
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Perses: Data Layout for Low Impact Failures

Permalink
https://escholarship.org/uc/item/35h4t5dj

Journal
Proceedings - IEEE Computer Society's Annual International Symposium on Modeling, 
Analysis, and Simulation of Computer and Telecommunications Systems, MASCOTS, 2015-
February(February)

ISSN
1526-7539

ISBN
9781479956104

Authors
Wildani, Avani
Millert, Ethan L
Adams, Ian F
et al.

Publication Date
2014

DOI
10.1109/mascots.2014.17
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35h4t5dj
https://escholarship.org/uc/item/35h4t5dj#author
https://escholarship.org
http://www.cdlib.org/


PERSES: Data Layout for Low Impact Failures

Avani Wildani∗, Ethan L. Miller†, Ian F. Adams‡, and Darrell D.E. Long†

∗The Salk Institute, †University of California: Santa Cruz, ‡EVault Inc.

Abstract—Growth in disk capacity continues to outpace ad-
vances in read speed and device reliability. This has led to storage
systems spending increasing amounts of time in a degraded state
while failed disks reconstruct. Users and applications that do
not use the data on the failed or degraded drives are negligibly
impacted by the failure, increasing the perceived performance
of the system. We leverage this observation with PERSES, a
statistical data allocation scheme to reduce the performance
impact of reconstruction after disk failure.

PERSES reduces degradation from the perspective of the user
by clustering data on disks such that data with high probability of
co-access is placed on the same device as often as possible. Trace-
driven simulations show that, by laying out data with PERSES,
we can reduce the perceived time lost due to failure over three
years by up to 80% compared to arbitrary allocation.

I. INTRODUCTION

Over time, failure events are inevitable in large disk-based
storage systems [1], [2]. Even in failure events where data is
not lost, there is a system-wide cost for accessing data on the
failed disk. The failed disk is inaccessible, and other disks and
the interconnecting network links may be saturated. This cost
is increasing as growth in disk size outpaces growth in disk,
CPU, and network bandwidth [3], [4]. While a 100 GB drive
that can be rebuilt at 50 MB/s is fully operational in about half
an hour, a terabyte drive at 50 MB/s can take up to six hours to
be back at full bandwidth. Additionally, during a rebuild there
is often significant network overhead that can have negative
side effects on disks that are not even involved in the rebuild.

We examine the issue of excessive rebuild time from the
perspective of projects: groups of records that are frequently
accessed together. If a failed disk contains even a small amount
of critical data for multiple projects, all of those projects could
suffer degraded performance until the rebuild is completed.
Examples include developers losing a header file that a build
depends on, a high performance system that loses an input
and misses its time slot, or a cloud provider that breaks a
performance SLA.

If, however, the failure occurs on a device that is not
actively being accessed, it has almost no productivity cost:
it is the proverbial tree fallen in a forest. PERSES is a data
allocation framework designed to decrease the impact of device
failures on the productivity and perceived availability of a
storage system. We name our system after PERSES, the Greek
titan of cleansing destruction, because it focuses destruction in
a storage system to a small number of projects so that others
may thrive. Our goal with PERSES is to isolate failures away
from as many projects as possible.

Multi-user cloud storage systems, a primary target of
PERSES, are caught in the data deluge. According to the
2013 IDC report, digital content is expected to grow to 4
zettabytes by the end of 2013, which would be a 48% increase

over 2012 [5]. Cloud applications such as web hosting and
document sharing maintain SLAs that guarantee low response
time to users. In this environment, the cloud provider saves
money by isolating failures to, and thus breaking SLAs with,
as few customers as possible. While they experience more
degradation, the marginal cost of additional slow response time
is often lower for users once any slowdown has occurred.

Exacerbating this degradation, many systems sacrifice re-
build speed in exchange for increased reliability. These systems
typically place data evenly across disks in order to distribute
and thus dilute the impact of failure events. When a failure
event does necessitate a rebuild, however, the rebuild can im-
pact a wide array of people or projects even though each could
have only lost a very small amount of data. By combining
existing reliability measures with selectively laying out data
according to group membership, we can isolate failures so that
they impact fewer users or projects, increasing the perceived
availability of the system.

Other use cases that are disproportionately affected by
partial data degradation include compilation and select scien-
tific workloads. Compiling large code bases typically involve
multiple dependencies, and developers working with large code
bases often have to wait to compile until all of the files they
need are available. An unlucky failure can halt the compilation
of large swathes of code for want of one file. Similarly,
scientific data analysis can rely on a small number of key
files such as format descriptors or configuration files that slow
the analysis of terabytes of data. According to the Tech Lead
of Facebook’s HBase engineering team: “Even losing a single
block of data incurs a high fixed cost, due to the overhead of
locating and recovering the unavailable data. Therefore, given
a fixed amount of unavailable data each year, it is much better
to have fewer incidents of data loss with more data each than
more incidents with less data.” [6]

PERSES is also a good fit for large storage systems where
a small but constantly shifting subset of the data is in active
use. Systems that organically grow around a dynamic set of
requirements naturally tend to have a small set of data in active
use and a long tail of accesses across the remainder of the
data [7]. These systems resemble archives in that while there
are distinct, consistent projects, there is little repeat access for
popularity based allocation to take advantage of. We study
such archival-like workloads in this paper to form a baseline
for improvement.

