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Placement Optimization for Multi-IRS-Aided
Wireless Communications: An Adaptive Differential

Evolution Algorithm
Pei-Qiu Huang, Yu Zhou, Kezhi Wang, Senior Member, IEEE, and Bing-Chuan Wang, Member, IEEE

Abstract—Using intelligent reflecting surfaces (IRSs) is a
promising approach to enhance the performance of wireless
communication systems. In this paper, the placement optimiza-
tion of multi-IRSs is investigated in multi-IRS-aided wireless
communication systems, with the aim of minimizing the number
of IRSs subject to the average achievable data rate. Then, an
adaptive differential evolution algorithm is developed to jointly
optimize the number, locations, and phase shift coefficients of
IRSs, in which a novel strategy is devised to adaptively select
the mutation operator for each individual. Compared with other
algorithms, the proposed algorithm performs well in reducing
the number of IRSs while satisfying the average achievable data
rate.

Index Terms—Intelligent reflecting surface, placement opti-
mization, differential evolution, mutation operator.

I. INTRODUCTION

Using an intelligent reflecting surface (IRS) is a promising
method to improve the spectral efficiency in wireless commu-
nication systems by reconfiguring the propagation environment
with the aid of a large number of passive reflecting elements
[1]. By adjusting the phase shifts of the reflecting elements, the
reflected signals can be reconfigured to propagate towards their
desired directions [2]. Thus, many researchers have attempted
to develop various IRS-aided communication systems, such as
mmWave communication, secure communication, and mobile
edge computing. These studies mainly focus on beamforming
design under the assumption that IRSs are deployed in a fixed
location. In fact, IRSs can be easily installed or removed for
placement/replacement as they are usually lightweight [3].
However, they do not consider placement optimization for
IRS-aided wireless communications.

In order to explore the advantages of IRS-aided wireless
communication systems, researchers have begun to focus on
placement optimization. Mu et al. [4] studied the optimal
placement of a single IRS for three multiple access schemes:
non-orthogonal multiple access (NOMA), frequency division
multiple access (FDMA), and time division multiple access
(TDMA). Tang et al. [5] developed an aerial IRS-aided com-
munication system, where a UAV or a balloon carries the
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Fig. 1. A multi-IRS-aided communication system involving K UEs, n IRSs,
and an AP.

single IRS to the intended location to mitigate jamming
attacks and enhance legitimate transmissions. Zhang et al.
[6] studied distributed and centralized placements in an IRS-
assisted multi-user communication system. Specifically, the
distributed placement employs available elements to form
multiple distributed IRSs. Each deploys near one user and
the centralized placement constructs all reflection elements
into a large IRS located near the access point (AP). However,
these studies do not optimize the number of IRSs. Similar to
other placement problems, multi-IRS placement problems are
usually NP-hard [7]. As the number of IRSs increases, it is
difficult to obtain the optimal placement in a reasonable time.
In addition, when the number of IRSs is not fixed, multi-IRS
placement problems become more challenging.

Against this background, this paper studies the placement
optimization for a multi-IRS-aided communication system
with an unfixed number of IRSs. Then, a population-based
heuristic algorithm, that is, differential evolution (DE) algo-
rithm, is proposed to jointly optimize the number, locations,
and phase shift coefficients of IRSs, with the aim of minimiz-
ing the number of IRSs subject to the average achievable data
rate (AADR). In addition, since the performance of the DE
algorithm is sensitive to the mutation operator, a novel strategy
is designed to adaptively select the mutation operator for each
individual. By comparison with baselines, the effectiveness
of the proposed algorithm is verified in a multi-IRS-aided
wireless communication system.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a multi-IRS-aided wire-
less communication system in indoor environments such as
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Fig. 2. A population consisting of P individuals, where each individual
represents the locations of N IRSs.

stadiums and halls, where a set K of K single-antenna user
equipments (UEs) communicate with a single-antenna AP in
orthogonal time slots with the aid of a set N of N equal-size
IRSs. We assume that each IRS placed on the ceiling is a
uniform planar array equipped with M reflecting elements.

