
IEEE ROBOTICS AND AUTOMATION LETTERS. ARXIV VERSION. ACCEPTED DECEMBER, 2023 1

Mixed Reality Teleoperation Assistance for Direct
Control of Humanoids
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Abstract—Teleoperation plays a crucial role in enabling robot
operations in challenging environments, yet existing limitations
in effectiveness and accuracy necessitate the development of
innovative strategies for improving teleoperated tasks. This
article introduces a novel approach that utilizes mixed reality
and assistive autonomy to enhance the efficiency and precision
of humanoid robot teleoperation. By leveraging Probabilistic
Movement Primitives, object detection, and Affordance Tem-
plates, the assistance combines user motion with autonomous
capabilities, achieving task efficiency while maintaining human-
like robot motion. Experiments and feasibility studies on the
Nadia robot confirm the effectiveness of the proposed framework.
Supplementary video available at https://youtu.be/oN-FD6YnF2c.

Index Terms—Virtual Reality and Interfaces, Humanoid Robot
Systems, Telerobotics and Teleoperation, Whole-Body Motion
Planning and Control, Learning from Demonstration

I. INTRODUCTION

SEVERAL of the most compelling instances of humanoids
performing valuable tasks have been through teleoperation

[1]. However, despite years of research in this domain, tele-
operated humanoid robots continue to show substantial lim-
itations when executing tasks under user control. Traditional
direct control of robots through the user’s own motions offers
an intuitive approach for interacting with the remote environ-
ment [2], [3], [1]. However, differences in kinematics between
humans and robots can lead to errors and multiple attempts
for task completion, making this approach not very effective
and time-consuming, and even lead to operator frustration.

Our work addresses the challenge of improving the di-
rect control of humanoids in teleoperation by introducing
autonomous assistance features in mixed reality. The goal
is to enhance the efficiency and accuracy of teleoperated
tasks. To achieve this, we employ Probabilistic Movement
Primitives (ProMPs) [4], which are widely used for modu-
lar movement representation and generation. These ProMPs
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Fig. 1. With the teleoperation assistance we propose, the user serves as a high-
level guide, directing the robot’s autonomous task execution through a mixed
reality interface (top left) and specifying the manner in which the task should
be carried out. In the given example, the user merely initiates a portion of a
punching motion, specifically indicating an uppercut technique. Recognizing
this, the robot discerns that it is tasked with a punching action and, among
the various techniques available, it should execute an uppercut. The user does
not need to focus on the precision of the subsequent motion, as the initial
input is sufficient for the robot to complete the task accurately.

are conditioned on the operator’s input, allowing adaptation
to the user’s preferred way of performing the task while
maintaining similarity to the demonstrations. Additionally,
we utilize information from the robot’s sensors to provide
context and precision to the motion primitives. The physical
interaction with objects is governed by Affordance Templates
(ATs) [5], ensuring accurate and controlled manipulation while
reducing the risk of errors or unintended consequences during
physical interaction. In order to observe, predict and direct the
assistance, we developed a mixed reality interface, based on
Coactive Design principles [6]. Using mixed reality has the
benefit of providing an immersive experience for the operator
as also shown in [7].

The need of such teleoperation assistance was vividly high-
lighted during the finals of the ANA Avatar XPRIZE [8], [9],
[10], a four-year global competition on robot teleoperation that
ended in November 2022. Operators struggled to effectively
and accurately control the robots, even for seemingly simple
tasks like grasping a bottle. Multiple attempts were often
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required, showcasing the difficulties in achieving satisfactory
outcomes solely through direct user control — especially
when considering that robots can perform similar tasks au-
tonomously with relative ease.

It is important to note that full direct control is typically
achieved by projecting the RGB images from the robot camera
to the Virtual Reality (VR) headset [9], [10], but this approach
often fails to provide sufficient situational awareness [11] to
the user. This was also demonstrated in the ANA Avatar
XPRIZE finals, where judge operators frequently encountered
confusion regarding the robot’s location within the environ-
ment. Hence, a combination of autonomy and mixed reality
technology is crucial in bridging these gaps and enabling
robots for real-world applications.

A recent and promising approach to addressing the di-
rect control issues is shared-control, which integrates robot
assistance with user input to facilitate the completion of
tasks [12]. For instance, Rakita et al. [13] implemented a
shared-control approach in which they teleoperated the upper
body of a humanoid robot. By maintaining a constant offset
between the end effectors or limiting the motion of the end-
effector that holds the object, the system provides on-the-fly
assistance and helps the user perform bimanual tasks more
easily. Similarly, in [14], Rahal et al. designed a shared control
approach to assist the human operator by enforcing different
nonholonomic-like constraints representative of the cutting
kinematics.

