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Heterogeneous Embodied Multi-Agent
Collaboration

Xinzhu Liu, Di Guo, and Huaping Liu

Abstract—Multi-agent embodied tasks have recently been studied in complex indoor visual environments. Collaboration among
multiple agents can improve work efficiency and has significant practical value. However, most of the existing research focuses on
homogeneous multi-agent tasks. Compared with homogeneous agents, heterogeneous agents can leverage their different capabilities
to allocate corresponding sub-tasks and cooperate to complete complex tasks. Heterogeneous multi-agent tasks are common in
real-world scenarios, and the collaboration strategy among heterogeneous agents is a challenging and important problem to be solved.
To study collaboration among heterogeneous agents, we propose the heterogeneous multi-agent tidying-up task, in which multiple
heterogeneous agents with different capabilities collaborate with each other to detect misplaced objects and place them in reasonable
locations. This is a demanding task since it requires agents to make the best use of their different capabilities to conduct reasonable
task planning and complete the whole task. To solve this task, we build a heterogeneous multi-agent tidying-up benchmark dataset in a
large number of houses with multiple rooms based on ProcTHOR-10K. We propose the hierarchical decision model based on
misplaced object detection, reasonable receptacle prediction, as well as the handshake-based group communication mechanism.
Extensive experiments are conducted to demonstrate the effectiveness of the proposed model. The project’s website and videos of
experiments can be found at https:// hetercol.github.io/ .

Index Terms—Embodied Multi-Agent Collaboration, Heterogeneous Agents, Embodied Visual Tasks, Group-based Communication,
Tidying-up Task.

✦

1 INTRODUCTION

T HE embodied tasks are a series of comprehensive tasks
integrating the process of environment perception, scene

understanding as well as action execution, which are of great
significance in the field of intelligent robotics. Recently, a number
of embodied tasks have been studied to learn the relationship
between visual perception and actions including visual navigation
[1], [2], [3], instruction following [4], room rearrangement [5] and
so on. However, these tasks are mainly studied in the single-agent
scenarios, the work efficiency is likely to be low and the system
is of poor fault tolerance. To solve the weakness of the single-
agent setting in executing tasks, there are already some works
investigating how to collaborate between multiple agents. Some
simple disembodied environments such as the grid-world or 2D
game scene are firstly used to learn the cooperation strategy [6],
[7], [8], [9]. Recently, studies on multi-agent collaboration in the
embodied visual environment have been conducted. FurnLift [10]
and FurnMove [11] tasks are proposed to learn the tight collab-
oration in the action level between two agents. Then multi-agent
exploration [12], multi-agent visual navigation [13], [14], multi-
agent EQA [15] and multi-agent embodied task planning [16]
have been developed to study the cooperation strategy between
multiple agents. But most of the multi-agent embodied tasks only
consider the homogeneous agents, that is, all agents have the
same ability. In practical tasks, different agents are likely to have
different capabilities, and heterogeneous agents could leverage
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Fig. 1. The overview of the heterogeneous multi-agent tidying-up task.
Agent 1 and Agent 2 can only navigate, while Agent 3 is capable of
both navigation and manipulation. The height of Agent 1 is low, while the
heights of Agent 2 and Agent 3 are high. During exploration, Agent 1 and
Agent 2 find a misplaced Spoon and a misplaced Pillow respectively but
cannot pick them up, so they communicate with Agent 3. Then Agent 3
navigates to pick up the Spoon and Pillow, and put them in reasonable
places.

their different capabilities to deal with some complex problems
that homogeneous agents cannot. The heterogeneous multi-agent
task is common in real-world scenarios and has important practical
applications. While the current research on heterogeneous agents
is still limited to relatively simple experimental setups [17], [18].
In this paper, we concentrate on the collaboration strategy of
heterogeneous agents in the embodied visual task.

To further study heterogeneous embodied multi-agent collab-
oration, verify and evaluate the proposed collaboration strategy,
we propose the heterogeneous multi-agent tidying-up task, in
which multiple agents need to find all misplaced objects and
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TABLE 1
Comparison Between Our Work and Other Related Embodied Tasks

Task Multi-Agent Heterogeneous Agents Multi-Room Scene Navigation Manipulation Reasoning
MQA [20] ✕ ✕ ✕ ✕ ✓ ✕

Rearrangement [5] ✕ ✕ ✕ ✓ ✓ ✓
TIDEE [21] ✕ ✕ ✕ ✓ ✓ ✓

Housekeep [22] ✕ ✕ ✓ ✓ ✓ ✓
MA-EQA [15] ✓ ✕ ✕ ✓ ✕ ✕

FurnLift [10] & FurnMove [11] ✓ ✕ ✕ ✓ ✓ ✕
CollaVN [14] ✓ ✕ ✓ ✓ ✕ ✕

MA-Exploration [12] ✓ ✕ ✓ ✓ ✕ ✕
MA-VSN [13] ✓ ✕ ✕ ✓ ✕ ✕

MA-TaskPlannig [16] ✓ ✕ ✓ ✓ ✓ ✓
∗CH-MARL [19] ✓ ✓ ✓ ✓ ✓ ✕

Ours ✓ ✓ ✓ ✓ ✓ ✓

∗CH-MARL studies collaboration between two agents, the humanoid and drone, in indoor scenes, and agents can clearly know the target object and target
receptacle without reasoning. Our work considers collaboration among multiple agents moving on the ground with or without the manipulator, and agents
need to reason the reasonable target receptacle.

place them in reasonable locations. An overview of the proposed
task is demonstrated in Fig. 1, in which multiple heterogeneous
agents with different capabilities work together to detect the
misplaced objects in the house and put them back to reasonable
locations. The proposed task is quite challenging as it requires
heterogeneous agents to make the best use of their own advantages
and the complementary abilities of manipulation and navigation to
conduct reasonable task planning as well as collaborate with each
other to achieve the tidying-up task. Besides, this task also requires
a deeper understanding of the scene. Agents need to analyze
whether each object and its surroundings are placed reasonably
and infer the reasonable receptacle to put the misplaced object
based on visual observations and common sense reasoning without
extra guidance. The most relevant work with ours is CH-MARL
in [19], but its experimental setup is relatively simple, since it
only considers the collaboration among two agents, the humanoid
and the drone, and agents can clearly know the target objects
and receptacles without reasoning. The task has been completed
in only 7 scenes. Our task studies collaboration among a larger
number of agents moving on the ground in a larger number
of indoor houses, and agents need to infer target receptacles
themselves.

In this paper, We propose a heterogeneous embodied multi-
agent collaboration framework based on the hierarchical decision
strategy and the handshake-based group communication mech-
anism. We evaluate the effectiveness of our model in the pro-
posed heterogeneous multi-agent tidying-up task. We also build a
benchmark dataset to complete the evaluation experiments in the
heterogeneous multi-agent setting in multi-room scenes based on
ProcTHOR-10K [23]. The comparisons of our benchmark with
other relevant embodied tasks are illustrated in Table 1. The main
contributions are summarized as follows:

• We propose a heterogeneous embodied multi-agent collab-
oration framework, which makes full use of the different
capabilities of heterogeneous agents to collaboratively
complete the whole task.