PERSES improves availability by laying out project groups
adjacently on disk to isolate faults. Maintaining an out-of-
band index of all of the data in a project requires significant
administrative overhead. To avoid this, PERSES dynamically
calculates associations in historical trace data to identify likely
project groups. Since elements of a project are co-located
on disk, any single failure impacts a very small number of
projects. We derive project groups from either trace metadata
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or access patterns. We use a statistical method to calculate
projects in O(n), where n is the number of accesses in the
training set, without the overhead of maintaining groups by
hand.

To demonstrate PERSES, we injected failures into two
dataset groupings and ran them through a disk simulator with
a variety of layouts based on calculated project groups. We
show that layout under PERSES leads to faults that affect
fewer projects during the rebuild phase than a group-agnostic
layout. Our fault injection simulation compares the real time
lost during disk rebuilds across layouts by measuring project
hours gained, which we define as the delay avoided by all
project groups as a result of the access requests that are delayed
while disks are rebuilding compared to the reference allocation.

We found that in our best case, PERSES gained over 4000
hours of project time during the three year trace compared
to a random allocation and gained over 1000 hours compared
to an ideal temporal allocation. Additionally, we found that
increasing the IOPs did not significantly hurt the fault isolation.
Finally, we discovered that restricting the minimum group size,
thereby reducing grouping noise, improved the performance
under PERSES even on smaller disks, with a maximum pro-
ductivity improvement of 94% across large groups. Our main
contributions are:

1. A methodology for project detection for better performance
during failure events (PERSES).

2. A fault simulator with real trace data showing up to 80%
decrease in project time lost with PERSES allocation.

3. A direct comparison of statistical and categorical project
detection techniques.

4. Parameter identification and optimization strategies for re-
build speed and minimum group size.

II. BACKGROUND AND RELATED WORK

Managing availability in RAID-like systems has received
attention commensurate with increasing disk size and corre-
sponding rebuild difficulty [3]. Disk sizes have grown, but
the read speed is limited by power concerns and by the
areal density of data on the platters [8]. Additionally, online-
reconstruction is increasingly becoming CPU-bound, meaning
that the cost of on-line reconstruction is unlikely to go down
any time soon [4].

Localizing data for fault isolation was first proposed by the
D-GRAID project at the University of Wisconsin, Madison [9].
D-GRAID proposed to analyze the reliability increase of
distributing blocks of a file across as many disks as possible
versus keeping the blocks together on not only the same disk,
but the same track. They proposed that since a head error
is likely to affect adjacent track members more than random
blocks on a disk, writing a file consecutively was an effective
way to localize failures and thus minimize the project time lost
as a result of file unavailability during the rebuild process. Our
grouping methodology will allow for failures to be localized
to projects, which represent working sets, allowing more of
the system to be usable in case of failure.

Many large scale systems are provisioned to hold data for
long, potentially archival periods of time. As systems scale, the
concept of a “long” time to store data shortens. For instance,

an exabyte scale storage system with 99.999% annual data
retention will lose data in a decade comparable to what a
petabyte scale storage system with equal retention loses in
a century. While the percent remains constant, the value of
data does not necessarily decrease as more of it is stored.
Therefore, the point at which advanced reliability measures
must be taken to ensure availability in a large storage system
is likely to be sooner than we are accustomed to. Several
studies have shown that storing data reliably over the archival
time scale presents additional challenges, such as accumulated
latent sector errors and data migrations, to the already difficult
field of storage reliability [10]–[13]. A challenge of this size
requires combining known techniques of enhancing reliability
with methods optimized for the expected workload and time
scale of archival storage.

Recent work has shown failures remain an issue for large
disk-based storage systems. For example, Schroeder and Gib-
son showed that the average disk replacement rates in the field
are typically between 2 and 4%, implying a high reconstruction
rate [1]. Other studies have shown that latent sector errors can
lead to drive failure [2]. Pinheiro et al. showed that failures
are both difficult to predict and common [14]. Scrubbing
techniques can efficiently catch these otherwise unobserved
errors so that the disks can be rebuilt promptly, but it is still
often necessary to rebuild much of the disk [15]. Modern
storage systems can use parity to serve requests for data on a
failed disk while the disk is re-building [16]. Many reconstruc-
tion optimizations have been proposed for distributed RAID
rebuild [17], [18]. On-line reconstruction, serving accesses by
reconstructing data on demand, has been shown to be between
3 and 70 times slower than serving requests from disk because
of disk thrashing [19].