In many shared-control frameworks, the user provides an
input that allows the robot to consider the human’s intent and
to assist in the task by adjusting its motion or executing a
pre-optimized version of that motion. To determine the final
reference for the robot’s motion, a policy blending mechanism
that governs the balance between the user input and the
enhanced robot motion is employed [12]. The blending policy
is usually the distance to the goal. The closer the robot gets to
a predicted goal, the more likely it is that the predicted goal
is the correct one, and thus, the robot input is favored over
the user’s.

Approaches have also been proposed that consider unknown
goals. For instance, in the case of [15], a POMDP-based
strategy has been employed to provide assistance, aiming to
minimize the expected cost-to-go. It is worth highlighting
that this particular approach is predominantly designed for
the control of goal-oriented components of the robot, such
as its end-effectors. Consequently, its direct applicability to
the control of other robot components, such as adjusting the
orientation of the chest and forearms as needed for whole-
body tasks may be limited. Alternatively, [16] presents a
novel approach leveraging the Koopman operator for learning
the dynamics of a machine and enhancing human-machine
interaction. However, the application and scalability of this
system to more complex systems, such as humanoid robots,
remain unvalidated and appear to be challenging due to the
increased complexity and unpredictability inherent in such
systems.

In haptic-based shared-control approaches, a different strat-
egy is employed. Here, only the user’s input actuates the robot,
but haptic information is used to guide the user during task

execution [14], [17]. By incorporating haptic feedback, the
system can provide the user with tactile cues or force feedback,
improving the user’s understanding of the task and making the
teleoperation process more intuitive and effective.

In line with the efforts that have been made in humanoid
teleoperation, our work continues to advance these endeavors.
By integrating predictive modeling techniques, we are poised
to proactively gauge the user’s intended motion, tailoring the
robot behavior to both fit the user input and the pose of
manipulated objects in the environment. By leveraging the
strengths of both the user and the robot, we do not just enhance
task efficiency; we also maintain the human-likeness of the
robot’s motion. Our work is validated through experiments
and feasibility studies on the Nadia humanoid robot.

II. ASSISTIVE AUTONOMY

Our assistive autonomy seeks to improve robot teleoperation
by enabling more precise and adaptive robot movements. This
approach ensures fidelity to the demonstrated actions while
compensating for inaccuracies in user input, both during the
demonstrations and during actual operation. The proposed
method utilizes ProMPs along with ATs when physical in-
teraction with the object is required.

The system follows a series of operations as shown in Fig.
2. The learning phase involves recording few demonstrations
(less than 30) of the task performed in different ways by a hu-
man operator in a simulated environment. ProMPs are learned
from these demonstrations. During teleoperation, the system
recognizes the current task by identifying the corresponding
ProMP, aided by semantic object information. The system then
updates the posterior distribution of the ProMPs using the
initial user input and the estimated object pose. The mean
trajectory of the updated ProMP is used as a reference for the
robot controller. If an affordance is available for that object,
a blending mechanism is used to achieve smooth transitions
between ProMP-generated motions and ATs. The generated
trajectories are then tracked by the robot controller (Section
II-H), which calculates the appropriate joint commands. Both
the object pose conditioning and the AT integration make
it possible to transfer the learned ProMPs to the real world
without any real-world training data.

A. Probabilistic Movement Primitives (ProMPs)

ProMPs [4] are a probabilistic model used to represent tra-
jectory distributions. These models describe the time-varying
mean and variance of trajectories using basis functions. Each
trajectory is parameterized by a weight vector www ∈Rm. Given
the weight vector, the probability ξξξ (t) of observing a trajectory
yyy is modeled using a linear basis function model:

ξξξ y(t) = ΦΦΦtwww+ εεεξ , (1)

where ΣΣΣξ represents the observation noise variance, and εεεξ ∼
N (0,ΣΣΣξ ) is the trajectory noise. ΦΦΦt ∈Rn·m is a block-diagonal
matrix containing the m basis functions for each dimension n.
The distribution p(www;θθθ) over the weight vector www is Gaussian,
with parameters θθθ = µµµwww,ΣΣΣwww specifying the mean and variance
of www.
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Fig. 2. Flowchart of the assistive autonomy. During the training phase, the human operator teleoperates the robot in simulation, and performs the tasks in
different ways. A ProMP is learned for every task. When teleoperating the robot in real-time, the ProMPs are used to generate the assistive robot motion: (1)
the system recognizes the current task, with the help of context given by the object detection; (2) it updates the ProMP according to the initially observed user
input and object pose; (3) if an affordance is available for that object, a blending mechanism is used to to achieve smooth transitions between ProMP-generated
motions and ATs.