• We develop a handshake-based group communication
mechanism for heterogeneous multi-agent collaboration.
A hierarchical decision strategy based on scene under-
standing, scene reasoning with prior knowledge, and com-
munication mechanism is proposed to solve the heteroge-

neous multi-agent collaboration task.
• We propose the heterogeneous multi-agent tidying-up

task to evaluate the proposed heterogeneous collaboration
strategy, in which multiple heterogeneous agents need to
find all misplaced objects and place them to reasonable
locations. We build a novel benchmark dataset to evaluate
our model, which includes Single-Room and Cross-Room
settings. We also provide the method to generate the task
data in indoor houses for the tidying-up task. Experimen-
tal results demonstrate the effectiveness of the proposed
heterogeneous multi-agent collaboration framework.

This paper is organized as follows. In Section 2, the related ex-
isting researches are summarized. In Section 3, the heterogeneous
multi-agent collaboration framework and heterogeneous multi-
agent tidying-up task are formulated. In Section 4, we demonstrate
the newly built dataset. The proposed heterogeneous multi-agent
model is described in Section 5. Then the experiments are shown
in Section 6. Finally, we come to the conclusion in Section 7.

2 RELATED WORK

2.1 Embodied Tasks

In recent years, embodied visual tasks have attracted a large
number of researches. Researchers have proposed and studied
the visual navigation task including visual semantic navigation
[1], [2], [24] and visual-and-language navigation [3], [25], [26],
[27], [28], [29], visual exploration [30], remote embodied visual
referring expression [31], embodied question answering (EQA)
[32], [33], [34], [35], [36] and instruction following [4], [37].
Recently proposed visual room rearrangement [5] and tidying-
up tasks [21], [22] require the agent to learn the abilities of
deep scene understanding and scene reasoning in long-horizon
tasks. However, the above tasks are mainly studied in single-
agent scenarios, which may lead to low efficiency and poor fault
tolerance. Researchers have further studied multi-agent embodied
tasks, including collaborative object movement [10], [11], collab-
orative exploration [12], multi-agent visual navigation [13], [14],
collaborative EQA [15] and collaborative task planning [16]. All
these works consider homogeneous agents with exactly the same
capabilities.
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2.2 Heterogeneous Multi-Agent Tasks
Different from homogeneous agents, heterogeneous agents can

leverage their different capabilities to allocate corresponding sub-
tasks and cooperate to complete complex tasks. Heterogeneous
multi-agent tasks are common in real-world scenarios and have
important practical applications, such as the air-ground cooper-
ative system, collaborative manipulators with different functions
in the factory, etc. Recently, researchers have proposed hetero-
geneous multi-agent reinforcement learning (MARL) methods to
solve different tasks including known environment mapping [17],
cooperative cache in cognitive radio networks [38], autonomous
separation assurance [39]. Then inductive heterogeneous graph
MARL [40], heterogeneous MARL with mean field control [18],
and meta RL-based approach [41] have been proposed to improve
the method. In this paper, we consider the collaboration and
communication among heterogeneous agents in embodied tasks,
in which all heterogeneous agents simultaneously perceive the
environment and collaboratively perform actions to complete the
task. It is different from CoMON [42], in which one oracle
agent only provides information without executing actions and
only one agent executes the task. CH-MARL considers the task
of heterogeneous agents in the embodied environment with two
different robots including humanoid and drone [19], but the
experimental setup is relatively simple, in which agents only need
to move an object to a specific receptacle without the requirement
of scene reasoning. Besides, TarMac [43] and When2com [44] are
also related to our work on multi-agent communication, but they
only study the communication of homogeneous agents without
considering different abilities of heterogeneous agents. TarMac
broadcasts the signature and value vectors to others, When2com
utilizes a handshake-based method to complete the intra-group
communication, while our model develops the handshake-based
group communication mechanism with both intra-group and inter-
group communication, which is effective in collaboration of het-
erogeneous agents.

3 PROBLEM FORMULATION

For the heterogeneous multi-agent collaboration tasks,
we consider that there exist N heterogeneous agents
A(1), A(2), · · · , A(N). Each agent A(i) has a capability represen-
tation B(i), which consists of three different dimensions, namely
the perception ability P (i), the action ability E(i) and the agent
morphology H(i), B(i) = (P (i), E(i), H(i)). Specifically, in the
heterogeneous multi-agent tidying-up task, each agent has the
same visual perception ability. The action ability E(i) can be
indicated as E(i) = (Nav(i),Mani(i)), where Nav(i), Mani(i)

denote whether the agent has the ability of navigation and manip-
ulation respectively. If the agent has the corresponding ability, its
value is 1, otherwise, the value is 0. As for the agent morphology
H(i), we consider different heights of the agents and represent it
as H(i) = (Hei(i)), where Hei(i) = 1 denotes the height of the
agent is high, roughly 0.9 meters, and Hei(i) = 0 denotes the
height of the agent is low, roughly 0.22 meters. N heterogeneous
agents have different (E(i), H(i)), and different action spaces
I(i). Specifically, if Nav(i) = 1 and Mani(i) = 0, I(i) = Inav .
If Nav(i) = 1 and Mani(i) = 1, I(i) = Inav ∪ Imani,
where Inav = {MoveAhead, MoveRight, MoveLeft,
RotateRight, RotateLeft, LookUp, LookDown, Stop}
denotes the navigation action set and Imani = {PickUp,
PutDown, Drop} represents the manipulation actions.

There exist M objects in the house which are denoted as
O = {o1, o2, · · · , oM}. Among these M objects, the subset
Opick ⊆ O denotes the set of objects which can be picked
up by the agent. The subset Orecep ⊆ O represents the set
of objects which can be used as a receptacle and other objects
can be placed on their surface or inside. The location of the j-
th object can be represented as (oj , pj , rj), where pj ∈ Orecep

denotes the receptacle that oj is placed in, and rj is the room
where oj and pj are in. The environment can provide a judgment
of whether the current object is in a reasonable location with a
discriminator D. If D(oj , pj , rj) = True, oj is in a reasonable
location, otherwise, oj is in an unreasonable location. There exist
k objects which are in unreasonable locations in the house, namely
misplaced objects, and agents do not know the value of k. At the t-
th step, the agent A(i) obtains the perception observation e

(i)
t and

the communication information c
(i)
t from other agents. Each agent

A(i) needs to learn a action strategy π(i) to generate the action a(i)t

from its action space I(i), a(i)t = π(i)(e
(i)
t , c

(i)
t ). The objective

of this tidying-up task is to learn the optimal collaboration action
strategy π(i) for each agent such that they can collaboratively find
all misplaced objects and place them in reasonable locations to
make D(oj , p

∗
j , r

∗
j ) = True, j = 1, 2, · · · ,M with as few steps

as possible, where (oj , p∗j , r
∗
j ) denotes the location of objects after

all agents complete their actions and stop.

