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Abstract—The Exascale Computing Project (ECP) was one of the largest
open-source scientific software development projects ever. It supported
approximately 1,000 staff from US Department of Energy laboratories, and
university and industry partners. About 250 staff contributed to 70 scientific
libraries and tools to support applications on multiple exascale computing systems
that were also under development. Funded as a formal construction project, ECP
was required to use earned-value management, based on milestones, and a key
performance parameter system based, in part, on integrations. With accelerated
delivery schedules and significant project risk, we also emphasized software
quality using community policies, automated testing, and continuous integration.
Software Development Kit teams provided cross-team collaboration. and products
were delivered via E4S, a curated portfolio of libraries and tools. In this paper, we
discuss the organizational and management elements of ECP that enabled the
delivery of libraries and tools, our lessons learned and our next steps.

The Exascale Computing Project (ECP) represents
one of the largest open-source scientific software de-
velopment projects to date [1]1. ECP funded approx-
imately 1,000 scientists from the US Department of
Energy (DOE) laboratory complex, and DOE univer-
sity and industry partners. The Software Technology
Focus Area sponsored the efforts of about 250 people
working on contributions to 70 open-source products.
The result was a collection of reusable libraries and
tools (see Figure 1) to support parallel applications
and their portable execution on target platforms us-
ing GPU accelerators from three different computing
system vendors. All of this work was done to support
application codes that were still being designed and
developed and for computer systems that were still
being designed and built.

ECP as a Construction Project
ECP was funded as a formal 413.3b DOE construc-
tion project [2], using a tailored earned-value man-
agement (EVM) [3] system. There are many well-
established software methodologies for large, multi-
team projects. Among them are the Scaled Agile
Framework (SAFe) [4] and LeSS [5]. ECP was required
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1ECP Website: https://exascaleproject.org

to use EVM, with some flexibility, to structure work
activities. We were able to design, develop, and de-
liver our software contributions across a wide range
of teams, products, and organizations. Use of EVM
enabled us to effectively and efficiently manage the
efforts of our 35 teams, and detect potential staffing
issues, technical challenges and misaligned efforts in
need of correction or offramping. Each team could
proceed independently in its efforts, engaging collab-
orators as needed with annual global planning and
quarterly reporting, permitting scalable but coordinated
development and delivery of capabilities. These efforts
were successful in the formal sense of passing the
key performance parameters (KPPs) defined for the
project. Even more important, the work received men-
tion in the CHIPS and Science Act [6] (page 175)
which specifically called out the need to sustain the
ECP software ecosystem we developed.

In this paper, we describe the challenges of man-
aging the Software Technology efforts in ECP and
the organizational and management approaches that
enabled the development and delivery of ECP libraries
and tools to the open-source software community. We
also discuss the lessons learned from this effort and
some future directions.

ECP Challenges
ECP was a large, multi-institutional, multi-year project
to design and develop new application, library, and tool
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Example Products Engagement

MPI – Backbone of HPC apps Explore and develop MPICH and OpenMPI new features and standards

OpenMP/OpenACC –On-node parallelism Explore and develop new features and standards

GPU Portability Libraries: Kokkos, RAJA Explore and develop lightweight APIs for compile-time polymorphism

LLVM/ and test suites Inject HPC features and testing for eventual vendor adoption

Perf Tools - PAPI, TAU, HPCToolkit Explore and develop portable access to vendor performance counters

Math Libraries: BLAS, sparse solvers, etc. Provide scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Provide standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis: VTK-m, SZ, zfp Provide in-situ capabilities, data compression to address IO challenges

Key themes: 
• Focus: GPU node architectures, advanced memory and storage technologies
• Explore: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software products
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Emergent products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., zfp, Variorum)

Legacy: A stack that 
enables performance 
portable application 
development on 
accelerated platforms, from 
deskside to supercomputer

FIGURE 1. ECP Software Technology efforts provided contributions to 70 scientific libraries and tools products. Some products
were well established and needed investments to provide portable and scalable execution on the target exascale systems. Other
products were still emerging at the beginning of ECP but were essential by the end. Others were new at the start of ECP. Two
of these, zfp, a data compression library, and Variorum, a portable power management tool, received R&D100 awards during
the last year of ECP, a recognition of their future impact in high-performance computing.

