
A Covert Data Transport Protocol

Yu Fu∗, Zhe Jia†, Lu Yu∗, Xingsi Zhong∗, and Richard Brooks∗

∗ The Holcombe Department of Electrical and Computer Engineering
{fu2, lyu, xingsiz, rrb}@g.clemson.edu

†Department of Physics and Astronomy
zhej@g.clemson.edu

Clemson University, Clemson, SC, 29634, USA

Abstract

Both enterprise and national firewalls filter network con-
nections. For data forensics and botnet removal applica-
tions, it is important to establish the information source.
In this paper, we describe a data transport layer which al-
lows a client to transfer encrypted data that provides no
discernible information regarding the data source. We use
a domain generation algorithm (DGA) to encode AES en-
crypted data into domain names that current tools are un-
able to reliably differentiate from valid domain names. The
domain names are registered using (free) dynamic DNS ser-
vices. The data transmission format is not vulnerable to
Deep Packet Inspection (DPI).

1 Introduction

Protocol obfuscation is widely used for evading censor-
ship and surveillance, and hiding criminal activity. Most
firewalls use DPI to analyze network packets and filter out
sensitive information. But if the source protocol is obfus-
cated or transformed into a different protocol, detection
techniques that worked well with the source protocol will
either detect nothing sensitive, or detect something which is
far from the real information. When encrypted connections
draw attention or are blocked [1], protocol obfuscation is a
solution for covert communication. For example, consider
a botnet mothership trying to diffuse instructions to its in-
fected zombies, obfuscating encrypted data streams is very
useful.

In general, protocol obfuscation can be divided into two
categories: (1) protocol mimicry, and (2) protocol tun-
nelling. Protocol mimicry is to make protocol A look like
protocol B, by tampering some features (packet syntax and

statistical features) of protocol A. Protocol tunnelling is to
take the contents of packets from protocol A and put them
into the payload of protocol B. In this way, protocol B is a
carrier and masquerade of protocol A. As Houmansadr [2]
pointed out, most protocol mimicry fails to be completely
unobservable even without the attacker resorting to corre-
lating multiple network flows or performing sophisticated
traffic analysis. He concluded that mimicking the protocol
in its entirety, including its reaction to errors, typical traffic
and artifacts, is difficult. Protocol tunnelling, on the other
hand, is easy to implement and there are many tools avail-
able. However, it is vulnerable to statistical analysis [3, 4].

The covert data transport protocol we present transforms
arbitrary network traffic into legitimate DNS traffic. The
server encodes the message into a list of domain names and
register them to a randomly chosen IP address. The client
does a reverse-DNS lookup on the IP address and decodes
the domain names to retrieve the message. Different from
DNS tunneling, this doesn’t use uncommon record types
(TXT records) or carry suspiciously large volume of traffic
as DNS payloads. On the contrary, the resulting traffic will
be normal DNS lookup/reverse-lookup traffic, which will
not attract attention. The data transmission is not vulnerable
to DPI.

The structure of this paper is as follows. In Section 2,
protocol obfuscation techniques are discussed. Section 3
provides the background for this work. Section 4 proposes
the transport protocol. Section 5 concludes the paper and
suggests future work.

ar
X

iv
:1

70
3.

02
20

1v
1 

 [
cs

.C
R

] 
 7

 M
ar

 2
01

7



2 Related Work

2.1 Protocol obfuscation techniques

As one of the most famous anonymization tools, the
Onion Router (Tor) [5] provides an infrastructure for anony-
mous communication over a public network. Obfsproxy
[6] circumvents censorship by camouflaging Tor traffic be-
tween client and bridge nodes. It supports multiple proto-
cols, called pluggable transports, which specify how traf-
fic is transformed. ScrambleSuit [7] is a network proto-
col to obfuscate the transported application data to defend
against active probing and protocol fingerprinting. Skype-
Morph [8] is a Tor pluggable transport to reshape Tor pack-
ets to resemble Skype calls. StegoTorus [9] first uses chop-
ping to change packet sizes and timing information, and
then uses steganography to disguise Tor traffic as a mes-
sage in an innocuous cover protocol, such as HTTP. Format-
Transforming Encryption (FTE) [10] evades regular-based
deep packet inspection (DPI) technologies by transform-
ing Tor traffic into a predefined format. Dust [11] provides
blocking resistance against the most common packet filter-
ing techniques.