4 DATASET

To evaluate the proposed heterogeneous multi-agent collabo-
ration model, we create the novel dataset for the heterogeneous
multi-agent tidying-up tasks based on the ProcTHOR-10K [23]
which provides a large number of houses with multiple rooms. In
each task, several objects are placed in unreasonable locations, and
multiple heterogeneous agents are required to find these misplaced
objects and put them to the reasonable locations. The newly built
dataset contains the Single-Room (Single) and Cross-Room (Cross)
tasks to train and evaluate the proposed model.

ProcTHOR-10K is a generated dataset of houses with multiple
rooms [23] built based on AI2-THOR [45], including 10,000
training houses, 1000 validation houses, and 1000 testing houses,
and each room belongs to one type of Kitchen, LivingRoom,
Bedroom and Bathroom. We propose a method to generate multi-
agent tidying-up tasks in ProcTHOR-10K. Since every single
room in ProcTHOR-10K is built based on AI2-THOR, we regard
the object placement relationships in AI2-THOR as the reasonable
placement constraints in ProcTHOR-10K. We obtain the proper-
ties of objects and their reasonable locations from ProcTHOR-
10K. Specifically, we obtain the objects which have the properties
Pickupable and Receptacle to form the set Opick and Orecep

respectively. For each object type in Opick, we generate the
triples of reasonable candidate locations Rei = {(oi, pj , rj)}
from the metadata, where oi ∈ Opick, pj ∈ Orecep, rj ∈
{Kitchen, LivingRoom,Bedroom,Bathroom}, oi can be
put on pj in room rj . We generate 10 meta-tasks for each house
in ProcTHOR-10K, and the process is shown in Fig.2. For each
tidying-up meta-task, we randomly select k objects to change
their current location (oi, p

cur
i , rcuri ) to an unreasonable location

(oi, p
new
i , rnewi ), and k is randomly chosen from {1, 2, 3, 4, 5}.

We use the action PutObject in ProcTHOR-10K to place the
misplaced object to an unreasonable receptacle or use the action
DropHandObject, ThrowObject to drop the object to a ran-
dom location. For each misplaced object, pnewi and rcuri may
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Fig. 2. The process of generating the tidying-up task from the original scene. For each tidying-up task, we randomly select k objects from the original
house in ProcTHOR-10K and then change their current locations to unreasonable receptacles or unreasonable rooms to generate the task data.

(a) The proportion of the
number of misplaced objects.

(b) The proportion of Single-Room
and Cross-Room tasks.

Fig. 3. The statistics of the built dataset.

be the same or different. If rnewi = rcuri , the misplaced object
may be placed in an unreasonable location in the same room. If
rnewi ̸= rcuri , the misplaced object may be placed to the location
in another unreasonable room. All meta-tasks are divided into
Single and Cross tasks. In Single tasks, all k misplaced objects
are placed in the same room as their initial positions, and in Cross
tasks, at least one misplaced object is placed in a different room
from its initial position. The statistics of the dataset are shown in
Fig. 3. The proportion of the selected number of misplaced objects
in the generated dataset is shown in Fig. 3a, and Fig. 3b illustrated
the proportion of Single-Room tasks and Cross-Room tasks.

For each meta-task, we randomly generate 5 initial positions
for multiple heterogeneous agents. We also generate the expert
demonstration with heuristic shortest path methods for imitation
learning. Specifically, we obtain the metadata and scene infor-
mation of each task, and collect labels for the sub-task and
sub-goal predictors of the action strategy module. We generate
oracle sub-task lists for each agent from task information and find
viewpoints that agents can interact with misplaced objects as target
locations for manipulation. We generate the sub-task allocation
results for each agent at each step according to the distance
between each agent and misplaced objects. Then, we generate the
heuristic shortest path in the sub-goal level, generate 5 reasonable
trajectories per training task, and obtain pairs of state features
and sub-goal actions (∆xt,∆yt,∆rott, opet, stopt) from them,
which are mentioned in Section 5. Then we use sub-goal actions
as labels for imitation learning.

We notice that our dataset is different from that in [21]. The
tasks in our dataset are more difficult than [21], and our tasks
require deeper scene understanding and reasoning. Firstly, the

tidying-up tasks in our dataset are built on large houses with
multi-rooms and misplaced objects are likely to be placed in
another unreasonable room, while the dataset in [21] are only
built in the single room in AI2-THOR. Secondly, we consider
the relationship among pickupable objects, receptacles and rooms,
which means that the misplaced objects may be placed in an
unreasonable receptacle, or in a reasonable receptacle but an
unreasonable room. But in [21], misplaced objects are generated
only by being thrown away on the ground in the same room,
and it does not need to consider the relationship between objects
and rooms. It does not consider the relationship between objects
and receptacles either. Besides, our dataset is used to solve the
multi-agent tasks and each task has initial positions for multiple
agents, while the dataset in [21] is designed for the single-agent
task. Furthermore, the major differences between our dataset and
Housekeep in [22] are that our dataset has a larger scale, can
be automatically generated through the proposed program, and is
designed for heterogeneous multi-agent collaboration. We build a
benchmark dataset based on ProcTHOR-10K which contains 10K
houses with multiple rooms, while dataset in [22] only has 14
scenes. We also provide the program to generate task data and
our dataset can be automatically generated through the program,
while the generation of Housekeep needs a large number of efforts
from human annotations. Our program can also be easily extended
to any other indoor simulation platform with a large number
of houses to generate the corresponding task data. Meanwhile,
our dataset is designed for heterogeneous multi-agent task, while
Housekeep is designed for the single-agent task. Misplaced objects
in our dataset are likely to be placed in the receptacle or thrown
on the floor, which are easier to be observed by agents with high
or low height respectively, making it more suitable for the study
of heterogeneous multi-agent collaboration.

5 METHODOLOGY

The proposed model that solves the multi-agent tidying-up task
consists of four main modules: the misplaced object detector, the
reasonable receptacle predictor, the communication module, and
the hierarchical decision. The overview of this model is shown
in Fig. 4. The misplaced object detector judges whether there
exists an object placed in an unreasonable location. The reasonable
receptacle predictor generates a reasonable receptacle and room
type to place the misplaced objects. The communication module
transmits the communication information to other heterogeneous
agents. The hierarchical decision module predicts the next sub-
task, sub-goal, and next actions for each agent to execute.
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Fig. 4. An overview of the structure of the proposed heterogeneous multi-agent collaboration model. The model consists of the misplaced object
detector, the reasonable receptacle predictor, the communication module, and the hierarchical decision. The misplaced object detector judges
whether there exists an object placed in an unreasonable location. The reasonable receptacle predictor generates a reasonable location to place
the misplaced objects. The communication module shares communication messages among heterogeneous agents with the handshake-based
group communication strategy. The hierarchical decision module predicts the next sub-task, sub-goal, and next low-level actions for each agent.