In this paper, the phase shift coefficient of IRS n is
represented by θθθn = [θn,1, θn,2, . . . , θn,M ]T; thus, the phase
shift coefficient matrix of IRS n is denoted as ΘΘΘn =
diag

{
ejθn,1 , ejθn,2 , . . . , ejθn,M

}
, where j represents the imag-

inary unit. In addition, we denote hhha,n ∈ CM×1 as the channel
vector from IRS n to the AP, hhhn,k ∈ CM×1 as the channel
vector from UE k to IRS n, and ha,k ∈ C1×1 as the channel
from UE k to the AP. The Rician fading channel model is used
for both UE-IRS and IRS-AP links. Therefore, hhha,n ∈ CM×1
is expressed as

hhha,n = PLa,n

(√
ε

ε+ 1
aaan(φn, θn) +

√
1

ε+ 1
hhha,n

)
, (1)

where PLa,n denotes the path-loss between IRS n and the
AP, ε denotes the Rician factor; aaan(φn, θn) ∈ CM×1 is
the array response of IRS n; φn (θn) denotes the azimuth
(elevation) angle of departure for the link between IRS n and
the AP; and hhha,n denotes the non-line-of-sight components
and their elements are chosen from CN (0, 1). Similarly, hhhn,k
is expressed as

hhhn,k = PLn,k

(√
ε

ε+ 1
aaan(φ

′

n, θ
′

n) +

√
1

ε+ 1
hhhn,k

)
, (2)

where PLn,k denotes the path-loss between IRS n and UE k,
and φ

′

n (θ
′

n) denotes the azimuth (elevation) angle of arrival
for the link between IRS n and UE k. In addition, we use
the Rayleigh fading model for the UE-AP link. Therefore,
ha,k ∈ C1×1 is expressed as

ha,k = PLa,kha,k, (3)

where PLa,k denotes the path-loss between UE k and the AP.
Then, the ergodic achievable data rate of UE k is given by

Rk = E

log2

1 +

pk

∣∣∣∣ba,kha,k +
N∑
n=1

ba,nhhh
H
a,nΘΘΘnhhhn,k

∣∣∣∣2
σ2


 ,

(4)

where pk denotes the transmit power of UE k; σ2 represents
the noise power; ba,n = 0 if the UE k-IRS n-AP link is
blocked due to the layout of the wall, otherwise ba,n = 1; and
ba,k = 0 if the UE k-AP link is blocked, otherwise ba,k = 1.

For cost minimization, we jointly optimize the number,
locations, and phase shift coefficients of IRSs to minimize
the number of IRSs subject to the AADR for all UEs, which
can be formulated as

min
N,{xn,yn},θθθn

N (5a)

s.t.
1

K

K∑
k=1

Rk ≥ φ, (5b)

xmin ≤ xn ≤ xmax,∀n ∈ N , (5c)
ymin ≤ yn ≤ ymax,∀n ∈ N , (5d)
max{|xn − xl|, |yn − yl|} ≥ L,∀n, l ∈ N ,

(5e)
Nmin ≤ N ≤ Nmax,∀n ∈ N , (5f)

where {xn, yn} denotes the location of IRS n 1, L denotes
the size length of each IRS, (5b) ensures that the AADR for
all UEs is less than φ, (5c) and (5d) represent the boundary
constraints of locations of IRSs, (5e) guarantees that IRSs are
not overlapped, and (5f) ensures that the number of IRSs is
between [Nmin, Nmax].

III. PROPOSED ALGORITHM

Due to the NP-hard characteristic, it is usually difficult to
use deterministic algorithms to solve (5) as their computational
cost is often unbearable. Therefore, population-based heuristic
algorithms have been received wide attention. Among them,
the DE algorithm performs better than other algorithms, such
as genetic algorithm and particle swarm optimization (PSO)
algorithm [8], in some complex problems due to its numerous
merits including ease of implementation, simple structure, and
powerful search capability. However, the performance of DE
algorithm is sensitive to the mutation operator. Therefore, we
design an adaptive DE algorithm to solve (5), which selects
adaptively the mutation operator for each individual. The main
process of the proposed algorithm is given as follows. We
first set the number of IRSs to Nmin, and then optimize the
locations and phase shift coefficients of IRSs to maximize
the AADR for all UEs. After several iterations, if (5b) can
be satisfied, then the optimal number of IRSs is obtained;
otherwise, we add one IRS and re-optimize the locations and
phase shift coefficients of IRSs until (5b) is satisfied. Next,
we introduce the proposed algorithm in detail.