Tor has been used by botnets to help hide their command
and control (C&C) nodes (motherships) [12, 13, 14]. In
August 2013, Tor had seen a rapid spike of clients, which
turned out to be click-fraud botnet running its C&C as a Tor
Hidden Service [15, 16].

Other protocol obfuscation techniques including ran-
domized flushing of data streams and random padding [17]
are widely used by P2P software, for example, Skype, Bit-
Torrent, and eMule. Decoy routing [18] makes it possible
for a client to connect to any unblocked host/service as a
middle point and finally connect to a blocked destination
without cooperation with the host. Similar to protocol tun-
neling, Houmansadr [2] suggests running the actual proto-
col to embed data rather than mimicking the protocol. It is
not certain that this would be practical, since the resulting
combined protocol would contain side channels that could
be modeled using the cross-product of two Markov models
[19].

Obfuscation techniques in the last paragraph hide the
protocol being used, but do not hide the address of the com-
munication partner. Tor hides the address of the communi-
cation partners, and may hide the fact that Tor is being used.
Mainly, Tor hides the communication partners by adding
two extra network hops and three encryptions. Many coun-
tries block Tor used by stopping access to all Tor entrance
IP addresses. The approach we present hides the identity
of the partner, hides the protocol being used, and produces
common DNS traffic.

2.2 DNS-based steganographic channels

Since our paper focuses on transforming arbitrary net-
work traffic into DNS traffic, it is necessary to look at DNS-
based steganographic channels. The Feederbot malware
[20] implements a transmission scheme by encoding mes-
sages into DNS TXT records, with which the bots query
DNS servers for C&C commands. PlugX [21], a remote
access tool providing remote control and surveillance ca-
pabilities, uses DNS as a carrier protocol for C&C com-
munication. Thyer [22] and Altalhi [23] use DNS 16-bit
identification (ID) in the IP header as a covert channel to
transmit data, which only encodes two characters of mes-
sage in each packet. Ngadi [24] uses DNS packet length
covert channel, which is suitable for short message trans-
fer. Most DNS-based steganographic channels suffer from
low throughput or side-channel analysis. For example, DNS
TXT-based steganographic channels have different payload
length (probably longer) than normal DNS traffic, which
are subject to side-channel analysis in packet length. DNS
packet length-based steganographic channels have different
packet length distribution than normal DNS traffic, which
are subject to side-channel analysis in the entropy of the
packet length distribution. Since our approach produces real
DNS responses, it generates real DNS traffic, which is not
subject to side-channel analysis.

3 Background

3.1 Hidden Markov Models (HMMs)

A Markov model is a tuple G = (S, T, P ) where S is
a set of states of a model, T is a set of directed transitions
between the states, and P = {p(si, sj)} is a probability
matrix associated with transitions from state si to sj such
that: ∑

sj∈S
p(si, sj) = 1,∀si ∈ S (1)

A Markov model satisfies the Markov property, where
the next state only depends on the current state. An HMM
is a Markov model with unobservable states. A standard
HMM [25, 26] has two sets of random processes: one for
state transition and the other for symbol outputs. A deter-
ministic HMM [27, 28, 29] is used in this paper, which
only has one random processes for state transitions. Dif-
ferent output symbols are associated with transitions with
different probability. This representations is equivalent to
the standard HMM [30].

HMMs are widely used for pattern recognition and de-
tection. Chen [28] used HMMs to detect Zeus botnet zom-
bies and achieved 94.7% true positive rate (tpr) and 0.7%
false positive rate (fpr). Inter-packet delay of Zeus packets



were collected and represented by an HMM, which was in-
ferred with the zero-knowledge HMM inference algorithm
[31]. Zhong [32] conducted a side-channel attack on Pha-
sor Measurement Units (PMUs) in an electric power grid
and used HMMs to differentiate data source in an encrypted
tunnel.