5.1 Misplaced Object Detector

Each agent builds a top-down semantic map with the input
RGB and depth using the method similar to the semantic mapping
in [13]. At each sub-goal step, the agent obtains a local semantic
map of size G × G × (Ktotal + 2), where G indicates the size
of the local map, and Ktotal is the number of object categories.
Then agent A(i) generates the map embedding sm

(i)
t with a pre-

trained scene encoder similar to that in [16] consisting of multiple
convolutional layers.

We filter out spatial relationships among objects, receptacles
and room types existing in our dataset from Visual Genome
[46] to form a graph structure. We regard these relationships as
the commonsense prior knowledge. We use the Glove embed-
ding [47] to encode the class label, concatenate with the visual
embedding as node features, and use GCN [48] to obtain the
embedding of the commonsense sq

(i)
t . ResNet [49] is utilized

to extract the visual embedding sv
(i)
t of the visual observation.

Meanwhile, the pre-trained Mask-RCNN [50] is used to detect
the existing objects and obtain the feature sl

(i)
t . We construct

a room classifier to predict the room type where the agent is
currently located based on detected objects and their placement
relationships. The classifier extracts the room embedding sr

(i)
t

of the current state. The misplaced object detector Fd, a binary
classifier consisting of two linear layers, is utilized to fuse embed-
dings and detect whether the object is in a reasonable location.
det

(i)
t = Fd(sq

(i)
t , sv

(i)
t , sl

(i)
t , sr

(i)
t ). det

(i)
t = 1 denotes the

object is misplaced in an unreasonable location and det
(i)
t = 0

denotes the object is in a reasonable location.

5.2 Reasonable Receptacle Predictor

The detection feature sl
(i)
t and the commonsense embed-

ding sq
(i)
t are fed into an attention layer to obtain the object-

commonsense attention attl
(i)
t . The room embedding sr

(i)
t and

sq
(i)
t are also fed into an attention layer to generate the room-

commonsense attention attr
(i)
t . The reasonable receptacle predic-

tor Fp including linear layers is built to fuse the visual embedding
sv

(i)
t with the attention embedding and predicts the reasonable lo-

cation including receptacle pt and room type rt for the misplaced
object ot, then we have (pt, rt) = Fp(sv

(i)
t , attl

(i)
t , attr

(i)
t ).

5.3 Communication
Before communication, each agent generates a characteristic

vector va(i) based on their capability and property, va(i) =

(Nav(i),Mani(i), Hei(i)), and obtains a pose vector pose(i)t =

(x
(i)
t , y

(i)
t , rot

(i)
t ). The state feature extractor Fs including linear

layers and the LSTM [51] layer is utilized to obtain the fused
state feature sf

(i)
t = Fs(va

(i), pose
(i)
t , fd

(i)
t , fp

(i)
t ), where

fd
(i)
t , fp

(i)
t are the extracted features from the second-from-

last layers of Fd and Fp (the layer before the last classification
layer) respectively. To solve the collaboration among heteroge-
neous agents, we propose the Handshake-based Group Commu-
nication (HanGrCom.). In this module, the agent generates the
query vector qry

(i)
t , key vector key

(i)
t , value vector val

(i)
t and

inter-group information vector inv
(i)
t based on its state feature

[qry
(i)
t , key

(i)
t , val

(i)
t , inv

(i)
t ] = [θq, θk, θv, θe](sf

(i)
t ), where

θq , θk, θv , θe are corresponding vector generators consisting of
linear layers respectively. At the t-th sub-goal step, each agent
sends qry

(i)
t to others and calculates the scaled inner product

attention of received query vectors and its key vector attcij =
qry

(j)
t key

(i)
t√

d
, where d is the dimension of qry(j)t and key

(i)
t . Then

a communication matrix Tt = σ([attcij ]N×N ) is obtained, where
attcij indicates the effectiveness of the information send from
A(j) to A(i), and σ denotes row-wise softmax function. When
communicating, we set two thresholds δ and µ. If attcii < δ,
A(i) needs to receive messages from other agents, since its own
information is not efficient. If attcij > µ(i ̸= j), A(i) can
receive messages from A(j). Based on Tt, agents can be implicitly
divided into several groups. Intra-group communication exchanges
the state information from agents in the same group to complete
short-term sub-tasks, and A(i) obtain the intra-group communica-
tion information inn

(i)
t =

∑
(j ̸=i,attij>µ) attij · val(j)t . Inter-

group communication conveys higher-level information on the
task allocation across different groups which is beneficial for
agents to make future decisions in the long-term task comple-
tion, and A(i) obtains the inter-group communication information
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TABLE 2
The Details of the Model Structure

Module Layers
Room Classifier Linear (256, 256) → Linear (256, 4) [r(i)t ]

Misplaced Object Detector Linear (256, 256) → Linear (256, 2) [det(i)t ]

Receptacle Predictor Linear (256, 256) → Linear (256, 43) [p(i)t ]
↘ Linear (256, 4) [r(i)t ]

Sub-Task Predictor

↗ Linear (256, 2) [Explore or Place]
↗ Linear (256, 118) [o(i)t ]

LSTM (512) → Linear (512, 256) → Linear (256, 43) [p(i)t ]
↘ Linear (256, 4) [r(i)t ]

Sub-Goal Predictor

↗ Linear (256, 9) [∆x
(i)
t ]

↗ Linear (256, 9) [∆y
(i)
t ]

LSTM (512) → Linear (512, 256) → Linear (256, 5) [∆rot
(i)
t ]

↘ Linear (256, 4) [ope(i)t ]
↘ Linear (256, 2) [stop(i)t ]

Fig. 5. An example of the communication process. Based on Tt, at that
step, Agent 1 and Agent 2 would form a communication group, Agent
3 and Agent 4 would form a group. The intra-group and inter-group
communication information of A(1) is obtained based on Tt, δ and µ.

int
(i)
t = inv

(j)
t , j = argmax(avg(att∗j)), where avg is the

average operation and ∗ denotes the ids of agents that belong to
the same group as A(i). inn(i)

t and int
(i)
t are utilized to generate

the sub-task. An example of this mechanism is shown in Fig. 5.
In the training process, in order to ensure the generation of

communication information is differentiable, it is assumed that
agents can obtain state features of other agents. At each sub-
goal step, A(i) obtains the intra-group communication informa-
tion inn

(i)
t =

∑N
j=1 attij · val(j)t and inter-group information

int
(i)
t =

∑N
j=1(1 − attij) · inv(j)t . In the inference process

after training, agents can only obtain their own state features
and complete the communication process according to the latent
divided communication groups under the threshold δ, µ as men-
tioned above. We set µ = 0.2, δ = 0.8 in our experiments.