WorkOut addresses rebuild degradation by employing a
surrogate RAID array to serve requests for “popular” data,
where popular is defined as accessed twice within the course
of the rebuild [19]. Tiair et al. also base their reconstruction
algorithm on popularity [20]. These approaches are limited to
workloads that have many repeat accesses to the same data
in a very short period of time. In PERSES, we sidestep this
limitation by exploiting correlation along multiple dimensions
in addition to recency and frequency. Other papers such
as Thomasian et al. have shown significant improvement in
performance during rebuild by modifying the underlying parity
structure or scheduling [20]–[22]. PERSES could be combined
with existing optimizations for reconstruction to evaluate the
combined impact, but it is likely that since PERSES is primarily
a data allocation scheme, it can be combined with all of these
techniques to further reduce the impact of failure events.

High-performance storage systems such as Ceph and GPFS
that add reliability through mirroring are designed for systems
where availability and performance trump costs [23], [24].
For a long term system, keeping several times the number
of disks you have for data on hand is infeasible from a cost
perspective, but many still need reasonable availability. Efforts
have been made to use different erasure coded structures, but
these still distribute failures more evenly than we believe is
optimal for availability [25]–[28]. Disk-based systems such as
Oceanstore [29] and SafeStore [30] combine mirroring, erasure
codes, and strategic data placement to add reliability to their
storage networks. While these systems are fast and highly
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available, they are not optimized to be low power and low cost.
Other tiered reliability schemes similarly lack an emphasis on
cost and power management [31], [32].

Data layout is a major area of storage and filesystems
research. Lamehamedi et al. look at the cost and reliability
tradeoff of adding replicas, which we use to inform our later
calculations about the benefit of storing multiple copies of
records that are members of multiple projects [33]. Sun et
al. show that for parallel systems, there is a strong argument
for application-driven data placement [34]. However, none of
these projects focus on layout for reconstruction.

Previous work in grouping data for power management
indicated that in some long-term storage workloads, accesses
happen in close temporal proximity within statistically sepa-
rable groupings [35]. There is also evidence that these groups
are predictive and can correspond to real-life working sets for
applications, users, or projects [36]. A data layout designed
for fault isolation is a natural progression from a power-aware
data layout since both exploit highly correlated access patterns.
Finally, many workloads show an inverse Pareto distribution
for project access probabilities over time [36]. Under PERSES,
failures that impact long tail of low access probability projects
have a chance of having minimal to no effect on performance.

III. DESIGN

PERSES is a statistical layout algorithm designed to isolate
faults to as few projects as possible. The two main functions
of PERSES are project detection and layout. Projects are
automatically learned by extrapolating relationships based on
a period of accesses and modifying these groups as new
data enters the system. This unsupervised approach to project
detection is a better fit for dynamic data where the meaning
of curated labels drifts over time, or for systems with privacy
controls or performance barriers to collecting metadata-rich
traces. Since we learn our projects, they may not map precisely
to real applications or users. In fact, to avoid overfitting to past
data, it is important that the mapping be inexact.

In order to lay out data by project, we need to know what
the projects are. Manually maintaining projects has high ad-
ministrative overhead and presents a consistency problem [37].
To avoid these issues, we automatically identify sets of data
that have a high likelihood of being accessed within a short
time of each other and label these as projects. We extract
these projects by collecting disk accesses and reasoning about
the patterns in the trace, either using metadata or statistical
analysis. In either case, projects are determined by analyzing
a portion of the accesses and are then applied to the remainder.
Groups are re-calculated at intervals determined by a running
average of predictive power for the current grouping.

We started with the hypothesis that the particular grouping
technique used is unimportant as long as elements within the
same project have a high probability of co-access. We tested
two statistical groupings against a categorical labeling for an
archival dataset.

A. Project Detection with NNP

For the statistical analysis, we use a variant of N -
Neighborhood Partitioning (NNP) [36], a grouping algorithm

that accumulates a window of I/Os, calculates a sparse n× n
distance matrix over the window, determines projects based on
density, and then updates the prior grouping based on this new
information. We chose NNP because it biases towards smaller
groups, reducing the possibility of cache churn, and because
it runs in O(n), which allows us to quickly reclassify when
predictivity begins to drop.

The first step is to select a temporal window of accesses
with size w. We select w = 500, 000 accesses, corresponding
to about 250 MB of the access trace, because of local memory
constraints. NNP requires up to O(w2) to calculate a pairwise
distance matrix between elements in the window. However,
this matrix is typically very sparse since we only consider
similarity above a threshold. Our implementation groups these
accesses in under 10 minutes in a Python simulator on a quad-
core machine with 16GB of memory. A larger window can
detect groupings that contain more elements and also have
stronger intra-group similarity, but increasing the size of the
window quickly meets diminishing returns [37]. The windows
overlap by twice the current average project size to limit over
counting.

For each window, the partitioning steps are:

1. Calculate the pairwise distance matrix
2. Calculate the neighborhood threshold and detect projects in

the I/O stream
3. Combine the new grouping with any prior groupings

Each access in the window is represented as a timestamp, t,
and unique identifier, o. The identifier o corresponds to current
spatial location. For n accesses in a window, we represent
pairwise distance between every pair of accesses (pi, pj), as
an n×n matrix d with d(pi, pi) = 0. We calculate the distances
in this matrix using weighted Euclidean distance where a point
pi = (ti, oi).