3.2 Domain Generation Algorithms
(DGAs)

Botnets are groups of compromised computers that bot-
masters use to launch attacks over the Internet. In modern
botnets, fast-flux is used to change the mapping between IP
addresses and DNS names of the C&C server periodically
to avoid detection. DGAs are used to generate large num-
bers of DNS names as the rendezvous for the covert chan-
nel between bots and the botmaster. DGAs are widely used
by botnets including Zeus [33], Conficker [34], Kraken[35],
Srizbi [36], Torpig [37] etc.

Our previous work developed an HMM-based DGA,
which evaded the DGA detection metrics (Kullback-Leibler
distance, Edit distance, and Jaccard Index) in the literature
[38] and two cutting-edge DGA-detection systems (BotDig-
ger [39] and Pleiades [40]). In our previous HMM-based
DGA work, we inferred an HMM that represents the lin-
guistic features of legitimate domain names collected from
the entire IPv4 space [41]. Domain names generated by the
HMM will be similar to, but not conflicting with legitimate
domain names statistically. The inferred HMM will be used
in this paper.

3.3 Format-Transforming Encryption
(FTE)

FTE [10] extends conventional symmetric encryption by
formatting the ciphertext. Arbitrary application-layer net-
work traffic can be transformed into a target protocol using
FTE. It is used to evade regular expression based protocol
identification in Internet censorship and surveillance, be-
cause the original protocols are obfuscated. Zhong [42] im-
proved FTE to mimic arbitrary network protocols without
learning their regular expressions. This work is similar to
FTE, because we transform data into domain names, which
also obfuscates the original protocol with DNS protocol.

4 Proposed Data Transport Protocol

The covert data transport protocol is based on two-way
communications between a client and a server. Figure 1
shows that the flow chart of the protocol. Before communi-
cation starts, the client and server will share the following
information out of band: (1) AES key, (2) pseudo-random
number generator (PRG), (3) PRG seed, and (4) an HMM

Figure 1: Flow chart of the covert data transport protocol

that represents the statistical model of legitimate IPv4 do-
main names (step 1) and start state.

The HMM guarantees that domain names generated by
the HMM will have the same statistical features as, but not
conflict with, legitimate domain names. The steps of com-
munication from the client to the server are:

• The client prepares the message (‘client message’) to
send to the server.

• The message is AES encrypted into ciphertext (step 2).
• The client maps ciphertext to domain names with the

HMM-encoding algorithm described below (step 3).
• The client registers the generated domain names with

the pseudo-randomly chosen IP address (step 4).
• The server reverse DNS-lookups the chosen IP address

and retrieves the domain names (step 5).
• The server maps domain names back to ciphertext

(step 6).
• Ciphertext is AES decrypted into client message (step

7 and 8).

4.1 HMM-encoding/decoding algorithm

HMM-encoding maps data strings (ciphertext in our
work) to domain names. Since the HMM is a probabilistic
regular grammar with transitions associated with different
probability, an intuitive idea is to find a path in HMM on
one side, which can be recovered on the other side. This
requires both sides to choose a start state and the same en-
coding/decoding algorithm. We choose the state with the
largest asymptotic probability as the starting state because
it is the state occurring with the largest probability as time
goes to infinity.

To encode the message into the path of HMM, we round
transition probabilities to the closest 1

2n , where n is an in-
teger. Rounding keeps the statistical features of legitimate
domain names, while finding a way to encode and decode.
Since the original probabilities of all transitions going out of
a state sum up to 1, it is possible to round them to the clos-
est 1

2n . The set of transition probabilities associated with
state Si is denoted as {Pi1, Pi2, ..., Pik}, where k is the to-



1: procedure BINARIZATION({RPim})
2: order {RPim} from the largest to the smallest into
{ORPi1, ORPi2, ..., ORPik}

3: start with the largest value ORPi1, and
BIN ORPi1 = 0...0︸︷︷︸

log2
1

ORPi1

4: initiate j = 2, last input = ORPi1, last output =
BIN ORPi1, and num = log2

1
ORPi1

5: while j ≤ k do . not all values are assigned
6: if ORPij == last input: then
7: BIN ORPij = last output + 1
8: else
9: calculate diff = log2