5.4 Hierarchical Decision
The hierarchical decision module generates the sub-task for

each agent, predicts the sub-goal for the corresponding sub-task,
and chooses the low-level actions to execute.

5.4.1 Sub-Task Planning
The sub-task planning part generates the sub-task for each

agent to complete. In this tidying-up task, two types of sub-tasks
can be executed, Explore and Place. In the sub-task Explore, the
agent needs to explore the scene from its current position and
search for misplaced objects. The sub-task Place contains three
parameters, which are denoted as (Place, ot, pt, rt), meaning to

put the misplaced object ot to the receptacle pt in the room type
rt. A sub-task predictor Fa including the LSTM layer and linear
layers is utilized to predict the type and parameters of the executed
sub-task with sf

(i)
i , inn(i)

i and int
(i)
i . We use the output of the

layer before the last prediction layer to obtain the embedding se
(i)
t

of the predicted sub-task se
(i)
t = Fa(sf

(i)
t , inn

(i)
t , int

(i)
t ).

5.4.2 Action Decision
Each agent encodes the pose

(i)
t to get the pose embed-

ding sp
(i)
t . A sub-goal predictor Fg including the LSTM

layer and linear layers is utilized to predict the next sub-
goal sg

(i)
t with se

(i)
t , sm

(i)
t , sp

(i)
t and the visual embed-

ding sv
(i)
t . sg(i)t = (∆x

(i)
t ,∆y

(i)
t ,∆rot

(i)
t , ope

(i)
t , stop

(i)
t ) =

Fg(se
(i)
t , sm

(i)
t , sp

(i)
t , sv

(i)
t ), where ∆x

(i)
t , ∆y

(i)
t , ∆rot

(i)
t are

the movement in egocentric x and y axis and the rotation angle of
the agent respectively. ope(i)t denotes whether performing action
PickUp, PutDown, Drop or NoAction after reaching the sub-goal.
stop

(i)
t predicts whether the agent stops or not after this sub-goal

step. Then, a low-level action strategy based on the shortest path
algorithm is utilized to generate specific actions from I(i) to reach
the current sub-goal.

5.5 Model Training

We demonstrate the details of our model structure in Table
2. Linear(din, dout) indicates the linear layer, and din, dout
denote the dimensions of input and output of the layer respectively.
LSTM(dhid) indicates the LSTM layer, and dhid denotes the
hidden size. [∗] represents the predicted contents. Specifically,
r
(i)
t indicates the room types which include 4 categories, det(i)t

indicates whether the object is misplaced or not, p(i)t denotes the
receptacle types which include 43 categories, o(i)t denotes the ob-
ject types which include 118 categories. The agent would predict
the egocentric sub-goal within 1 meter in the x and y axis respec-
tively, and the agent moves 0.25 meters each time corresponding to
one grid after the discretization of the environment. The values of
∆x

(i)
t and ∆y

(i)
t are {−4,−3,−2,−1, 0, 1, 2, 3, 4} respectively,

where the negative values indicate moving in the negative direction
of x and y axis, the positive values indicate moving in the positive
direction of x and y axis. rot(i)t can take the value of 0, 90, 180,
or 270.
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Fig. 6. Different methods of communication. The thickness of the lines represents the communication amount. The thicker the line, the greater
the amount. The solid line indicates the information is transmitted at each communication step, and the dotted line indicates the information is
transmitted only when certain conditions are met. The rectangle on the line represents the delivered specific vectors.

Since the function of each module and their training pro-
cess are relatively independent, we train them separately. The
misplaced object detector and reasonable receptacle predictor are
trained with supervised learning, and the action decision part of
the hierarchical decision module is trained with imitation learning.

We first train the room classifier in the misplaced object
detection module with the true labels of the rooms where the
specific object is located obtained from the houses in ProcTHOR-
10K. During the training process, the parameters of the pre-trained
ResNet and Mask-RCNN are frozen. After the training of the
room classifier, we fix its parameters and utilize it to extract
the room embedding. Then we select the pickupable objects in
a number of training houses in ProcTHOR-10K and place them
to reasonable or unreasonable locations in the houses to get
the training samples for the misplaced object detector and the
reasonable receptacle predictor. We generate the true labels of
whether the corresponding objects are misplaced and extract the
reasonable locations of misplaced objects based on the metadata
of ProcTHOR-10K to obtain the ground truth of training samples
for the misplaced object detector and the reasonable receptacle
predictor respectively. We train the misplaced object detector and
the reasonable receptacle predictor with the parameters of the
room classifier fixed. The loss function of this process is defined
as follows,

Losscla = Losstype

Lossdet = αLossmis + βLossrec1 + λLossroom1
(1)

where Losscla denotes the loss function of the room classifier, and
Losstype indicates the cross entropy loss between the predicted
and the true type of the room where the specific object is located.
Lossdet denotes the loss function of the misplaced object detector
and the reasonable receptacle predictor. Lossmis indicates the
binary cross entropy of whether the object is misplaced. Lossrec1,
Lossroom1 denotes the multi-label classification loss between the
predicted and true reasonable types of the receptacle and the room
where the object can be placed. α, β, λ are the hyper-parameters.
In our implementation, we set α, β, λ to 1.

The scene encoder consists of convolutional layers and is pre-
trained to extract the map embedding of the semantic map. We
design the query to predict whether a type of object exists in a sub-
region of the top-down map. We generate a series of queries, which
consist of a sub-area and a specific type of object, and extract the
true answer of the query from the metadata of the houses. Then
we pre-train the scene encoder with supervised learning, and the
loss function is denoted as the entropy loss between the predicted
answers and the true answers.

The hierarchical decision module predicts the next sub-task
and sub-goal for each agent. The sub-task planning part predicts

the type of sub-task (Explore or Place) and the parameters of
the sub-task, which contain the misplaced object type o

(i)
t , the

reasonable receptacle type p(i)t and the reasonable room type r(i)t .
The action decision part predicts the next sub-goal specified by
the grid of 0.25 meters. It independently predicts the number of
movement grids of the sub-goal within 1 meter in the x and y
axis ∆x

(i)
t , ∆y

(i)
t respectively, the rotation angle ∆rot

(i)
t , the

operation action ope
(i)
t and the probability of performing the

action Stop
(i)
t . rot

(i)
t takes the value of 0, 90, 180, or 270.

ope
(i)
t takes the value of PickUp, PutDown, Drop or NoAction.