Initialization: In order to minimize the number of IRSs,
the initial number of IRSs N is set to Nmin. Then, as
shown in Fig. 2, we randomly generate an initial population
Zg = {zzzg1, zzz

g
2, . . . , zzz

g
P }, in which each individual represents

the locations of N IRSs:

zzzgp = (zgp,1, z
g
p,2, . . . , z

g
p,2∗N−1, z

g
p,2∗N ),∀p ∈ P, (6)

1The height optimization of IRSs is not considered as the height of the
ceiling is fixed.
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where zgp,2∗n−1 = xmin+ rand · (xmax−xmin) and zgp,2∗n =
ymin + rand · (ymax − ymin) represent the location of IRS n
(i.e., xn and yn) in individual p of iteration g (g = 1 at the
initialization); rand represents a random number uniformly
distributed over [0, 1]; P = {1, 2, . . . , P} represents a set of
individuals; and P denotes the population size.

Mutation: The mutation operator is performed to perturb
the individuals in Zg to generate vvvgp. The commonly used
mutation operators are as follows:

1) DE/rand/1

vvvgp = zzzgr1 + F · (zzzgr2 − zzz
g
r3), ∀p ∈ P, (7)

2) DE/rand/2

vvvgp = zzzgr1 +F ·(zzzgr2−zzz
g
r3)+F ·(zzzgr4−zzz

g
r5), ∀p ∈ P, (8)

3) DE/current-to-rand/1

vvvgp = zzzgp +F · (zzzgr1 −zzz
g
p) +F · (zzzgr2 −zzz

g
r3), ∀p ∈ P, (9)

where r1, r2, r3, r4, and r5 are five distinct integers randomly
selected from [1, P ] and are also different from p, and F is
the scaling factor.

To generate each vvvgp, the roulette wheel method is used
to select one of the aforementioned three mutation operators
based on a weight vector wwwg = [wgp,1, w

g
p,2, w

g
p,3], where wwwg

is initially set to [ 13 ,
1
3 ,

1
3 ], and wgp,1, wgp,2, and wgp,3 represent

the weights of three mutation operators, respectively.
Crossover: To enhance the potential diversity of the pop-

ulation, a crossover operator is then performed on vvvgp and zzzgp
to generate uuugp. The commonly used binomial crossover is as
follows:

ugp,n =

{
vgp,n, if randn ≤ CR or n = nrand,

zgp,n, otherwise,
(10)

where nrand denotes a random integer selected from [1, 2∗N ]
to make sure that uuugp is different from zzzgp in at least one
dimension, randn denotes a uniformly distributed random
number over [0, 1] for each n, and CR denotes the crossover
control parameter.

Beamforming design: In order to evaluate the fitness value
of uuugp, we need to optimize the phase shift coefficients of IRSs
corresponding to uuugp. Similar to [9], we adopt the quantitative
passive beamforming approach for optimizing the phase shift
coefficients of IRSs. Indeed, (1) and (2) can be respectively
transformed into the following forms:

hhha,n =
[
|hhha,n|ejwa,n,1 , |hhha,n|ejwa,n,2 , . . . , |hhha,n|ejwa,n,M

]T
,

(11)
and

hhhn,k =
[
|hhhn,k|ejwn,k,1 , |hhhn,k|ejwn,k,2 , . . . , |hhhn,k|ejwn,k,M

]T
,

(12)
where |hhha,n| and |hhhn,k| represent the magnitude of hhha,n and
hhhn,k, respectively; ejwa,n,m and ejwn,k,m represent the phase
shifts of ha,n,m and hn,k,m, respectively.

It can be seen that maximizing the achievable data rate can
be achieved by coherently combining signals from different
paths at the AP because these coherent signal constructions
can maximize the received signal power. Therefore, when UE

Algorithm 1: Proposed algorithm
input : Nmin, gmax, and P
output: Nbest, zzzbest, and θθθbest

1 Initialize N = Nmin;
2 repeat
3 Initialize g = 1, Zg = {zzzg1, zzz

g
2, . . . , zzz

g
P }, and

wwwg = [ 13 ,
1
3 ,

1
3 ];

4 Optimize the phase shift coefficients of IRSs for
each zzzgp;

5 Calculate the fitness value of each zzzgp;
6 for g = 2 : gmax do
7 for p = 1 : P do
8 Select a mutation operator based on wwwg;
9 Perform the mutation operator to perturb

the indivduals in Zg to generate vvvgp;
// Mutation

10 Perform the crossover operator on vvvgp and
zzzgp to generate uuugp; // Crossover

11 Optimize the phase shift coefficients of
IRSs for uuugp; // Beamforming
design

12 Calculate the fitness value of uuugp;
// Fitness evaluation

13 Perform the selection operator to obtain
zzzg+1
p ; // Selection

14 Update wwwg; // Weight update
15 end
16 end
17 Record Nbest ← N , zzzbest ← the best individual in

zzzg+1
p , and θθθbest ← the optimal phase shift

coefficients of IRSs corresponding to zzzbest;
18 Update N ← N + 1; // Number update
19 until f(zzzbest) ≤ 0;

k communicates with the AP, the optimal phase shift of shift
element m of IRS n can be obtained by