1
ORPij

- num
10: BIN ORPij = (last output + 1)*2diff

11: update num = log2
1

ORPij

12: end if
13: update last input = ORPij

14: update last output = (last output + 1)*2diff

15: j = j + 1
16: end while
17: From the mapping between {RPij} to {ORPij},

obtain {BIN RPij} from {BIN ORPij}
18: return {BIN RPij}
19: end procedure

Figure 2: Proability binarization algorithm

tal number of transitions leaving state Si and
∑k

n=1 Pin =
1. The set of rounded transition probabilities associated
with state Si is denoted as {RPi1, RPi2, ..., RPik}, where
k is the total number of transitions leaving state Si and∑k

n=1 RPin = 1.
With the rounded transition probabilities of state Si, we

associate a binary representation for each transition. This
allows us to encode binary data (converted from the orig-
inal ‘client message’) into the HMM. Figure 2 shows the
binarization algorithm. The input is the rounded probabil-
ity ({RPim}, m = 1, ..., k), and the output is the binary
representation ({BIN RPim}) for the corresponding tran-
sitions. Note that any string can be encoded with the binary
representations.

After binarization, each transition of the HMM has a bi-
nary representation. Given the binary data, there is a unique
path going through the HMM that encodes the binary data
string. However, there are two technical difficulties:

• The output symbols in HMM includes ‘a-z’, ‘0-9’, ‘-
’ and ’ ’ (space). Normally, domain names generated
from the HMM are separated with space (for example
‘ab cd ef’. But the receiver will not be able to put
space in the correct spot (only put space after ‘ab’ and
‘cd’, but not ‘ef’).

• With receiving the domain names (‘ab’, ‘cd’ and ‘ef’),

Figure 3: The new data structure

the receiver doesn’t know the order.

The solution is to add the prefix to the original data. The
new data structure is in Figure 3. The prefix is the sequence
number, which guarantees the correct order of the message
on the receiver side.

After the client message is converted into multiple
domain names, we register them as sub-domain names
with the server IP address using dynamic DNS service
(https://freedns.afraid.org/ for example).

To decode the domain names into client message, the
server will reverse-lookup a randomly chosen IP address
and retrieve a list of sub-domain names. After doing the in-
verse of the encoding, several message pieces are recovered.
Using the sequence number, the original client message is
obtained.

Since both client and server will register the same ran-
domly chosen IP address to make the system work, we have
to consider:

• The probability of choosing a collided domain name is
almost zero if using IPv6 domain names. The IPv6 ad-
dress space range contains 2128 entries, which is more
than one entry for every three atoms in the universe. If
an address is chosen at random, the chance of a colli-
sion is essentially zero. If the entire IPv4 space were
to choose IPv6 addresses at random, the probability of
at least one collision is approximately 0.0155.

• If collision happens, the system will work fine. Be-
cause the HMM decoding won’t work on the existing
domain names. By simply ignoring the domain names
that fail to pass HMM decoding, we can separate the
desired domain names from the existing ones.

Besides the two-way communication, the idea can also
be used in botnets where the botnet C&C encodes the mes-
sage into domain names, and the bot retrieves the message.
This will make the botnet traffic look like pure DNS traffic.



Figure 4: An example HMM for illustration

Figure 5: HMM after probability rounding algorithm

Figure 6: HMM after binarization algorithm

Figure 7: An example mapping

Table 1: Performance of HMM encoding/decoding

Input
String
Length

AESed
String
Length

Encode
Execution

Time

Decode
Execution

Time

Output
Domain
Names

11 24 267.98s 114.04s

lviazea01;
lviahgeurakk-04;

lvia79djqb02;
lviamhlayae2-;
lviabpi62f03;
lvielm13owul;

lvienh103;
lvwlei14j0volg002;

lvwltrti102

22 44 460.03s 188.05s

lviaudzsud
zssic20e0002;

lvia523rajc10j02;
lvia76rptu16q603;

lviabpm01;
lvwleg186bczp;

lvienb-8702;
lvwlejo01;
lvwlt-28d6

gyopur24-05;
lvwlynaks;