We were most interested in recurring identifier pairs that
were accessed in short succession. As a result, we also calcu-
lated an m×m matrix, where m is the number of unique iden-
tifiers in our window. This matrix was calculated by identifying
all the differences in timestamps, T = {tik − tjl ∀ k ∈ I, l ∈
J} : T1 = [T1 = ti1 − tj1, T2 = ti1 − tj2, T3 = ti2 − tj1, . . .],
between the two identifiers oi and oj , where I is all instances
of oi in the trace and J is all instances of oj . To avoid
overfitting, we treat the unweighted average of these timestamp
distances as the time element in our distance calculation. Thus,
the distance between two identifiers is:

d(oi, oj) =

√√√√(∑|T |
i=1

Ti

|T |

)
2

+ s× (oi − oj)2

We combine the temporal distance with the spatial distance
between data, which is a relatively weak but not insignificant
predictor. Here, s is a scaling factor based on the typical
relative distance between identifiers versus time. Once the
distance matrix is calculated, we calculate a value for the
neighborhood threshold, Ň. In the online case, Ň must be
selected a priori and then re-calculated once enough data has
entered the system to smooth out any cyclic spikes. Once the
threshold is calculated, the algorithm looks at every access in
turn. The first access starts as a member of group g1. If the
next access occurs within Ň, the next access is placed into
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Fig. 1. Each incoming access is compared to the preceding access to
determine whether it falls within the neighborhood (Ň) to be in the same
group. If it does not, a new group is formed with the incoming access.

group g1, otherwise, it is placed into a new group g2, and so
on. Figure 1 illustrates a simple case.

1) Combining Neighborhood Partitions: A grouping Gi

is a set of projects g1, . . . , gw that were calculated from
the ith window of accesses. Unlike standard neighborhood
partitioning, NNP is not entirely memoryless; NNP combines
groupings from newer data to form an aggregate grouping. We
do this through fuzzy set intersection between groupings and
symmetric difference between projects within the groupings.
So, for groupings G1, G2, . . . Gz , the total grouping G is :

G = (Gi ∩Gj) ∪ (GiΔgGj) ∀i, j 1 ≤ i, j ≤ z

where Δg , the groupwise symmetric difference, is defined
as every group that is not in Gi ∩ Gj and also shares no
members with a group in Gi ∩ Gj . For example, for two
group lists G1 = [(x1, x4, x7), (x1, x5), (x8, x7)] and G2 =
[(x1, x3, x7), (x1, x5), (x2, x9)], the resulting grouping would
be G1 ∩ G2 = (x1, x5) ∪ G1 Δg G2 = (x2, x9), yielding a
grouping of [(x1, x5), (x2, x9)]. (x1, x4, x7), (x1, x3, x7), and
(x8, x7) were excluded because they share some members
(e.g., x7) but not all. This group calculation happens in the
background during periods of low activity. As accesses come
in, we need to update projects to reflect a changing reality.
We do this by storing a likelihood value for every group. This
numerical value starts as the normalized median intergroup
distance value and is incremented when two elements of a
group are accessed within 50s of one another [35].

NNP is especially well suited to rapidly changing usage
patterns because individual regions do not share information
until the group combination stage. When an offset occurs
again in the trace, it is evaluated again, with no memory
of the previous occurrence. Combining the regions into a
single grouping helps mitigate the disadvantage of losing the
information of repeated correlations between accesses without
additional bias.

2) Runtime: Neighborhood partitioning runs in O(n) for n
accesses since it only needs to pass through each neighborhood
twice: once to calculate the neighborhood threshold and again
to collect the projects. This makes it an attractive grouping
mechanism for workloads with high IOPS, where a full O(n2)
comparison is prohibitive. Additionally, NNP captures projects
in real time and lets PERSES quickly take advantage of shifts
in access patterns.

B. Layout

Most storage systems spread out data across several disks
to maximize resilience against disk failure. When a disk fails,
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(b) With PERSES. Single failure impacts Project 3

Fig. 2. Projects are represented by numbered boxes. When a disk fails,
all projects that have data on the disk have degraded performance. PERSES

dynamically groups data together on disk to limit the performance impact
of failures across projects. Note that this is independent of redundancy
arrangements.

access to data on the failed disk is degraded from having to
reconstruct data from parity or backups. PERSES lays out data
according to project to reduce the impact these periods of
degraded access have on the users of the system. The key
insight is that the impact on productivity for a project can
be disproportionate to the amount of data lost. For example,
missing an input file to a scientific simulation can cause the
simulation to stall and overrun its allocated time. Missing part
of a virtual machine boot sequence can cause several users
to have to wait to restore images. Missing a single small file
could break the build for an entire code base.