Since agents are heterogeneous and their abilities are different, the
hierarchical decision modules of each agent are trained separately,
and they do not share weights. We use behavior cloning to
train the hierarchical decision module with the generated expert
demonstrations of allocated sub-task and sub-goal actions. The
loss function of training each sub-task planning part and action
decision part with imitation learning is defined as follows,

Losssubtask = Losstask + γ1Lossobj + δ1Lossrec2

+ θ1Lossroom2

Losssubgoal = Lossxloc
+ Lossyloc

+ γ2Lossrot

+ δ2Lossope + θ2Lossstop

(2)

where Losstask indicates the binary cross entropy of the sub-task
type. Lossobj , Lossrec2, Lossroom2 denotes the cross entropy
loss between the predicted o

(i)
t , p(i)t , r(i)t and those in demonstra-

tions respectively. Lossxloc
, Lossyloc

, Lossrot, Lossope denotes
the cross entropy loss between the predicted results and those in
demonstrations respectively, Lossstop denotes the binary cross
entropy of whether the agent stops or not. γ1, γ2, δ1, δ2, θ1, θ2
are the hyper-parameters that can control the training process. In
our implementation, we set γ1, γ2, δ1, δ2, θ1, θ2 to be 1.

6 EXPERIMENTS

6.1 Experiment Setting
We focus on heterogeneous multi-agent collaboration, and we

evaluate the proposed collaboration strategy in the tidying-up task.
To effectively and efficiently train and verify our model, we select
120 scenes from the newly built dataset, 80 houses for training,
20 for validation, and 20 for testing. The number of scenes in
our experiment is the same as that in other embodied tasks in
AI2-THOR, which is widely used in different embodied tasks.
Each house contains 10 different meta-tasks, and each meta-tasks
contains 5 different initial positions for heterogeneous agents.

We consider two different heterogeneous settings with dif-
ferent numbers of heterogeneous agents and different ability
settings. In Setting I, there are three agents with the same visual
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TABLE 3
Quantitative Results in Heterogeneous Multi-agent Tidying-up Task in Setting I

Methods Success(↑) %PS(↑) %FM(↑) #PL(↓) ACm(↓) CES(↑)
Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All

SA 0.045 0.030 0.038 0.096 0.081 0.089 0.525 0.483 0.507 278.6 294.5 285.5 - - - - - -
SA(Oracle) 0.090 0.068 0.080 0.181 0.163 0.173 0.703 0.681 0.693 184.8 197.1 190.1 - - - - - -

Random 0 0 0 0 0 0 0.003 0 0.002 300.0 300.0 300.0 0 0 0 - - -
QMIX 0.032 0.015 0.025 0.082 0.069 0.076 0.472 0.421 0.450 293.1 300.0 296.1 512.0 512.0 512.0 0 0 0

CondComm. 0.081 0.066 0.075 0.176 0.151 0.165 0.712 0.709 0.710 192.3 263.1 223.1 523.1 501.3 513.6 0.7 0.7 0.7
CmprComm. 0.067 0.053 0.061 0.167 0.131 0.151 0.695 0.677 0.687 188.3 253.3 216.6 220.0 220.0 220.0 1.0 1.0 1.0
IntenComm. 0.047 0.032 0.040 0.136 0.101 0.121 0.645 0.609 0.629 214.6 267.5 237.6 20.0 20.0 20.0 1.0 1.0 1.0

Ours 0.121 0.079 0.103 0.194 0.160 0.179 0.739 0.726 0.733 186.1 252.6 215.0 363.1 366.5 364.6 2.1 1.4 1.8
BroadComm. 0.130 0.089 0.112 0.201 0.184 0.194 0.742 0.731 0.737 183.3 245.9 210.5 820.0 820.0 820.0 1.0 0.7 0.9
CentralComm. 0.131 0.092 0.114 0.205 0.166 0.188 0.755 0.739 0.748 183.2 243.1 209.3 820.0 820.0 820.0 1.0 0.8 0.9

TABLE 4
Quantitative Results in Heterogeneous Multi-agent Tidying-up Task in Setting II

Methods Success(↑) %PS(↑) %FM(↑) #PL(↓) ACm(↓) CES(↑)
Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All

SA 0.045 0.030 0.038 0.096 0.081 0.089 0.525 0.483 0.507 278.6 294.5 285.5 - - - - - -
SA(Oracle) 0.090 0.068 0.080 0.181 0.163 0.173 0.703 0.681 0.693 184.8 197.1 190.1 - - - - - -

Random 0 0 0 0 0 0 0.005 0 0.003 300.0 300.0 300.0 0 0 0 - - -
QMIX 0.035 0.021 0.029 0.091 0.076 0.084 0.483 0.425 0.458 290.5 296.3 292.9 512.0 512.0 512.0 0 0 0

CondComm. 0.090 0.072 0.082 0.179 0.156 0.169 0.720 0.711 0.716 188.5 230.7 206.9 620.6 613.1 617.3 0.7 0.7 0.7
CmprComm. 0.073 0.059 0.067 0.173 0.139 0.158 0.703 0.683 0.694 183.1 226.9 202.1 330.0 330.0 330.0 0.8 0.9 0.8
IntenComm. 0.048 0.033 0.041 0.139 0.112 0.127 0.661 0.620 0.643 210.1 255.3 229.8 30.0 30.0 30.0 1.0 1.0 1.0

Ours 0.129 0.090 0.112 0.203 0.169 0.188 0.745 0.739 0.743 166.9 221.3 190.6 472.5 478.3 475.0 1.8 1.3 1.6
BroadComm. 0.136 0.094 0.118 0.209 0.189 0.200 0.748 0.741 0.745 161.1 213.3 183.8 1230.0 1230.0 1230.0 0.7 0.5 0.6
CentralComm. 0.138 0.097 0.120 0.211 0.173 0.194 0.760 0.745 0.753 160.6 213.1 183.4 1230.0 1230.0 1230.0 0.8 0.5 0.7

perception ability but different action abilities and morphological
characteristics. Specifically, A(1) only has the navigation ability
with the low height, Nav(1) = 1,Mani(1) = 0, Hei(1) = 0.
A(2) only has the navigation ability and its height is high,
Nav(2) = 1,Mani(2) = 0, Hei(2) = 1. A(3) has both
the navigation and manipulation abilities and its height is high,
Nav(3) = 1,Mani(3) = 1, Hei(3) = 1. In Setting II, there are
four heterogeneous agents. The settings of A(1), A(2) and A(3)

are the same as Setting I, and A(4) has the same abilities with
A(3). The reasons that we select the Setting I and Setting II are
that these two settings can represent the general heterogeneous
collaboration scenarios, and the experimental results with these
two settings can demonstrate the generalization of our model
across different numbers and heterogeneous settings of agents. In
Setting I, A(3) can pick up objects which are pickupable from
the correct interaction locations. It is easier for A(1) with the
lower field of view to find the objects thrown on the floor, and
it can share its detected information to A(3) to help it pick up
thrown objects. A(2) with the higher field of view can observe
some areas that A(1) cannot, and its perspective can complement
that of A(1) to assisting A(3) complete the tidying-up task. The
visual perception of A(1) and A(2) with perspectives at different
heights can complement each other during exploration, and A(3)

can operate the misplaced objects with the assistance of A(1) and
A(2) at different heights to complete the task. In Setting II, both
A(3) and A(4) can pick up misplaced objects, and they can also
cooperate with each other to improve the efficiency of putting
objects to the reasonable locations. These two settings can solve
different situations of this task. A(3) (A(4)) can pick up misplaced
objects detected but cannot be picked up by A(1) and A(2). The

different perspectives of A(1), A(2) can complement each other to
easier find objects thrown on the floor. For each setting, there are
a total of 4000 training tasks (80× 10× 5), 1000 validation tasks
(20 × 10 × 5), and 1000 testing tasks. In testing tasks, there are
565 Single tasks and 435 Cross tasks.