lvwl07bsjm-
1vusfoe-1ofw23
ucm29c58-05;
lvwlcko1-02

34 64 781.06s 191.32s

lviauket99jd104;
lviaha102;
lvia78h;

lviamiltathybpr5102;
lvienbpo-04;
lvwlep003;

lvwltb5eud01;
lvwl1d1601;

lvwlyunt9103;
lvwlxmanrovp;
lvwlcl67ds01;
lvw6l0v30ge-

nsigoyed6gy-01;
luctgold99q;

luctgjnbu9jv5wk;
luctiwaa;
luctigh5;

luctia-thne55x001;
luctin01;

luctivbusovalriq5ilf
2l5lld-z2tchl0lcl2201



4.2 An illustrative example

The HMM representing the real legitimate domain
names is very complex (it has 2995 states and each state has
at most 38 outgoing transitions). We use an example HMM
(Figure 4) to illustrate the algorithm. In the example HMM,
the asymptotic probability of state Si (i = 0, 1, 2, 3) is cal-
culated as: P (S0) = 0.15, P (S1) = 0.46, P (S2) = 0.25
and P (S3) = 0.14. So S1 is chosen as the starting state for
both the client and the server.

After the probability rounding algorithm, all transition
probabilities are rounded to the closest 1

2n (Figure 5). After
the binarization algorithm, each transition is associated with
a binary representation (Figure 6).

Suppose that the ‘client message’ is ‘h’, its binary repre-
sentation is ‘01101000’. The starting state is S1. Following
Figure 6, the state transition is S1 → S1 → S2 → S3 → S0

→ S1 → S1 → S1. The mapping is in Figure 7. With the
HMM-encoding algorithm, the input ‘h’ is converted into
‘bdcabbb’.

4.3 Performance

We implemented the proof-of-concept idea on a laptop
(OS: Windows 10, CPU: i5-5300U, RAM: 8G). We mea-
sure the encoding and decoding execution time on various
lengths of input string. Table 1 shows the performance of
the transparent protocol. For AES encryption/decryption,
we use block size equal to 16. This will make the length of
AESed-string 24 (when length of the input string is between
1-15), 44 (when length is between 16-31), 64 (when length
is between 32 to 47) bytes etc. So the performance of the
implementation is more dependent on the length of AESed-
string than the length of the input string. Note that the input
string can be any length.

From Table 1, we can see that the execution time is pro-
portional with the length of AESed-string. Note that, all
output domain names start with ‘l’, which is resulted from
the same start state (the state with the largest asymptotic
probability). How to pick different start states where the
client and server agree on will be an interesting topic as the
future work.

Figure 8 shows the network traffic sniffed by wireshark.
The server registers the domain names with a randomly cho-
sen IP address (192.168.1.72). The client (192.168.1.80) is
trying to retrieve a message from the server. All communi-
cation happens between the client to the local DNS server
(192.168.1.254). And the DNS server cannot distinguish
the DNS traffic from the others. This proves the destination
IP address stays hidden and the idea works!

4.4 Security Analysis

To further validate the possibility of the implementation,
we conduct security empirical analysis in terms of confiden-
tiality, differentiability and communication.

• Confidentiality: Since the arbitrary network traffic is
masquerading as normal DNS traffic, it is hard to fil-
ter it out from other DNS traffic. Even if a man-in-
the-middle (MITM) filters out the traffic and tried to
decode the DNS packets, he/she has to have all pre-
shared information: AES key, PRG, PRG seed, and
the HMM. This is infeasible unless he has the software
package.

• Differentiability: Except for normal DNS queries, the
application involves reverse-DNS lookup and DNS
registration traffic. Reverse-DNS lookup is widely
used by common security tools [43] including network
troubleshooting tools, anti-spam techniques, and sys-
tem monitoring tools. For example, email anti-spam
software checks the domain names using reverse-DNS
lookup to see if the source is a dynamically assigned
address, which is unlikely used by a legitimate mail
server. Web browsers use reverse-DNS lookup to ver-
ify the same origin of the requests to avoid DNS re-
binding attacks [44]. In terms of DNS registration traf-
fic, although large companies like Google and Amazon
keep registering domain names in a round-robin fash-
ion, it remains unclear that how unusual the DNS reg-
istration traffic is. This will be an interesting topic for
future work.