Our layout places as much project data as possible on the
same disk. This way, when a failure occurs it impacts fewer
projects, which means the system is more productive. The ideal
disk failure is caught by a monitoring process (such as disk
scrubbing) and repaired before any accesses are made to the
lost data. We refer to this as a zero-impact failure. Intuitively,
on systems with bursty access patterns, zero-impact failures
become increasingly common when data has high locality. One
high level goal for PERSES is to maximize the number of
failures that do not impact system performance. This does have
potential load balancing implications, which we discuss further
in Section VI-A.

Figure 2 shows what a failure would look like on a trivial
shared system with and without PERSES. The numbered boxes
correspond to blocks of data, and the numbers correspond
to projects. These projects could be sets of user data, large
data set analyses on enterprise, scientific experiments, code
bases, etc. In the ungrouped example, Figure 2(a), data is
arranged without any consideration to project membership.
When one disk is lost, indicated by the thick dashed line, up
to four projects could see performance degradation if they are
accessed before rebuild completes. On a system laid out with
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PERSES, such as Figure 2(b), the data is laid out across the
disks based on project membership. When a disk fails in this
scenario, only Project 3 is affected since it is the only project
on the failed disk, both reducing the amount of degradation
across groups and increasing the probability that the failure
is zero-impact. Groupings are refreshed periodically and the
layout re-arranged, so some data will always be unlabeled.
This unlabeled data is written serially to a reserved area on
disk until the next grouping cycle occurs.

We assume that the underlying system uses parity to rebuild
data when a disk is lost, but we do not specify a particular reli-
ability scheme. This is intentional since even though PERSES is
designed for a parity-based reliability architecture, all reliabil-
ity schemes save for local mirroring introduce a reconstruction
delay. We care about reconstruction speed and consequent
time spent degraded, but not the reliability method. Rebuild
requests are typically given very low priority compared to
incoming reads and writes, so a parity system or backup server
should have little overhead that we do not account for [16].
In our simulation, we model a range of rebuild speeds to
better understand the impact of PERSES in different reliability
environments.

PERSES is designed for a system with multiple disks,
different projects that rely on many blocks of data, and a
controller to group data and manage layout. We also assume
the ability to collect minimal trace data to inform the grouping
algorithm. The best candidate systems for PERSES have a
number of data disks greater than or equal to the number of
projects or working set groups on the system, though we see
in Section V that this is not strictly necessary.

IV. EXPERIMENTS

We built a trace simulator with stochastic fault injection to
analyze PERSES on a range of different hardware configura-
tions and rebuild environments.

Our simulator goes through the following steps:

1. Initialize disks and cache
2. Determine initial groupings
3. Lay out data across disks
4. Step through a real data trace; update grouping as needed

Disks are initialized with all of the data that is read through
the course of the trace. Disks are then filled progressively with
either grouped data, data placed in order of trace appearance,
or randomly placed data such that the only empty space is on
the final disk, depending on the experiment. The amount of
data each trace accesses is fixed, so as we add more disks to
the simulator there is less data per disk. Since we do not know
the size of the accesses in our trace, we arbitrarily allocate
10 MB per access, resulting in a total data size of 880 GB
and 50 TB for our datasets. We retain generality since our
simulation results can be translated to any system with fixed
size blocks by adjusting the data to disk ratio accordingly. The
simulator uses an LRU read cache to capture popular accesses.
We chose LRU because it is well understood, and we did not
explore further because, for our workloads, cache size had no
impact on our results until the cache was over 100 GB. The
default cache in the following experiments starts cold and is
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Fig. 3. Project size distributions for statistical groupings. Both wash-A and
wash-B statistical groupings have enough very small projects to greatly skew
the project size distribution towards larger projects. Groups sizes obey an
inverse Pareto distribution.

10 GB. This cache is assumed to be in memory and unaffected
by disk failure.

An initial grouping is calculated on training data before the
trace is run, as described in Section III-A. Groups are then laid
out sequentially on disks starting with the smallest projects. In
the ungrouped experiments, records are laid out randomly or
temporally without attention to project membership. Modeling
correlated failure and exploring alternate strategies for assign-
ing projects to disks are in our future work.

Disks are initialized with a uniform failure probability of
1 in 10−5 per time step. After each access, the probability
of failure is increased by 1 in 10−7 to represent wear on the
device, which we base on a study by Pinheiro et al. [38].
Only full-disk failures are considered since recent work has
shown latent sector errors to be surprisingly rare on modern
hardware [39].

We express disk rebuild speed with a single parameter,
r, that encompasses the disk bandwidth, network overhead,
and CPU load of a disk to form the number of seconds it
takes to restore a gigabyte of data. We choose r = 30 s/GB
(≈ 34 MB/s) as our default value for reconstructing data based
on the 50 MB/s read speed of an off-the-shelf 7200 RPM
disk [4]. This is a low estimate since CPU saturation and not
read speed is the typical bottleneck for disk rebuild [4]. We also
test on r values as low as 10 s/GB (≈102 MB/s) to demonstrate
that PERSES can improve layout even on advanced hardware.