6.2 Evaluation Metrics

We propose six metrics to evaluate the performance of the
model, and Nepi denotes the number of tasks:

1) Success (Suc): Suc = 1
Nepi

∑Nepi

i=1 Ri, where Ri = 1 if all
misplaced objects are re-placed in reasonable locations, otherwise
Ri = 0. It denotes the strict success rate.

2) %PatialSuccess (%PS): %PS = 1
Nepi

∑Nepi

i=1
Ksuc

i

Ki
, where

Ki denotes the number of misplaced objects in the i-th task,
and Ksuc

i is the number of misplaced objects that are re-placed
to reasonable locations by agents in this task. It can reflect the
proportion of misplaced objects that can be successfully tidied in
each task.

3) %FindMisObj (%FM): %FM = 1
Nepi

∑Nepi

i=1
Kdet

i

Ki
, where

Kdet
i is the number of misplaced objects that are detected and

picked up by agents in this task. It can reflect the effect of
misplaced objects detector to some extent.

4) #PathLength (#PL): #PL = 1
Nepi

∑Nepi

i=1 Leni, where
Leni is the number of steps in the multi-agent trajectory when
synchronously completing the i-th task, that is, the maximum
number of steps of three agents. It evaluates the efficiency of
completing the task. The fewer steps, the higher efficiency of the
multi-agent collaboration.
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TABLE 5
Ablation Experiments Results in Heterogeneous Multi-agent Tidying-up Task in Setting I

Methods Success(↑) %PS(↑) %FM(↑) #PL(↓) ACm(↓) CES(↑)
Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All

Ours w/o Know. 0.042 0.030 0.037 0.087 0.080 0.084 0.425 0.366 0.399 235.1 267.3 249.1 363.5 366.6 364.8 0 0 0
Ours w/o MisObjDec. 0.051 0.046 0.049 0.109 0.091 0.101 0.515 0.471 0.496 234.6 264.5 247.6 363.3 366.6 364.7 0.2 0.4 0.3
Ours w/o ReaRecPre. 0.063 0.058 0.061 0.120 0.098 0.110 0.551 0.509 0.533 231.1 260.3 243.8 363.3 366.9 364.9 0.5 0.8 0.6

Ours w/o Comm. 0.045 0.030 0.038 0.096 0.081 0.089 0.525 0.483 0.507 278.6 294.5 285.5 0 0 0 - - -
Ours w/o HierDec. 0.055 0.049 0.052 0.106 0.093 0.100 0.573 0.532 0.555 266.3 284.5 274.2 366.1 367.2 366.6 0.3 0.5 0.4

Ours 0.121 0.079 0.103 0.194 0.160 0.179 0.739 0.726 0.733 186.1 252.6 215.0 363.1 366.5 364.6 2.1 1.4 1.8

TABLE 6
Ablation Experiments Results in Heterogeneous Multi-agent Tidying-up Task in Setting II

Methods Success(↑) %PS(↑) %FM(↑) #PL(↓) ACm(↓) CES(↑)
Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All Single Cross All

Ours w/o Know. 0.049 0.033 0.042 0.103 0.096 0.010 0.452 0.375 0.419 227.0 258.5 240.7 473.3 479.2 475.9 0.09 0.06 0.08
Ours w/o MisObjDec. 0.058 0.052 0.055 0.118 0.103 0.111 0.523 0.480 0.504 225.5 256.1 238.8 473.1 479.0 475.7 0.3 0.5 0.4
Ours w/o ReaRecPre. 0.075 0.069 0.072 0.128 0.105 0.118 0.560 0.515 0.540 220.6 251.9 234.2 473.3 478.9 475.8 0.6 0.8 0.7

Ours w/o Comm. 0.049 0.033 0.042 0.105 0.091 0.099 0.535 0.496 0.518 273.1 280.6 276.4 0 0 0 - - -
Ours w/o HierDec. 0.063 0.055 0.060 0.111 0.99 0.106 0.581 0.537 0.562 260.1 273.6 266.2 475.3 478.8 477.3 0.4 0.5 0.4

Ours 0.129 0.090 0.112 0.203 0.169 0.188 0.745 0.739 0.743 166.9 221.3 190.6 472.5 478.3 475.0 1.8 1.3 1.6

5) AvgCom (ACm): ACm = 1
Nepi

∑Nepi

i=1
Totali
Leni·N , where

Totali is the total dimensions of communication messages among
agents. It evaluates the average communication amounts per agent
per step.

6) CommunicationEfficiencyScore (CES): CES =
max(0, 10000·(Suc−SucSA)

ACm ), where SucSA is the success
rate of the single-agent model. It evaluates the proportion of
efficiency improvement of different communication methods.
The higher CES, the higher efficiency of the communication
mechanism.

6.3 Quantitative Analysis

We evaluate the proposed model with different action decision
strategies and communication methods in testing tasks. For differ-
ent action strategies, we compare the results with SA, SA(Oracle),
Random, and QMIX model. SA only utilizes one agent with both
navigation and manipulation abilities to complete the task, and the
other parts are the same as the proposed model. In SA(Oracle), the
objects’ locations are known to the agent, and the other parts are
the same as SA. Random model randomly generates actions for
each agent from their action spaces. QMIX is a MARL method
based on [52], in which agents obtain all state features from
others, fuse with their own state features, and directly predict
the next low-level actions based on fused state features. For
different communication methods, we consider several methods
that save bandwidth. In CondComm., only when an agent detects
the misplaced object in the current view, it would broadcast its
state and map to others. CmprComm. utilizes an encoder-decoder
structure to compress the communication messages, and decode
received messages from other agents, similar to that in [13]. In
IntenComm., agents exchange state and sub-task information, infer
other agent’s next sub-goal, and then decide their next sub-task,
which is referred to as the idea in [53]. We also pay attention
to the central and broadcast mechanisms, which require large
communication amounts. CentralComm. adopts a central node to
obtain the messages from all agents and generates the sub-task for
each agent. In BroadComm., each agent broadcasts its messages

to all agents and determines the next actions with its state and
received messages from others. All these communication baselines
are demonstrated in Fig. 6.