capabilities on a new generation of systems designed
to execute a billion-billion (1018 or exa) operations
per second. The key exascale systems are Frontier
at Oak Ridge National Laboratory, Aurora at Argonne
National Laboratory, and El Capitan at Lawrence Liver-
more National Laboratory. Frontier and El Capitan use
AMD GPUs, and Aurora uses Intel GPUs. When ECP
started, system details were still evolving and Aurora
was based on a different (non-GPU) processor. Even
so, we knew these systems would require disruptive
changes to scientific problem formulations, algorithms,
and software design. Most of the performance from
these systems would come from the GPUs, each
capable of trillions (1012) of operations per second.
GPUs had been used in previous systems but not with
the diversity of architecture or the scale of performance
needed to reach the exascale threshold, nor with the
requirement for performance portability across multiple
kinds of GPUs. The challenge for the ECP leadership
team was to provide a framework for successful soft-
ware development in this environment.

Organizational Elements
One key element of ECP library and tools efforts
was its organizational structure, designed to provide
a framework for teams to collaborate and succeed in

a challenging environment with flexibility to accom-
modate team and project needs. The structure had
three layers: product teams, Software Development
Kit (SDK) teams, and the Extreme-scale Scientific
Software Stack (E4S) team (Figure 2). The majority of
the work was done by product teams–more than 200
people. The SDK and E4S teams each engaged 5–10
people providing support and coordination. The ECP
software technology leadership team had 10 people,
responsible for managing the entire process.

Product Teams
The fundamental ECP organizational building block
was the product team. Milestones and integrations
were defined and tracked per product. Product teams
were responsible for defining and executing their ac-
tivities and integrations and managing their own inter-
nal processes. Product plans were reviewed by ECP
leadership to ensure feasibility and alignment with ECP
end-project objectives. Product teams have always
been the fundamental building block of DOE software
development efforts. However, within ECP their work
was coordinated and supported by the SDK and E4S
teams, and ECP leadership provided a framework for
planning, executing, tracking, and assessing progress.
The result was a structured, but flexible, approach to
software product development.
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E4S
Source: E4S team; External Products (all dependencies)
Delivery: `spack install e4s`; containers; CI Testing

SDKs
Source: SDK teams; External teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

Individual 
Products Source: Product teams; External Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Level of Integration        Product           Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Assure core policies
• Build, integrate, test

• Standard workflow
• Existed many years

Product Integration Architecture

Individual Products

FIGURE 2. ECP software libraries and tools efforts were organized at three levels: individual products, Software Development
Kits (SDKs), and the Extreme-scale Scientific Software Stack (E4S). The product teams were responsible for defining and
executing their milestones and integrations using their own internal processes, as long as the teams achieved their milestones
and integrations. SDK teams were responsible for coordinating activities among product teams. The E4S team was responsible
for coordinating activities among SDK teams and curating the full collection of ECP libraries and tools. ECP leaders were
responsible for managing the entire process.

SDK Teams
The next building block was the Software Development
Kit (SDK) team. Each SDK team was a collection of
product teams producing compatible and complemen-
tary products. The purpose of SDKs was to facilitate
interaction among product teams in a variety of ac-
tivities such as requirements gathering, design space
exploration, training, and the evolution of software
practices and tools. Coordination of versioning, vendor
interactions, design space exploration, and software
delivery at the SDK level helped amortize costs across
related products and reduced complexity at the top
software stack level. This level also spurred the dy-
namics of co-opetition [7] where teams collaborated on
some activities and learned from each other during co-
ordinated activities. Then, to make sure they kept pace
with other SDK members, teams competed to be the
best in other activities. This dynamic was very effective
at accelerating progress and improving quality.

E4S Team
The final building block was the E4S2 team, which
focused on building, testing, delivering, and deploying
the complete software stack. E4S (the product) is a

2E4S website: https://e4s.io

curated build of more than 100 primary products and
their dependencies (hundreds more products). Using
Spack, E4S incorporates external, including propri-
etary, products. E4S can also be configured to cre-
ate custom builds that target many environments—
from laptops to clusters, leadership systems, and edge
computing environments. E4S comes in containerized
environments and has binary caches of previously
built products to enable rapid rebuilds. The E4S team
manages versioning across products for reproducibility,
correctness, and security patching. Actively managing
a portfolio of configurable HPC software products that
are built and tested on many HPC platforms, including
on the DOE exascale platforms Frontier, Aurora, and El
Capitan, provides a rich resource of version-compatible
products, built under numerous different parameter
settings, and tested on many systems.