We define project time lost as the total delay encountered
by all projects as a result of the access requests that are delayed
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while disks are rebuilding. The total project time lost can
be higher than the total time that the system is in degraded
mode since a failure, especially on randomly allocated disks,
can affect multiple projects. Once the data is laid out on
disk, the trace is played in the simulator to calculate the total
project time lost as a result of failure events. While failures are
random, they are set to a consistent random seed between each
pair of grouped and random runs to make the runs comparable.
In experiments with fewer disks, our results had very high
variance regardless of the number of trials because well timed
failures can cascade. All random layout runs were run at least
50 and typically over 100 times. One benefit of the PERSES

layout in real systems may be the relative predictability of time
lost compared to random allocation.

A. Data

We use two statistical groupings and one categorical group-
ing derived from a corpus of accesses to a database of vital
records from the Washington state digital archives (wash) in this
work. We chose these traces because they had rich metadata,
so we could for the first time provide a direct comparison
between statistically and categorically defined projects.

Accesses in wash are labeled with one of many type
identifiers (e.g. “Birth Records,” “Marriage Records”) that we
use for categorical grouping [40]. We examined 5, 321, 692
accesses from 2007 through 2010 that were made to a 16.5
TB database. In addition to the supplied type identifiers, each
Record has a RecordID that is assigned as it is added to the
system. We use these RecordIDs as a spatial dimension when
calculating statistical groupings as discussed in Section III-A.

V. SIMULATION RESULTS

We ran our fault simulator on categorically grouped wash

and statistically grouped wash-A and wash-B datasets. Surpris-
ingly, the categorical grouping underperformed both statistical
groupings. We measure the impact of our allocation by aver-
aging the amount of time PERSES gains versus the layout it is
being compared against when it has more than two disks over
the course of the trace; we call this number hours gained.

A. Categorical Groupings

Figure 4 shows that categorical grouping somewhat reduces
the project time lost compared to random allocation for r =
30 s/GB. Additionally, we found that increasing r to 100 s/GB.
had negligible effect on the relative project hours gained.
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Fig. 6. Elements overwhelmingly appear in only one group, but can appear
in as many as 300. Note that this includes groups that have low likelihood.

B. Statistical Groupings

NNP parameters that affect statistical grouping include
s along with weights for means and standard deviations in
the partitioning calculation. Lacking any external confirmation
of validity, we fully explored the parameter space and then
calculated the average project size of all of the resultant
groupings.

TABLE I. NNP GROUPING STATISTICS: wash

Avg. Group Size Std. Dev. Max. Group Size

wash-A 4.7 8.3 1865
wash-B 3.2 4.0 1012

When these groupings were clustered using the parameters
and average project size as features, elements fell into one of
three clusters of almost identical groupings. The first cluster,
which resulted from extreme parameter combinations, was
the “null” grouping where every element is a separate group.
We name the representatives we selected from the two non-
trivial grouping clusters wash-A and wash-B . Table I shows
the main differences between the two groupings. Though the
difference in average project sizes seems small, the project
size distribution within the grouping (Figure 3) shows that the
inverse Pareto distribution of project sizes results in many more
larger projects for the wash-A grouping.

Figures 5(a) and 5(b) show how allocating data on disk
using the wash-A grouping improves project time lost by up
to 50% at 4 disks going down to approximately 5% as the
number of disks increases. This represents an increase of an
order of magnitude for larger disks with r, the number of
seconds it takes to rebuild a gigabyte of data, as low as 10. At
r = 30 s/GB, there is a clear benefit to laying out disks with
the wash-A grouping with the percent improvement ranging
from 10% for small disks to 80% for larger disks. The wash-B

grouping, on the other hand, did not consistently outperform
random allocation (Figures 5(c) and 5(d)). This is because
wash-B has smaller, noisier projects, which biases the layout
algorithm towards placing related data farther apart on average.
We discuss this in greater depth in Section VI.

1) Re-Replication: We designed PERSES to only store in-
formation in the most likely project. In a real implementation,
we need to simultaneously optimize for both availability and
bandwidth. To improve bandwidth across the system, one
could replicate records that are members of multiple projects.
Figure 6 shows the total number of projects records appear
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(b) r=30s/GB: 4289 hours gained
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(c) r=10s/GB: 12 hours gained
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(d) r=30s/GB: 2740 hours gained

Fig. 5. PERSES significantly reduces project time lost with the wash-A grouping and less so with the wash-B grouping.

in, including projects that are subsets of other projects. The
average number of projects a record is a member of is
2.48. Replicating data on a system, in groups or otherwise,
significantly improves the reliability of the system as well
as distributing the data to avoid network level points of
throttling [41].

C. Extensions

To better understand PERSES, we explored the effects of
different control layouts and rebuild speeds along with limiting
group size and increasing the I/Os per second (IOPS) in our
trace. The minimum group size experiments came from the
observation that larger groups had more to lose and potentially
experienced more benefit from localization. We found that
restricting group size did improve the performance of PERSES.
Finally, we realize that our traces have relatively low IOPS, and
we wanted to address concerns about the efficacy of PERSES in
a more active environment. To do this, we speed up our trace
by a factor of ten and show that PERSES improves project time
lost even on the compressed trace.