We show the quantitative results of Single and Cross tasks in
Setting I, Setting II in Table 3 and Table 4 respectively. The best
performance except for central and broadcast methods are bolded.
The maximum number of steps per task is 300. The results show
that the heterogeneous multi-agent tidying-up task is challenging.
%FM is relatively high, but the success rate of the whole task is
relatively low, which indicates that moving the detected misplaced
objects to the reasonable location is challenging, since agents
may not reason the proper receptacle or not generate the valid
manipulation actions to re-place the misplaced object to predicted
locations. The results in Setting I and Setting II indicate that
our model can generalize to different numbers and heterogeneous
settings of agents. Compared with multi-agent models, the success
rate of task completion of SA and SA(Oracle) is lower, which
demonstrates that collaboration and communication among het-
erogeneous multi-agents can help agents improve the accuracy
and efficiency of tasks. Although agents in QMIX can obtain
state features of other agents, its performance is relatively low,
indicating that this MARL method is not effective enough to deal
with visual information, and it is difficult to directly predict low-
level actions.

As for different communication methods, the performances of
Ours, CondComm., CmprComm. and IntenComm. in task comple-
tion (Suc,%PS,%FM ,#PL) are lower than CentralComm. and
BroadComm., because agents share partial information with others
for decision-making. Since CentralComm. utilizes a central node
to process information, its task completion performance can be
regarded as the upper bound of multi-agent models. Our model
performs better than other communication methods that share
partial messages with agents in task completion. In our model,
the agent with manipulation ability can obtain the state and map
information from other agents with only the navigation ability,
which is beneficial for the agent to put the object to a reasonable
location, and its performance is better than the other three models.
In CondComm., agents exchange their state only when a misplaced
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(a) The success sample in Setting I with three agents.

(b) The success sample in Setting II with four agents.

Fig. 7. The successful samples in the same house in Setting I and Setting II. In the top-down view, the color of bounding boxes in the left indicates
which agent detects the specific misplaced objects, and the color of arrows indicates which agent puts the misplaced objects to reasonable locations.

object is detected, and the incomplete shared map information
makes its performance lower than our model. The performance
of CmprComm. indicates that decoding the compressed commu-
nication message would lose some effective information though
the communication bandwidth can be reduced. The performance
of IntenComm. is relatively low due to the improper reasoning
results of other agents’ decisions and incomplete exchanging of
information. Furthermore, in QMIX, each agent receives the fused
512-dimensional state features from other agents, so ACm of
QMIX is always 512. The size of local map embedding sm

(i)
t

is 20 × 20. The transmitted state information contains the 3-
dimensional va(i), 3-dimensional pose pose(i)t and 4-dimensional
sub-task information (Place/Explore, ot, pt, rt), so the number
of total dimensions of the state information from one agent is 10.
Since IntenComm. only transmits the state information from other

agents to each agent, so ACm in Setting I is 20 and ACm in Setting
II is 30. In CmprComm., each agent compresses the dimensions
of the map embedding to be 100, and transmits the compressed
map embedding as well as the state information to other agents,
so ACm in Setting I is 2× (100+10) = 220, ACm in Setting II is
3× (100+ 10) = 330. In BroadComm. and CentralComm., each
agent transmits their state information and map embeddings to all
other agents, so ACm in Setting I is 2×(400+10) = 820 and ACm
in Setting II is 3× (400 + 10) = 1230. ACm of CentralComm.
and BroadComm. are the largest, and with the increased number
of heterogeneous agents, their ACm have increased greatly, but
the declines in SCE are relatively larger, which indicates that
they are not cost-effective enough. Although IntenComm. uses
the smallest ACm, its CES is not high, since its Suc is not
good. Our method can save communication amounts, achieve
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Fig. 8. The failed cases in Setting I of the task.In Case 1, Agent 3 place
Laptop to the Kitchen, an unreasonable location. In Case 2, Agent 2 fail
to detect SoapBar in the DiningTable in Bedroom.

good performance of task completion, and obtain the highest
communication efficiency CES, demonstrating the effectiveness
of the proposed communication mechanism.

6.4 Qualitative Analysis

We demonstrate successful samples with three agents in Set-
ting I and four agents in Setting II respectively in Fig. 7. The
tidying-up tasks in 7a and 7b are the same. Agents complete the
same task more quickly in Setting II, since Agent 3 and Agent 4
with both the navigation and manipulation abilities can collaborate
with each other to pick up misplaced objects and put them to
reasonable locations, which demonstrates that the proposed model
can make effective use of different abilities of heterogeneous to
improve efficiency. We also show two failed cases in Fig. 8, where
the agent places the misplaced object in an unreasonable location
or agents fail to detect all the misplaced objects.

6.5 Ablation Experiments

To evaluate the role and effectiveness of different modules of
our model, we conduct ablation experiments by removing the spe-
cific part of the model and comparing the performance. Ours w/o
Know. removes the commonsense prior knowledge, which judge
the misplaced objects and infer the reasonable locations directly
from visual features. Ours w/o MisObjDec. removes the misplaced
object detector, which extracts visual features and relationship
features from the current observation as the subsequent input of the
model. Ours w/o ReaRecPre. removes the reasonable receptacle
predictor and directly extracts the receptacle features with the
linear layer to input to the subsequent model to generate next
actions. We remove the communication module to obtain Ours w/o
Comm., in which agents do not communicate with others and each
agent performs actions independently. Ours w/o HierDec. removes
the hierarchical decision, and agents do not predict the executing
sub-tasks and sub-goals, but directly generate low-level actions
with their state features. The results of the ablation experiments
for Single and Cross tasks in Setting I, Setting II in Table 5 and
Table 6 respectively.

The performance of Ours w/o Know. drops obviously, indicat-
ing that the commonsense knowledge is quite important for scene
reasoning in this task. Since the misplaced object detector and the
reasonable receptacle predictor can provide a clear target object to

be picked up and a clear receptacle to put the object for subsequent
sub-tasks generating, the performance of Ours w/o MisObjDec.
and Ours w/o ReaRecPre. would decrease. In Ours w/o Comm.,
each agent has no communication with others, since in Setting I
only one agent has the manipulation capability, the performance is
the same as SA in Setting I. Ours w/o HierDec. directly generates
the low-level actions with the detected misplaced object, the
reasoned receptacle, and the state features. Because it is difficult
to directly learn the relations between state features and executed
low-level actions, this model would generate some invalid actions
for the executing task, which leads to worse performance. Since
the misplaced object detector and reasonable receptacle predictor
are retained in Ours w/o HierDec., its %FM is still higher than
that of Ours w/o MisObjDec. and Ours w/o ReaRecPre.. The
results demonstrate that each module of the proposed model is
effective for heterogeneous multi-agent task completion.

7 CONCLUSION

In this paper, we propose the heterogeneous multi-agent col-
laborative framework based on the handshake-based group com-
munication strategy and hierarchical decision model. To evaluate
the effectiveness of the framework, we propose the heterogeneous
multi-agent tidying-up task and generate a benchmark dataset for
this task in houses with multiple rooms. The results demonstrate
the effectiveness of each module of our model. In the future,
we will continue to study the communication mechanism in
more complex tasks and larger multi-agent systems with both
homogeneous and heterogeneous agents.
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