Other Delivery Mechanisms
While many ECP libraries and tools products were
(and still are) delivered through the SDKs and E4S,
most products were also delivered directly to clients as
“second-party”3 software that was co-developed with

3Second-party software is a distinct product developed in
close collaboration with another product.
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their application users. Finally, some of our work was
delivered to community ecosystems such as LLVM4,
a major platform for compiler and runtime library fea-
tures and to community efforts like the MPI and C++
Language standards.

Efficient and Effective Management
Trusted systems are often the result of addressing two
complementary concerns: doing things right and doing
the right things. The first concern is about quality, and
the second is about value. For ECP efforts, we focused
on milestones and integrations. Milestones incentivized
and supported teams in planning and execution toward
“doing things right” and integrations incentivized and
measured efforts toward “doing the right things.” In this
section, we describe how we used milestones and inte-
grations to plan, execute, track, assess, and adapt ECP
software libraries and tools efforts. Figure 3 shows
the relationship between milestones and integrations
and how they were used to support the ECP software
lifecycle.

Milestones and Metrics
An idealized project mental model has three main com-
ponents: creating something (scope), over a certain
timespan (schedule), for a certain amount of effort
and resources (cost). As required by DOE policy, ECP
used EVM. (However, we were permitted to use a
tailored approach that allowed us to refine annual
plans.) EVM breaks the entire project timeline, budget
and scope into a collection of smaller chunks, each
of which is called an activity. Each activity was de-
fined for a particular product over a particular time
(usually a few months) containing a description of
what would be done (its scope), the amount of budget
for the activity, and the expected beginning and end
dates. On a large project like ECP, many activities can
be executed concurrently, and the set of in-progress
activities represents a wavefront in time, as current
activities are completed and new activities are started.
ECP’s orchestrated and concurrent execution of many
activities using EVM enabled the scalable delivery of
many products by many teams in an orderly manner.

If all activities were perfectly predictable, EVM
would result in a smooth progression of completing
milestones (the successful end of an activity) result-
ing in an on-time delivery of all capabilities for the
estimated cost. However, most projects are not so
predictable, especially software R&D projects like ECP

4LLVM: https://llvm.org

that are producing new capabilities to support new ap-
plications for new computers that themselves are being
co-designed and developed along with the software.
The ability to effectively monitor and adapt activities
was what made EVM so valuable to ECP.

EVM has many project management and control
concepts. The two concepts that were most useful
for ECP product development were cost performance
index (CPI) and schedule performance index (SPI):

• CPI: Measures predicted costs vs. actual costs.
A CPI of 1.0 means actual costs match predicted
costs at a given point in time of the project. A CPI
above (below) 1.0 means costs are less (more)
than predicted.

• SPI: Measures actual progress vs. predicted
progress in completing work (scope). An SPI
of 1.0 means work is on schedule. An SPI
above (below) 1.0 means work is ahead (behind)
schedule.

In ECP, we used many EVM metrics but CPI and
SPI were particularly helpful in getting an early indica-
tion of when a particular library or tool product team
was struggling. For most projects, their CPI and SPI
were very close to 1.0 throughout the project. This did
not necessarily mean that ECP teams were perfect
at estimating. For CPI, it typically meant that team
staffing was stable and the team was spending money
at a consistent rate to pay salaries. For SPI, it meant
that features were being delivered on time. However,
because features were not always described in great
detail, the features delivered could vary and still satisfy
what was planned. In particular, an elaborately planned
feature could be trimmed and still be declared as
completed.

While most teams consistently had CPI and SPI
values near 1.0, some teams had CPI, SPI, or both,
values significantly less than 1.0. Usually, these teams
needed help to refine scope, increase funding, relax
schedules, or make some other adjustment, to make
it possible for them to succeed. The ECP leadership
team was able to identify these concerns early and
work with teams to make adjustments. In other in-
stances, poor CPI and SPI values signaled deeper
problems such as the loss of key staff or poor team
morale, problems that were harder to address but
important to track. Monthly reviews of CPI and SPI
were key elements of the ECP project management
approach. Tracking SPI and CPI was used construc-
tively (not punitively) to help teams succeed and keep
track of progress at all levels of the project.