Temporal Layout

We compare our project based layout against a random lay-
out since we have no information as to the actual arrangement
of the data behind our traces. To provide a more challenging
comparison, we also generated a “temporal” layout where
records are placed on disk by an oracle in the order the records
will later be read in the trace. This arrangement represents
the best case layout possible for this data in a situation with
complete fore-knowledge, and thus serves as an upper goal for
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Fig. 7. PERSES performs as well as or better than data allocated with a
temporal oracle. 1321 hours gained.

our method. Figure 7 shows that even compared to this ideal
layout, PERSES at worst matches the project time lost for all
but the largest disks, with an average of 1300 hours of project
time saved over the three years of the trace.

Minimum Group Size

We hypothesized that wash-A outperformed wash-B be-
cause wash-A has a higher average group size, and proceeded
to test the effect of raising the minimum group size used in
PERSES layout.

Figure 8 shows both wash-A and wash-B groupings with
all project groups of fewer than either 50 or 100 members
removed. The top pair of lines on each graph correspond to a
rebuild rate of r = 30 s/GB and the bottom pair correspond
to r = 10 s/GB. Surprisingly, if we restrict the size of groups

777777



 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10  100  1000

G
ro

up
 T

im
e 

Lo
st

 (
s)

# of disks

Project Time Lost for Wash-A - Min. Group Size 100

Random 30
30

Random 10
10

(a) wash-A: 9214 hours gained for r = 30s/GB

 100000

 1e+06

 1e+07

 10  100  1000

G
ro

up
 T

im
e 

Lo
st

 (
s)

# of disks

Project Time lost for Wash-B - Min. Group Size 100

Random 30
Grouped 30
Random 10
Grouped 10

(b) wash-B: 110 hours gained for r = 30s/GB

Fig. 8. wash-A saves almost three times as many hours when the group size
is restricted to 100 elements, but wash-B suffers a significant penalty. Time
lost is on a log scale.

to only model larger projects, we see significant improvement
even with r = 10 s/GB, which corresponds to a rebuild rate of
102 MB/s, with the wash-A grouping. Equally surprising, the
wash-B grouping suffers a significant decline in performance.

This leads to two insights. First, wash-A outperforms wash-B

because wash-A has more large groups: with restricted group
size, wash-B does not have enough internal structure and
information to outperform random. Secondly, the performance
of wash-A even at r = 10 s/GB indicates that with a grouping
which biases towards larger groups, PERSES is valuable even
on high-end hardware with very fast rebuild. Our results
indicate that PERSES has higher impact on larger groups since
without group-based allocation a project is more likely to be
spread across many disks.

High IOPS

Finally, we had some concerns about how PERSES would
behave under high IOPS. To test this, we compressed our
traces by a factor of 10, such that for example accesses that
are 100 s apart in the trace are 10 s apart in the compressed
trace. Figure 9 shows that while PERSES does not save as
much project time lost under compression, it still handily
outperforms random allocation once disks are reasonably sized.

VI. DISCUSSION

Our results show that for most cases, PERSES significantly
reduces the time lost across projects in our two workloads.

The most surprising result of our simulations is that sta-
tistical grouping significantly outperformed categorical. This
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Fig. 9. Compressing the accesses in wash-A by a factor of 10 only
slightly hurts the performance of PERSES

is because, given the relatively short rebuild period, PERSES

favors groupings with high co-access probability. Categorical
groupings do not take into account the actual usage of group
members, instead only considering semantic similarity. On the
other hand, high probability of co-access defines the statistical
groups produced by NNP. Over a longer trace, we expect that
the categorical groups will perform better, but not overcome
statistical groupings as long as there are few sudden and drastic
shifts in usage.

The statistical grouping results help illustrate why PERSES

works. wash-A strictly outperforms wash-B because wash-B is
strongly biased towards small group sizes. In the wash-B group-
ing, the majority of records are members of small projects.
These projects, clustered together on relatively few disks, each
contribute equally to project time lost on drive failure, inflating
the time lost number relative to the wash-A grouping. A layout
algorithm optimized to distribute small groups across disks
could potentially alleviate this issue.

Simply restricting the group size is insufficient because
if the grouping biases towards small groups, removing those
groups leaves the majority of records without a project as-
sociation. This is why wash-B performs only slightly better
than random in the case where the minimum group size is
100 records. wash-A performs especially well in the restricted
group size case because it biases towards larger groupings, so
removing smaller groups removes weak groups more than it
adds information. In larger systems, the layout overhead may
become more significant as the workload changes.

The bottleneck in rebuilding data is the speed a disk can
be read. The rebuild rate for most of our experiments, r =
30 s/GB, corresponds to the 50 MB/s high end disks available
today. PERSES will perform even better on slower disks, since
each disk failure leads to higher project time lost per project,
amplifying the effects of locality. From another perspective,
the probability that the failure will be observed by an access
increases with downtime.