• Communication: If there is an ISP-level surveillance
tool looking for this application, it is impossible to
pick up the related domain names. Even if it is pos-
sible, we can use Tor at the client side (who generates
the domain names) to further hide the source IP ad-
dress. Also, the registered IP address associated with
the generated domain names is randomly selected, so
there is no way to trace the communication parties us-
ing the IP address.

5 Conclusion and Future Work

This paper proposes the structure of a new covert data
transport protocol. It would be suitable for botnet C&C.
The advantages over existing protocol obfuscation tools are
that network traffic is real and normal DNS lookup traf-
fic on benign-looking domain names, which is protected
against DPI detection. One possible disadvantage is the low
throughput, which is more suitable for delay-tolerant com-
munication than real-time chatting, such as twitter-like so-
cial networks, sensitive information retrieval tools etc. We
hope this paper will provide a new insight into protocol ob-
fuscation.



Figure 8: Wireshark screenshot

Future work can tune parameters to optimize
the throughput including re-designing HMM encod-
ing/decoding algorithm, better data structure to improve the
performance etc.

The proposed concept will be helpful in moving bot-
net countermeasures to being pro-active. It will change the
routines of botnets innovating, anti-virus vendors reverse-
engineering and finding countermeasures [45]. Instead, we
need to develop better technology than the enemy and know
how to counter botnets before they deploy innovations. Up
to now, the botnet implementers have the advantage of cre-
ating the innovations. By designing countermeasures to bet-
ter botnet designs in advance, it would make botnet deploy-
ment less profitable.

Acknowledgment

This material is based in whole or in part upon work
supported by the National Science Foundation under Grant
numbers ACI-1547164 and CNS-1544910. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation

References

[1] “Iran reportedly blocking encrypted internet traffic,”
http://arstechnica.com/tech-policy/2012/02/iran-reportedly-
blocking-encrypted-internet-traffic/, [Last visited: 05-July-
2016].

[2] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The par-
rot is dead: Observing unobservable network communica-
tions,” in Security and Privacy (SP), 2013 IEEE Symposium
on. IEEE, 2013, pp. 65–79.

[3] K. Born and D. Gustafson, “Detecting dns tunnels
using character frequency analysis,” arXiv preprint
arXiv:1004.4358, 2010.

[4] G. Farnham and A. Atlasis, “Detecting dns tunneling,” SANS
Institute InfoSec Reading Room, pp. 1–32, 2013.

[5] “Tor,” https://www.torproject.org/, [Last visited: 06-Aug-
2015].

[6] T. T. Project, “obfsproxy,” https://www.torproject.org/
projects/obfsproxy.html, 2015, [Last visited: 06-Aug-2015].

[7] P. Winter, T. Pulls, and J. Fuss, “Scramblesuit: A polymor-
phic network protocol to circumvent censorship,” in Pro-
ceedings of the 12th ACM workshop on Workshop on privacy
in the electronic society. ACM, 2013, pp. 213–224.

[8] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg, “Skypemorph: Protocol obfuscation for tor
bridges,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp.
97–108.

[9] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister,
S. Cheung, F. Wang, and D. Boneh, “Stegotorus: a camou-
flage proxy for the tor anonymity system,” in Proceedings of
the 2012 ACM conference on Computer and communications
security. ACM, 2012, pp. 109–120.

[10] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimp-
ton, “Protocol misidentification made easy with format-
transforming encryption,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications secu-
rity. ACM, 2013, pp. 61–72.

[11] B. Wiley, “Dust: A blocking-resistant internet transport pro-
tocol,” Technical rep ort. http://blanu. net/Dust. pdf, 2011.