The end objective of ECP for the scientific libraries
and tools teams was very clear: Produce a software
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Campaign Baseline Plan
High level Definitions

• First year Base plan
• Outyear  planning 

packages

Baseline

Refine Baseline Plan As 
Needed

Basic activity definitions

• A few months prior to FY
• 4–6 activities/year
• Each activity:

• % annual budget
• Baseline start/end
• High level description

Annual Refinement

Detailed Plan
Complete definitions

• A few weeks prior to start
• High-fidelity description
• Execution strategy
• Completion criteria
• Personnel details

Per Activity

Two-level 
Review  Process

Changes to Cost, Scope, 
and Schedule

Minor Major

Lightweight 
review

Formal 
review

Variance Recorded
Proceed with Execution

FIGURE 3. ECP library and tool development and delivery process: The above diagram shows the idealized workflow for ECP
library and tool development and delivery. The process began with a high-level objective described in per-product, per-year
planning packages (short paragraphs describing what will be done) to provide libraries and tools for ECP applications to use
on exascale systems by the end of the project. Each year, planning packages were refined to describe specific activities as a
collection of milestones. As capabilities were developed, they were integrated into the ecosystem and demonstrated in the client
environment. The process was repeated until the project was completed.

stack that would support applications on the target ex-
ascale systems before the end of the project. However,
the exact path to that objective was not known at the
beginning of the project and was disrupted regularly
as the project proceeded. We had changes in the
target systems, application requirements, development
team staffing, and external risk factors that arose or
diminished as the project proceeded.

Because of the certainty of our objective and the
uncertainty about our path toward that objective, the
ECP activity (milestone) planning process contained
end-goal planning objectives and coarse grain plan de-
scriptions that were refined as the project proceeded.
Each year, we would define approximately 300 activ-
ities and at any given time more than 100 activities
would be in progress.

As shown in Figure 4, the process began with a
multi-year baseline plan that provided coarse-grain de-
scriptive paragraphs (called planning packages), one
planning package per product per year, for each year
of the project. The final objective for each product was
a description of the expected final product capabilities
for the exascale systems. A few months before the start
of a new fiscal year, each product team would refine
that year’s planning package into 4 - 6 activities for the
year with an estimate of the percent annual budget for
each activity, a baseline start/end date and a high-level
description. A few weeks before the start of an activity,
the remaining details needed for staffing, completion
criteria, etc., were added. Outyear planning packages

could also be updated. The process was repeated until
ECP was completed.

To manage changes in scope, schedule, or costs
that were needed outside of the annual planning
process, we had a two-level change management
process. The key objective of the process was to
make sure we clearly articulated proposed changes,
reviewed changes with transparency (especially with
sponsors and lab management), and then recorded
our decisions for later reference. The process was
not intended to prevent changes but to ensure that
changes were agreed to by project stakeholders and
well understood by everyone involved in the project to
retain transparency and trust. We consistently advised
product teams that they should always be doing the
most important work and, if what was most important
changed, then they needed to change their plans to
support the change in priorities. We also used the pro-
cess to expand the project scope for emerging needs
such as new products or new capabilities that were
needed to address gaps in our portfolio. Examples
included additional investments in using low-precision
arithmetic and new workflow capabilities.

Integrations
ECP had four key performance parameters (KPPs)
which were metrics used to assess overall project suc-
cess. Two KPPs were focused on applications, another
on hardware, and one on software libraries and tools.
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Create Annual 
Planning 
Package