A. Redundancy and Load Balancing

One concern with grouping everything a project needs on
a small set of physical devices is a slightly higher probability
of losing all of the data for a project in a data loss event.
There are two ways to mitigate this worry of “putting all
ones eggs in the same basket.” Though we do not assume a
particular reliability method, PERSES is designed for a system
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with parity groups, and can easily integrate into existing parity
schemes. These groups can be arranged on a segment level
instead of a disk level, distributing the risk. Additionally, our
grouping method replicates data that is in multiple groups.
This, by definition, replicates data that is useful to multiple
projects, making exactly that data with the greatest net value
the most replicated and thus most robust. Finally, any tertiary
storage, such as backups, should be arranged in a project-
agnostic layout to provide additional resilience against data
loss.

Another issue with grouping all of the data for a project on
a small number of devices is that repeated, frequent accesses
to the same disk could impact performance while the project
is in use. One clear way to address this issue is to place entire
groups into a group-aware LRU cache when a member of the
group is accessed. All successive accesses to a group are made
from memory. In this case, we are not trying to maximize
accesses to the cache as much as minimize repeated accesses
to a device, so a simple cache policy suffices. Another major
concern is the performance impact of rearranging groups on
disk when groups are recalculated. Since the grouping loses
predictive power slowly over time, groups can be rearranged
lazily as disks are used or during low request periods.

B. Interaction with Existing Technologies and Performance

Many strategies exist to improve storage performance dur-
ing rebuild. PERSES addresses layout, amplifying the benefit of
current pre-fetching techniques by reducing disk overhead. We
cannot outperform strategies that specialize the layout using
external knowledge of the expected workload characteristics;
our techniques are designed to be easily adaptable to different,
unknown workload types. As more services move to massive
multi-project storage systems such as S3, optimization strate-
gies that do not rely on domain knowledge will be essential.
In these systems, if user requests are slow enough to time out,
the provider will break the SLA, so PERSES applied to the
user data has the potential to save cloud providers money and
reputation by isolating degradation to few users.

Rapid rebuild is touted as making RAID reconstruction
irrelevant, but the latent sector errors it fixes only happen in
rapid succession, meaning that it will always be playing catch-
up [1]. Secondly, we see improvement with PERSES even at
r = 10, which corresponds to reconstructing data from a
failed drive at over 100 MB/s, faster than most drives can
even be read. Finally, we also experimented with modifying
the read cache size and found that it did not significantly alter
our results. This indicates that layout models based on the
popularity of data for placement would have performed poorly
on our traces.

Based on the results from increasing the IOPS of our data,
we can extrapolate our results to workloads with more activity
such as enterprise or HPC. As IOPS increases, PERSES still
saves several hundred hours in project time over three years.
In a real high IOPS trace, this number would likely be higher
because instead of projects being accessed faster, more projects
are being accessed. Thus, the time lost should be closer to
the normal case than the high IOPS case we simulate here.
Finding data sets with labels for categorical grouping is very
challenging. While our current results are compelling, we are
actively seeking other workload types to test.

Performance under PERSES is much more predictable than
under arbitrary layouts, which could allow system admin-
istrators to set better SLAs and predict patterns in their
workflows. Regrouping runs in O(n), and regrouped data can
be moved lazily [36]. PERSES is general purpose and requires
no administrative overhead to find groups or re-arrange data,
and it can combine with existing rapid reconstruction methods
to help alleviate the performance impact of disk rebuild, and
may help RAID-like systems scale to match the demands of
the cloud.

C. Future Work

Our next steps are to add correlated failures to our fault
simulator to represent more failure scenarios. We expect
PERSES to do well with correlated failures because there
will be fewer, larger failures, which PERSES is designed for.
Another interesting problem is in how projects are allocated
to disks. Currently, disks are filled in with projects based
on project size. We are exploring using more intelligent bin
packing to place projects on disk based on probability of
access. Finally, we are looking at the effects of combining
PERSES with existing systems to reduce reconstruction over-
head through replication and caching.

Our eventual goal is to design a data layout algorithm
for non-hierarchical file systems. Current file systems use the
directory hierarchy to obtain some notion of likelihood of co-
access in data. If we can automatically detect projects and lay
them out such that they are are isolated, we can control frag-
mentation in non-hierarchical systems without administrative
overhead or time consuming metadata analysis.

VII. CONCLUSIONS

We have demonstrated PERSES, a data layout technique
that significantly reduces the impact of system degradation
in large multi-use storage systems. We have shown that we
can automatically derive projects from statistical data and
apply them to lay out data such that a failed disk affects
few projects, and these statistical projects outperform projects
derived from metadata. Our experiments show that we can
reduce the total time that projects perceive as lost by up to
80%, which corresponds to over 4000 hours over three years.
We also showed that even against an ideal temporal layout,
PERSES saves over 1300 hours in our trace. Furthermore,
PERSES is especially effective using groupings biased towards
larger groups. Finally, we showed that PERSES can operate
with high IOPS, making it relevant for active systems including
enterprise and cloud storage.
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