[12] D. Brown, “Resilient botnet command and
control with tor,” 2010. [Online]. Avail-
able: œhttps://www.defcon.org/images/defcon-18/dc-18-
presentations/D.Brown/DEFCON-18-Brown-TorCnC.pdf

http://arstechnica.com/tech-policy/2012/02/iran-reportedly-blocking-encrypted-internet-traffic/
http://arstechnica.com/tech-policy/2012/02/iran-reportedly-blocking-encrypted-internet-traffic/
https://www.torproject.org/
https://www.torproject.org/projects/obfsproxy.html
https://www.torproject.org/projects/obfsproxy.html
“https://www.defcon.org/images/defcon-18/dc-18-presentations/D.Brown/DEFCON-18-Brown-TorCnC.pdf”
“https://www.defcon.org/images/defcon-18/dc-18-presentations/D.Brown/DEFCON-18-Brown-TorCnC.pdf”


[13] M. Casenove and A. Miraglia, “Botnet over tor: The illu-
sion of hiding,” in Cyber Conflict (CyCon 2014), 2014 6th
International Conference On. IEEE, 2014, pp. 273–282.

[14] M. Mimoso, “Shedding new light on tor-based mal-
ware,” 2014. [Online]. Available: œhttps://threatpost.com/
shedding-new-light-on-tor-based-malware/104651/

[15] K. J. Higgins, “Botnet behind mysterious
spike in tor traffic,” 2013. [Online]. Available:
œhttp://www.darkreading.com/attacks-breaches/botnet-
behind-mysterious-spike-in-tor-traffic/d/d-id/1140422

[16] N. Hopper, “Protecting tor from botnet abuse in the long
term,” Tech. Rep. 2013-11-001, The Tor Project, Tech. Rep.,
2013.

[17] E. Hjelmvik and W. John, “Breaking and improving protocol
obfuscation,” Chalmers University of Technology, Tech. Rep,
vol. 123751, 2010.

[18] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer,
D. Mankins, and W. T. Strayer, “Decoy routing: Toward un-
blockable internet communication.” in FOCI, 2011.

[19] H. Bhanu, “Timing side-channel attacks on ssh,” 2010.

[20] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos,
M. Van Steen, and N. Pohlmann, “On botnets that use dns for
command and control,” in Proceedings of European Confer-
ence on Computer Network Defense, 2011, pp. 9–16.

[21] E. Cole, “Hiding in plain sight,” Steganography and the Art
of Covert Communication, Wiley, 2003.

[22] J. Thyer, “Covert data storage channel using ip packet head-
ers,” SANS Institute, 2008.

[23] A. H. Altalhi, M. A. Ngadi, S. N. Omar, and Z. M. Sidek,
“Dns id covert channel based on lower bound steganogra-
phy for normal dns id distribution,” International Journal of
Computer Science Issues(IJCSI), vol. 8, no. 6, 2011.

[24] M. Ngadi, S. Omar, and I. Ahmedy, “Indirect dns covert
channel based on base 16 matrix for stealth short mes-
sage transfer,” International Journal of Computer Science
Issues(IJCSI), vol. 8, no. 6, 2011.

[25] S. R. Eddy, “Hidden markov models,” Current opinion in
structural biology, vol. 6, no. 3, pp. 361–365, 1996.

[26] L. R. Rabiner, “A tutorial on hidden markov models and se-
lected applications in speech recognition,” Proceedings of
the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[27] C. Lu, J. M. Schwier, R. M. Craven, L. Yu, R. R. Brooks, and
C. Griffin, “A normalized statistical metric space for hidden
markov models,” IEEE transactions on cybernetics, vol. 43,
no. 3, pp. 806–819, 2013.

[28] C. Lu, “Network traffic analysis using stochastic grammars,”
2012.

[29] J. Schwier, “Pattern recognition for command and control
data systems,” 2009.

[30] B. Vanluyten, J. C. Willems, and B. De Moor, “Equivalence
of state representations for hidden markov models,” Systems
& Control Letters, vol. 57, no. 5, pp. 410–419, 2008.

[31] L. Yu, J. M. Schwier, R. M. Craven, R. R. Brooks, and
C. Griffin, “Inferring statistically significant hidden markov
models,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 25, no. 7, pp. 1548–1558, 2013.