• Each product has its own 
planning packages

• Defined for all FYs

Refine upcoming 
FY plan

• Complete months prior to FY
• 4 or more milestones per product

Refine upcoming 
milestone 

• Complete weeks prior to activity start
• Include all details

Develop capabilities and track 
progress via tailored agile

Integrate into 
product

• Full testing, documentation, etc.
• Direct access for some users

Integrate 
into SDK

• Satisfy SDK community policies
• Direct access for some users

Integrate 
into E4S

• Satisfy E4S community policies
• Full ecosystem with high value

Deliver to 
users

• From source (spack)
• Containers, cloud

Managed by Milestone Process

Measured by Integration Process

FIGURE 4. ECP libraries and tools activity/milestone planning process with annual refinement and change management: The
above diagram shows the planning process for ECP library and tool development and delivery. The process started with a
multi-year, coarse-grain plan for the entire project, for each product. A few months before the start of a new fiscal year, each
product team would refine that year’s planning package. A few weeks before the start of an activity, the remaining details were
added. The process was repeated until the project was completed. For any mid-year changes, a change management process
was used to ensure that the changes were well understood, agreed to by all stakeholders, and made visible to all staff.

The software KPP, called KPP-3 and sketched in Fig-
ure 5, focused on demonstrating that a new library or
tool feature was used and could be used in the future,
for example, a new GPU solver in PETSc [8] was
used by an application and the solver was available
in the latest PETSc release. The KPP-3 definition was
intended to be accurate at a high level and flexible,
to ensure that the software developed by ECP teams
was integrated into client environments in a meaningful
and sustainable manner while allowing for a variety of
integration approaches.

Activities and milestones were how ECP addressed
the “doing things right” goal. Integrations were how
ECP addressed the “doing the right things” goal. In-
tegrations were the process of taking the features
developed by the teams and sustainably integrating
them into client environments.

The primary emphasis of KPP-3 was to ensure a
“capable and sustainable software ecosystem,” a long-
term view, where software capabilities are not just de-
veloped but are maintained and usable over time. The
integration goal prioritized real-world applicability and
long-term use, starting with pre-exascale environments
and then transitioning to exascale environments. The
integration goals were product-focused and success in
integration was quantified by counting the number of
“integrations,” the number of successful capability inte-
grations of a product into client environments providing

a concrete metric to evaluate doing the right things.

Annual Lifecycle
Using the organizational elements of milestones and
integrations, ECP implemented annual planning, ex-
ecuting, tracking, reporting, assessing, and adapting
lifecycle. The lifecycle centered on the product teams
and their milestones and integrations.

• Planning: The lifecycle began with the activities
planning process. Each product team refined
its activities and resulting milestones annually,
adding final details just before starting the exe-
cution of an activity. The SDK and E4S teams
did the same. The planning process was re-
viewed by the ECP project leadership team to
help ensure rigorous and realistic plans that
were consistent across products and in line with
the long-term ECP objective of a capable and
sustainable ecosystem.

• Executing: Execution of activities toward mile-
stone completion progressed during the year.
Teams generally worked independently, engag-
ing with their clients as needed. The SDK and
E4S teams engaged with product teams to sup-
port their efforts and to coordinate activities
among teams.

• Tracking: Progress was tracked using Jira and
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KPP-3 Definition

• KPP-3 progress is determined by external SME reviews as integrations are achieved
– A products accrues an unweighted KPP-3 point by demonstrating 4 (in a few cases 8) integrations
– 70 libraries and tools were tracked with weights of 0.5, 1.0 and 2.0 depending on impact
– Total unweighted points possible: 70 (number of products)
– Total weighted points possible: 68

• KPP-3 is based on integrations:
• developing a significant new feature that is 
• demonstrated in the exascale environment and 
• sustainably integrated for future use

• All KPP-3 integrations are externally reviewed

34 of 68 possible points achieved

KPP-3 Threshold

68 of 68 possible points achieved

KPP-3 Objective

FIGURE 5. The definition of KPP-3 was centered on the concept of a sustainable integration of significant capabilities, called an
integration. Each product team had to demonstrate four (or in some cases eight) integrations during the lifetime of the project.
Integrations were reviewed by external subject-matter experts (SMEs). Artifacts such as screenshots of output and client letters
were used as evidence of integrations and SME reports were used to determine if the KPP-3 requirements were satisfied. Final
approval was given by the ECP Federal Project Director, who had formal approval authority. KPP-3 threshold is the value (34)
required to pass the KPP. The objective (68) is the value that would be required to achieve the highest possible score. The
objective was set to be challenging but achievable.

Confluence, two widely used, web-based project
management platforms. ECP used custom Jira
issue types that aligned with and could automat-
ically synchronize with a tool called Primavera5.
Monthly reporting of CPI and SPI helped identify
potential problems early.