θ∗n,m = wn,k,m + wa,n,m. (13)

Fitness evaluation: Then, the Monte Carlo method is used
to evaluate the fitness value of uuugp via the following fitness
function:

f(uuugp) = − 1

K

K∑
k=1

Rk(uuugp) + φ. (14)

(14) is used to measure the AADR for all UEs. The smaller
the f(uuugp) is, the larger the AADR for all UEs is. If f(uuugp) ≤ 0,
then (5b) is satisfied. Note that if uuugp cannot satisfy (5e), then
f(uuugp) is penalized and set to a very large number (e.g., 106).

Selection: Finally, the selection operator is performed to
select the better one of uuugp and zzzgp to the next iteration based
on their fitness values:

zzzg+1
p =

{
uuugp, if f(uuugp) ≤ f(zzzgp),

zzzgp, otherwise.
(15)
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Weight update: After performing the selection operator, we
need to update wwwg . To this end, we update the score πgp of the
mutation operator in the following three cases:

πgp =


γ1, if f(zzzg+1

p ) < f(zzzbest),

γ2, if f(zzzg+1
p ) ≥ f(zzzbest) & f(zzzg+1

p ) < f(zzzgp),

γ3, if f(zzzg+1
p ) ≥ f(zzzgp),

(16)
where γ1, γ2, and γ3 are three preset parameters used to
represent different increased scores, γ1 > γ2 > γ3 ≥ 0,
and zzzbest represents the best individual so far. The first case
means that zzzg+1

p has excellent performance. Therefore, in
this paper, we add the selection probability of the mutation
operator by setting γ1 to a large value. The second case means
that the mutation operator slightly improves the performance
of zzzgp. Therefore, we set γ2 to a small positive number. In
addition, the third case means that the mutation operator
cannot improves the performance of zzzgp. Therefore, we set γ3
to zero.

Then, we update the weight of the selected mutation oper-
ator as follows:

wg+1
p,i = (1− λ)wgp,i + λπgp ,∀p ∈ P, i ∈ {1, 2, 3}, (17)

where λ ∈ [0, 1] is a reaction factor.
Number update: After gmax iterations, if the best individ-

ual in the population still cannot satisfy (5b) (i.e., f(zzzbest) >
0), then we add one IRS and re-optimize the locations and
phase shift coefficients of IRSs. This process is repeated until
(5b) is satisfied. Finally, the optimal number, locations, and
phase shift coefficients of the IRSs can be obtained.

Algorithm 1 summarizes the proposed algorithm for place-
ment optimization in multi-IRS-aided wireless communica-
tions. The computational complexity of the proposed algorithm
is given by O (2(Nmax −Nmin + 1) · gmax · P ·Nmax).

IV. EXTENSION TO TIME ALLOCATION

When extending our work to the case with time allocation
to different users, we need to study the joint optimization
of placement and time allocation. This problem can be
decomposed into two sub-problems and solved through an
iterative mechanism. Specifically, the locations and phase shift
coefficients of IRSs are obtained by using the proposed DE
algorithm. Then, given fixed locations and phase shift coeffi-
cients of IRSs, the time allocation problem can be formulated
as

min
tk
− 1

K

K∑
k=1

tkRk + φ (18a)

s.t. tkRk ≥ φk,min,∀k, (18b)
K∑
k=1

tk ≤ T. (18c)

where the minimal data rate for UEs is given in (18b) and
(18c) ensures that the total allocated time does not exceed the
available time T for transmission.

It is clear that (18) is a linear programming problem,
which can be easily solved. Note that, (18) has no solution

TABLE I
PARAMETER SETTINGS.