[32] X. Zhong, A. Ahmadi, R. Brooks, G. K. Venayagamoorthy,
L. Yu, and Y. Fu, “Side channel analysis of multiple pmu
data in electric power systems,” in Power Systems Confer-
ence (PSC), 2015 Clemson University. IEEE, 2015, pp.
1–6.

[33] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann,
and H. Bos, “Highly resilient peer-to-peer botnets are here:
An analysis of gameover zeus,” in Malicious and Unwanted
Software:” The Americas”(MALWARE), 2013 8th Interna-
tional Conference on. IEEE, 2013, pp. 116–123.

[34] S. Shin, G. Gu, N. Reddy, and C. P. Lee, “A large-scale em-
pirical study of conficker,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 7, no. 2, pp. 676–690, 2012.

[35] P. Amini and C. Pierce, “Kraken botnet infiltration,” 2008.

[36] J. Wolf, “Technical details of srizbis domain generation al-
gorithm,” 2008.

[37] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your bot-
net is my botnet: analysis of a botnet takeover,” in Proceed-
ings of the 16th ACM conference on Computer and commu-
nications security. ACM, 2009, pp. 635–647.

[38] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “De-
tecting algorithmically generated domain-flux attacks with
dns traffic analysis,” IEEE/Acm Transactions on Networking,
vol. 20, no. 5, pp. 1663–1677, 2012.

[39] H. Zhang, M. Gharaibeh, S. Thanasoulas, and C. Papadopou-
los, “Botdigger: Detecting dga bots in a single network,”
2016.

[40] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou,
S. Abu-Nimeh, W. Lee, and D. Dagon, “From throw-away
traffic to bots: detecting the rise of dga-based malware,” in
Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12), 2012, pp. 491–506.

[41] R. team, “Welcome to project sonar!” 2013,
https://community.rapid7.com/community/infosec/sonar/
blog/2013/09/26/welcome-to-project-sonar.

[42] X. Zhong, Y. Fu, L. Yu, R. Brooks, and G. K. Venayagamoor-
thy, “Stealthy malware traffic-not as innocent as it looks,” in
2015 10th International Conference on Malicious and Un-
wanted Software (MALWARE). IEEE, 2015, pp. 110–116.

[43] Wikipedia, “Reverse dns lookup,” 2016. [Online]. Available:
œhttps://en.wikipedia.org/wiki/Reverse DNS lookup

[44] J. K. N. T. L. T. Savolainen, Nokia and N. Inc., “Improved
recursive dns server selection for multi-interfaced nodes,”
2012. [Online]. Available: œhttps://tools.ietf.org/html/
rfc6731#page-24

[45] Y. Fu, B. Husain, and R. R. Brooks, “Analysis of botnet
counter-counter-measures,” in Proceedings of the 10th An-
nual Cyber and Information Security Research Conference.
ACM, 2015, p. 9.

“https://threatpost.com/shedding-new-light-on-tor-based-malware/104651/”
“https://threatpost.com/shedding-new-light-on-tor-based-malware/104651/”
“http://www.darkreading.com/attacks-breaches/botnet-behind-mysterious-spike-in-tor-traffic/d/d-id/1140422”
“http://www.darkreading.com/attacks-breaches/botnet-behind-mysterious-spike-in-tor-traffic/d/d-id/1140422”
https://community.rapid7.com/community/infosec/sonar/blog/2013/09/26/welcome-to-project-sonar
https://community.rapid7.com/community/infosec/sonar/blog/2013/09/26/welcome-to-project-sonar
“https://en.wikipedia.org/wiki/Reverse_DNS_lookup”
“https://tools.ietf.org/html/rfc6731#page-24”
“https://tools.ietf.org/html/rfc6731#page-24”

	1 Introduction
	2 Related Work
	2.1 Protocol obfuscation techniques
	2.2 DNS-based steganographic channels

	3 Background
	3.1 Hidden Markov Models (HMMs)
	3.2 Domain Generation Algorithms (DGAs)
	3.3 Format-Transforming Encryption (FTE)

	4 Proposed Data Transport Protocol
	4.1 HMM-encoding/decoding algorithm
	4.2 An illustrative example
	4.3 Performance
	4.4 Security Analysis

	5 Conclusion and Future Work

