by the Dr.
Theo and Friedl Schoeller Research
Center for Business and Society.

REFERENCES
1.	 T. Dohi, K. S. Trivedi, and A. Avritzer,

Eds. Handbook of Software Aging and
Rejuvenation: Fundamentals, Methods,
Applications, and Future Directions. Hack-
ensack, NJ, USA: World Scientific, 2020.

2.	 S. Foote, Learning to Program. Upper
Saddle River, NJ, USA: Prentice Hall,
2014.

3.	 “Patriot missile defense: Software
problem led to system failure at

Dhahran, Saudi Arabia,” General
Accounting Office, Washington, DC,
USA, Rep. no. GAO/IMTEC-92-26,
1992. [Online]. Available: https://
www.gao.gov/assets/imtec-92-26.pdf

4.	 M. Grottke and K. S. Trivedi, “Fight-
ing bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40,
no. 2, pp. 107–109, 2007, doi: 10.1109/
MC.2007.55.

5.	 Y. Huang, C. Kintala, N. Kolettis, and
N. D. Fulton, “Software rejuvenation:
Analysis, module and applications,”
in Proc. 25th Symp. Fault Tolerant Com-
put., 1995, pp. 381–390, doi: 10.1109/
FTCS.1995.466961.

6.	 T. Huckle and T. Neckel, Bits and
Bugs: A Scientific and Historical Re-
view of Software Failures in Computa-
tional Science, Philadelphia, PA, USA:
SIAM, 2019.

7.	 C. Jones, “Geriatric issues of aging
software,” CrossTalk, vol. 20, no. 12,
pp. 4–8, 2007.

8.	 D. L. Parnas, “Software aging,”
in Proc. 16th Int. Conf. Softw. Eng.,
1994, pp. 279–287, doi: 10.1109/
ICSE.1994.296790.

MICHAEL GROTTKE is principal
data scientist with GfK SE, Nürnberg,
90443, Germany, and an adjunct
professor in the Department of
Statistics and Econometrics at
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nürnberg,
90403, Germany. Contact him at
michael.grottke@fau.de.

KISHOR S. TRIVEDI holds the
Hudson Chair in the Department of
Electrical and Computer Engineering
at Duke University, Durham, North
Carolina, 27708, USA. Contact him at
ktrivedi@duke.edu.

Over the Rainbow: 21st Century
Security & Privacy Podcast
Tune in with security leaders of academia,
industry, and government.

www.computer.org/over-the-rainbow-podcast
Subscribe Today

Bob Blakley Bob Blakley

Lorrie CranorLorrie Cranor

Digital Object Identifier 10.1109/MC.2022.3166406

