
In the early decades of software development, engineers 
were sure that software has one big advantage over hard-
ware: it does not age. While the material used to build 
hardware components degrades over time, decreasing 

their reliability, this is not the case for software. Its code 
statements are either correct or incorrect, and a piece of soft-
ware that works today will also do so in the future.

However, in the mid-1990s, two publications showed 
that software can age. Indeed, they described two differ-
ent types of software aging: a fast one and a slow one. Al-
though there has been plenty of research on this topic,1,7

the notion that “software does not age” is still widespread. 
In this column, we review the two types of software aging, 
and we show that both of them played an important role in 
a well-known and lethal case of a software failure—a fact 
that has hardly been recognized so far.

FAST SOFTWARE AGING
The fast type of software aging was first studied analyti-
cally by Huang et al.,5 who referred to it as “process aging.” 

This phenomenon relates to an in-
creasing failure rate or a decreasing 

performance experienced with software systems that 
have been running continuously for a few days or even 
for just a few hours. It has also been observed for systems 
that do not use any live patching. This begs the question: 
Why should the behavior of such a system change over 
time? After all, its code base remains unchanged, and 
the introduction of new faults can thus be excluded as 
an explanation.

To understand this type of software aging, we need to 
take a closer look at how the static faults in the software 
code can cause failures (that is, deviations of the dynamic 
software behavior from the one specified in the require-
ments). The typical consequence of the activation of a 
fault during software execution is an internal error state 
in the running system, for example, a wrong value of a 
variable kept in the random access memory. Such an error 
can be propagated into further errors (such as incorrect 
values of other variables) until it finally hits the front end 
and causes an incorrect result or any other kind of failure 
that can be noticed by the user.

Fast software aging is due to specific kinds of software 
faults, known as aging-related bugs.4 In many cases, such 
faults cause errors that first need to accumulate inside the 
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system before they can lead to a failure. 
Since the probability that a sufficient 
number of errors has accumulated be-
comes larger over time, the failure rate 
increases. Consider the example of a 
memory leak, that is, a software fault 
due to which memory that has been re-
served and used is not released correctly. 
Such an individual error of unreleased 
memory in the running system will 
hardly cause any immediate problem. 
However, as increasingly more parts of 
the memory are affected, the system is 
likely to slow down until it finally fails 
because of an out-of-memory condition.

Yet, the accumulation of errors is 
not the only possible root cause of fast 
software aging. For some aging-related 
bugs, the rate at which they are acti-
vated or the rate at which the errors 
caused by them are propagated into fail-
ures depends on the system runtime.

In fact, one of the most famous 
cases of fast software aging falls into 
this latter category. On 25 February 
1991, the Patriot missile defense sys-
tem operating in Saudi Arabian Dhah-
ran failed to recognize and intercept 
an Iraqi Scud missile. Twenty-eight 
U.S. soldiers were killed, and more 
than 90 were injured when this missile 
hit their barracks.3 

The Patriot system worked as follows. 
After detecting an airborne object, it cal-
culated a range gate area in which an ob-
ject of the type to be recognized, in this 
case a Scud missile, was to be expected 
next. Only if the object should then be 
found in this area, would this confirm 
that it is indeed a Scud missile, and the 
Patriot system would fire. To compute 
the range gate area, the system used 
the known velocity of the potential tar-
get and the length of time between the 
last radar detection and the subsequent 
check. While the length of this time 
interval was required in seconds, the 
system internally counted the tenths of 
seconds that had passed since the last 
restart. Because of the 24-bit registers 
used, the conversion resulted in an error 
that represented about 0.0001% of the 
time span since the last system reboot 
(see p. 42 of Huckle and Neckel6). 

During the first few hours after a re-
start, such an error was not propagated 
into a failure because the computed 
range gate area still contained the Scud 
missile to be intercepted. However, af-
ter a runtime of 20 h, the inaccuracy in 
the time interval amounted to about 
0.0687 s.3 A Scud missile traveling at 
Mach 5 (approximately 3,750 mi/h) 
covers more than 125 yards in this time 
span, which was enough to make the 
Patriot system look for the target in the 
wrong place and thus prevent it from 
correctly recognizing and intercepting 
the Scud missile. When the incident 
happened at Dhahran, the Patriot sys-
tem located there had been running 
continuously for more than 100 h.3

SLOW SOFTWARE AGING
While the Patriot incident has often 
been cited as an example of fast soft-
ware aging, the descriptions typically 
fail to point out that slow software ag-
ing played a role as well. This type of 
software aging, which usually takes 
years or even decades to develop, was 
first discussed in detail by Parnas.8 Its 
root cause is often the fact that the user 
requirements for a piece of software as 
well as the environment in which it op-
erates change over the years. Failure to 
account for these changes would ren-
der the software obsolete. However, 
if the developers decide to adapt and 
extend it in response to these changes, 
this may lead to further problems.

Years after a software was initially 
coded, even the original programmers 
can hardly remember the design concept 
and the implementation details, espe-
cially if proper documentation is lack-
ing. If the team composition should 
have changed completely over the years, 
none of the original developers would 
still be around, and it is all the more dif-
ficult for new team members to under-
stand the code. Moreover, they may have 
to deal with a legacy programming lan-
guage and old-fashioned design patterns 
with which they are hardly familiar. 

On the one hand, this poses the 
direct risk of introducing bugs when 
making changes. On the other hand, 

the lack of understanding as well as the 
usage of hacks when extending a soft-
ware often results in an erosion of its 
design and architecture, such as viola-
tions of the “don’t repeat yourself” prin-
ciple (see p. 165 of Foote2), according to 
which the same functionality must not 
be implemented redundantly at several 
places in the code. In combination with 
the fact that the documentation might 
not be updated to (fully) reflect the 
changes, this significantly reduces the 
maintainability of the software while 
increasing the probability of involun-
tarily creating faults in the future.8

This is what happened with the Pa-
triot missile defense system. It had orig-
inally been developed in the 1960s to in-
tercept attacking aircraft.3 Several big 
updates performed in 1988 and 1990 ex-
tended it to also defend against substan-
tially faster tactical ballistic missiles 
(see pp. 40–41 of Huckle and Neckel6). 
One of these updates introduced a new 
routine using a pair of 24-bit registers 
to improve the accuracy in converting 
the tenths of seconds counted by the 
system into seconds. Until then, both 
the beginning and the end of the time 
interval during which the potential 
target was to be tracked had been con-
verted using a routine underestimating 
the respective number of seconds by 
about 0.0001%. When these two num-
bers were subtracted, the inaccuracies 
partially canceled out, resulting in an 
almost negligible 0.0001% error in the 
computed length of the time interval. 

Unfortunately, when changing the 
20-year-old assembler code, the devel-
opers failed to replace all of the occur-
rences of the original conversion with 
a call to the new routine (see p.  43 of 
Huckle and Neckel6). Only the end of 
the time interval, but not its begin-
ning, was now converted more accu-
rately, and therefore errors could no 
longer cancel out. It was thus only af-
ter this update that the inaccuracies in 
the calculated length of a time interval 
amounted to 0.0001% of the time since 
the last system restart. Slow software 
aging had given rise to a system sub-
ject to fast software aging.



	 M AY  2 0 2 2 � 75

Interestingly, Parnas8 did mention 
the possibility that slow software 
aging may lead to the introduction 

of memory leaks. However, it took one 
more year before Huang et al.5 started 
the research stream investigating the 
various forms of fast software aging. 
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