Symbol Value Symbol Value Symbol Value Symbol Value
K 20 L 0.3 m M 100 pk 1 mW
ε 10 σ2 -80 dBm Nmin 1 Nmax 10
P 10 gmax 100 F 0.9 CR 0.9
λ 0.9 γ1 13 γ2 3 γ3 0

1 1.2 1.4 1.6 1.8 2
 (bps/Hz)
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9
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Fig. 3. Average number of IRSs obtained by the proposed algorithm and the
baselines over twenty runs.

if
K∑
i=1

φi,min

Ri
> T . If

K∑
i=1

φi,min

Ri
≤ T , after sorting UEs as

R1 ≥ R2 ≥ · · · ≥ Rk, we can obtain a closed-form solution
of Problem (18) as follows:

t∗k =

T −
K∑
i=2

φi,min

Ri
, if k = 1,

φi,min

Ri
, if k 6= 1.

(19)

V. EXPERIMENTAL STUDIES

In this section, a multi-IRS-aided wireless communication
system is used to evaluate the performance of the proposed
algorithm. In the studied system, all UEs are randomly dis-
tributed in a square area with vertices [0, 0, 0], [0, 10, 0],
[0, 10, 0], and [10, 10, 0] m, and the IRSs are placed in a
square area with vertices [0, 0, 10], [0, 10, 10], [10, 0, 10],
and [10, 10, 10] m. In addition, we set the locations of AP
to [5, -10, 1] m and the location of the wall is determined
by four vertices [0, 0, 0], [0, 0, 2.25], [10, 0, 2.25], [10, 0,
0] m. As for the channels, the path loss in dB is expressed
as PL = PL0 − 10β log( dd0 ), where PL0 = 30 dB is the
path loss at the reference distance d0 = 1 m; d denotes the
distance from the transmitter to the receiver; and the path-
loss exponents of the UE-IRS-AP link and the UE-AP link
are set to β = 2.2 and β = 4.0, respectively. The remaining
parameters are summarized in Table I.

Additionally, three algorithms are adopted as baselines. (1)
Random placement: We first set the initial number of IRSs N
to Nmin and randomly place N IRSs. If (5b) is not satisfied,
then we add N by one and randomly regenerate the locations
of N IRSs. This process is repeated until (5b) is satisfied;
(2) Grid search: We first divide the square area, where the
IRSs are placed, into 100 grids and set the initial number of
IRSs N to Nmin. Then, the orthogonal experimental design
is used to determine the locations of N IRSs. The following
steps are the same as those of the random placement; and
(3) PSO algorithm: Similar to the DE algorithm, the PSO
algorithm is also a population-based heuristic algorithm, which
is motivated by the collective behavior of flocks of birds
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[8]. Twenty independent runs are implemented on both the
proposed algorithm and the baselines.

As shown in Fig. 3, we present the average number of IRSs
obtained by the proposed algorithm and the baselines over
twenty runs. We see that the proposed algorithm achieves
fewer IRSs, followed by PSO algorithm, while the random
placement needs the most IRSs. The reason why the perfor-
mance of the PSO algorithm is worse than that of the proposed
algorithm is that it more easily falls into the local optimum.
Since the area where the IRSs are located is restricted, the
grid search does not perform well. In addition, the poor
performance of the random placement is attributed to the fact
that it does not consider the distribution of UEs.

In Fig. 4, we present the placement obtained by the proposed
algorithm and the baselines when φ = 1.8 bps/Hz. The
positions of IRSs are closer in the placement obtained by the
proposed algorithm compared with the baselines Furthermore,

we compare the centralized and distributed placements with
400 reflecting elements. The IRS under centralized placement
is located at the center of UEs (i.e., [5, 5, 0] m). In addition, the
distributed placement is obtained by the proposed algorithm.
The centralized and distributed placements are shown in Fig.
5, and the average values of the AADR over twenty runs
are 1.83 bps/Hz and 1.98 bps/Hz, respectively. Obviously,
the distributed placement performs better than the centralized
placement.

Fig. 6 presents the average values of the AADR obtained
by the proposed algorithm and the baselines over twenty runs.
The proposed algorithm obtains the highest AADR in all
cases. In addition, the grid search performs similarly to the
PSO algorithm, while the random placement has the worst
performance.

VI. CONCLUSIONS

This paper investigated the placement optimization for
multi-IRS-aided wireless communications. Then, an adaptive
DE algorithm was proposed to minimize the number of IRSs
subject to the AADR by jointly optimizing the number, loca-
tions, and phase shift coefficients of IRSs. The effectiveness of
the proposed algorithm was verified by comparison with other
algorithms. The results showed that the proposed algorithm
can reduce the number of IRSs while stratifying the AADR.
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