• Reporting: Concurrent with the assessment
process was the production of a Capability As-
sessment Report (CAR) [9]. The CAR provided
a detailed assessment of the ECP Software
Technology efforts including a description of ac-
tivities, progress, and plans for each product.
The CAR was used to inform the annual project
reviews and identify gaps in the project. It also
provided stakeholders and the scientific commu-
nity with project updates.

• Assessing: Annual project reviews were con-
ducted with project leadership and external
subject-matter experts (SMEs). The SMEs re-
viewed the progress of the project and provided
feedback to the project leadership team. The

5Use of Primavera–a powerful project management
platform–was a requirement of our ECP sponsors but de-
velopment teams never had to work with it directly because
we mirrored and synced content between Primavera and Jira.
This approach was an organizational innovation that permitted
most staff to use the more familiar Jira platform

project leadership team used the SME feedback
to make adjustments to the project.

• Adapt and Repeat: The annual review pro-
cess led to numerous project changes over the
years of ECP, including restructuring teams, off-
ramping products, and addressing product gaps
using contingency funds6. The lifecycle was re-
peated annually until the project was completed.

Complementing Product Efforts
The ECP approach to the development and delivery
of capabilities through a milestone and integration
process was designed to flexibly complement the soft-
ware engineering practices of individual product teams.
While product teams were expected to address ECP
community policies7 for software quality, user support,

6By monitoring milestone and integration progress, the ECP
leadership team was able to see when products were not
progressing (as evidenced by repeatedly missing milestones),
or had little probability of making an impact, as evidenced by
a lack of pre-exascale integrations, or both. In some cases,
corrections in planning and strategy led to improvements. In
other cases, we created an exit plan to stop funding the
project. Similarly, sometimes we identified gaps in our portfolio
and initiated new activities for new products to address the
gaps.

7E4S Policies: https://e4s-project.github.io/policies.html
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and integration, the ECP leadership team did not direct
product teams to use specific software engineering
practices, tools, or processes beyond the use of Jira
and Confluence for ECP-specific efforts.

ECP was a project with a fixed timeline. Most
product teams existed before ECP and continued their
efforts after ECP finished, and many received concur-
rent funding from non-ECP sources for the develop-
ment of other features not within the scope of ECP.
By requesting only high-level, coarse-grain information
from project teams, we minimized duplicate record-
keeping. ECP’s use of milestones and integrations
addressing the specific funding scope of ECP could
easily integrate with the finer-grain workflows of a
product team. Also, because we used the web-based
tool Jira for ECP issue tracking, cross-referencing ECP
issues with other systems, e.g., GitHub Issues, was
easily done through web links.

Lessons Learned
ECP was an ambitious project that was successful
in many ways and yet still had significant room for
improvement. It was successful in the formal sense
of passing the key performance parameters (KPPs)
defined for the project. We learned many lessons that
will be useful for future projects. The following are
some of the most important:

1) Organizing independently-developed prod-
ucts into a coherent software ecosystem
provides value: ECP delivered its milestones,
integrations, and a full stack of portable GPU
libraries and tools to support ECP applications
on exascale systems. Success is evident from
the explicit support for sustaining this ecosystem
after ECP ended.

2) Organizing a research software project using
a tailored EVM structure can work: Using EVM
with a two-level refinement planning process en-
abled keeping the long-term project objective (a
capable software stack for exascale systems) in
focus and permitted adaptation due to uncer-
tainty and unforeseen changes in external fac-
tors. The EVM structure also provided a mech-
anism for identifying teams that were struggling
and needed help.

3) The use of milestones and integrations re-
sulted in efficient and effective efforts: Mile-
stones supported doing things right. Integrations
supported doing the right things.

4) ECP vocabulary and workflows were difficult
for many staff to understand and use: ECP

used terms and workflows that were used heav-
ily by project leadership but only occasionally
by most staff. This was a significant barrier to
entry for new staff and a source of persistent
challenge for existing staff. We did introduce the
role of project coordinator, bringing in project
management specialists, but we think more im-
provements would be needed in a future project.

5) Heavyweight verification processes were ex-
pensive to support: ECP was a large and
visible project with very specific reporting require-
ments. Most requirements were handled by ECP
leadership but KPP content required individual
technical staff members to produce evidence and
formal reports for subject matter experts (SMEs).
This process was necessary for assuring our
federal project director that we were meeting our
KPP-3 requirements but was costly, requiring the
capture of detailed runtime artifacts and produc-
ing reports with particular formatting and content.
In the future, we will look for ways to reduce
the overhead of producing evidence and formal
reports.

Next Steps
The Exascale Computing Project finished its develop-
ment and delivery of libraries and tools in December
2023. However, the end of ECP is the beginning of
the “Exascale Era.” The following are some of the next
objectives for the software ecosystem ECP started:

• Achieving 100X performance and efficiency:
ECP demonstrated 100X or more increase in
performance and energy efficiency [10]. How-
ever, ECP impacted only tens of applications and
software technologies directly and focused only
on very high-end systems. Hundreds of scientific
software products can realize this “100X” poten-
tial, so the work continues. We need to make
the ECP libraries and tools available for high-
end systems, deskside and rack systems, and
computing centers with limited power budgets
where energy efficiency is key. Many public and
private sector scientific software stacks are pri-
marily running on CPU-based parallel comput-
ers, limiting performance and energy efficiency
improvements. Bridging performance and effi-
ciency gaps for these communities is essential.

• Delivering a turnkey community scientific
software stack: The ECP project has been
delivering a near-turnkey scientific software
stack to the HPC/AI community for the past
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three years. Spack-enabled software stacks,
with E4S as a primary deliverable, have been
key components of the ECP software deliv-
ery strategy. Part of our vision is making
this stack available ubiquitously—critical as we
build toward the emerging area of HPC/AI
for science—incorporating and complementing
vendor-provided libraries and tools.

• Realizing the cross-cutting potential of AI/ML
for science: AI/ML workflows for scientific dis-
covery will be physics-informed machine learn-
ing, graph neural networks, deep reinforcement
learning, and multimodal large language models,
to enable digital twins, analysis of scientific data
for discovery and acceleration of traditional sim-
ulations. Presently, many scientists manage their
own AI/ML software stacks. The ECP software
ecosystem can be readily augmented beyond its
existing support of mainstream AI/ML libraries
(e.g., TensorFlow, PyTorch) to include new li-
braries and tools that support AI for science.

• Sustaining a collaborative approach for sci-
entific software development: ECP demon-
strated successful large-scale scientific software
development delivering a curated software stack
to the HPC/AI community. The ECP leadership
approach has been successful in providing a
framework for planning, executing, tracking, as-
sessing, and reporting on the project. We will
sustain these efforts and expand them to other
communities.

• Engaging software foundations: The ECP
software ecosystem has been successful in de-
livering a curated software stack to the HPC/AI
community. To further expand the cost and ben-
efit sharing of software investments, we will
engage with software foundations, in particu-
lar the High-Performance Software Foundation
(HPSF)8 to sustain and expand the ecosystem.

Conclusions
The Exascale Computing Project provided a unique
opportunity for the DOE scientific libraries and tools
communities by sponsoring sustained multi-year fund-
ing that promoted cross-institutional collaboration at a
scale the DOE high-performance computing commu-
nity had not experienced before.

Using a three-tier organizational structure (product,
SDK, E4S), ECP enabled mostly autonomous activities

8https://hpsf.io

for product teams, rapid design space exploration via
SDKs, and delivery of a curated software stack via
E4S. Using a tailored EVM system ECP was able
to execute hundreds of activities in parallel and still
carefully monitor progress. The use of EVM framed
the expected scope, schedule, and cost, providing a
foundation for expected outcomes and allowing us
to focus our attention on monitoring and addressing
variations and realize the scalable delivery of our
libraries and tools. The outcome is a GPU-capable,
performance-portable stack of 70 libraries and tools,
representing 1,700 completed milestones and nearly
300 documented integrations over six years.

The legacy of these efforts is proof of the potential
of portable accelerated computing, project leadership
structures and strategies for realizing success, and a
collection of libraries and tools that, in combination,
can deliver two orders of magnitude performance and
energy efficiency improvements for scientific applica-
tions, the result of the efforts of hundreds of scientists
who were part of ECP. We look forward to building on
this legacy in the years to come.
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