B. Learning ProMPs from Demonstrations

In the learning phase of ProMPs, demonstrations are
recorded from a human operator teleoperating the robot in
simulation to perform the task in different ways. To decouple
the movement from the time signal and obtain a duration-
independent representation, a phase variable υ ∈ [0,1] is
introduced. The modulated trajectories ξξξ i(υ) are then used to
learn a ProMP for the task. The parameters θθθ = µµµw,ΣΣΣw of the
ProMP are estimated using a maximum likelihood estimation
algorithm. The weight vectors wwwi for each demonstration i
are computed using linear ridge regression, as shown in (2),
where the ridge factor λ is typically set to a very small value
(λ = 10−12 in our case):

wwwi =
(
ΦΦΦ

⊤
υ ΦΦΦυ +λ

)−1
ΦΦΦ

⊤
υ ξξξ i(υ), (2)

Assuming normal distributions p(www) ∼ N (µµµw,ΣΣΣw), the
mean µµµw and covariance ΣΣΣw can be computed from the
samples wwwi:

µµµwww =
1
D

D

∑
i=1

wwwi, ΣΣΣwww =
1
D

D

∑
i=1

(wwwi −µµµwww)(wwwi −µµµwww)
⊤, (3)

where D is the number of demonstrations. Each ProMP models
the behavior of an individual body part of the robot and is
learned in the object frame. This means that the movements
are represented and learned relative to the object or task
being performed, rather than being tied to a specific robot
or coordinate system. This decoupling of the movement from
the robot’s frame of reference allows for greater flexibility in
executing the learned movements in different environments.

C. Recognizing the Motion Primitive

Given the current context (detected object), we determine
to which ProMP the present teleoperated motion belongs by
minimizing the distance between the initial nobs observations
(typically corresponding to a fourth or a third of the duration
of a given motion) and the ProMP’s mean:

k̂ = arg min
k∈[1:K]

[
∑

t∈Tobs

∥yyy(t)−Φt µµµwwwk
∥
]
, (4)

where K is the number of tasks in the dataset associated to
the detected object (Section II-E) and Tobs = {t1, ..., tnobs} is
the set of timesteps associated to the nobs early observations.
While computing k̂, the ProMP is modulated to have a
duration equal to the mean duration of the demonstrations.
The recognition (4) starts whenever a motion is detected, i.e.
the derivative of the observed end-effector trajectories exceeds
a given threshold, after the user activates the assistance mode
(Section III). This ensures that motion data is not processed
as observations used for conditioning in instances where the
user remains inactive.

D. ProMPs Conditioning

Once the right ProMP has been identified, we update their
posterior distribution to take into account the initial observa-
tions from the user input. Conditioning is beneficial for tailor-
ing the motion to accommodate the user’s preferred method
of task execution. If this step is omitted, the system would
default to executing the average value of the learned data,
which may not align with the user’s intentions. Each ProMP
has to be conditioned to reach a certain observed state yyy∗t . The
conditioning for a given observation xxx∗t = {yyy∗t ,ΣΣΣ

∗
y} (with ΣΣΣ

∗
y

being the noise in the desired observation) is performed by
applying Bayes’ theorem:

p(wwwk̂|xxx
∗
t ) ∝ N (yyy∗t |ΦΦΦtwwwk̂,ΣΣΣ

∗
y)p(wwwk̂). (5)

The conditional distribution of p(wwwk̂|xxx
∗
t ) is Gaussian with

mean and variance

µ̂µµwwwk̂
= µµµwwwk̂

+LLL
(
yyy∗t −ΦΦΦ

⊤
t µµµwwwk̂

)
, (6)

Σ̂ΣΣwwwk̂
= ΣΣΣwwwk̂

−LLLΦΦΦ
⊤
t ΣΣΣwwwk̂

, (7)

where
LLL = ΣΣΣwwwk̂

ΦΦΦt
(
ΣΣΣ
∗
y +ΦΦΦ

⊤
t ΣΣΣwwwk̂

ΦΦΦt
)−1

. (8)

and wwwk̂,ΣΣΣk̂ are the weight and covariance of the identified k̂
ProMP. In situations where the motion capture system is highly
accurate, we can consider ΣΣΣ

∗
y to approach zero, signifying that

there is very little uncertainty in the observed data.
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E. Object Detection and Pose Estimation

In order to accurately perceive and interact with objects, the
estimation of their pose is crucial. For object pose estimation,
we utilized ArUco markers. This method serves as a tempo-
rary solution while the integration of state-of-the-art object
detection algorithms in our framework is ongoing. The user
interface (UI) displays the estimated pose as an overlaying
virtual object, generated from CAD data.

In certain situations, manual override of object pose estima-
tion may be necessary. We achieve this by utilizing the virtual
objects in the interface (Section III). The user can interact with
these virtual objects and manually adjust their pose to match
the real-world objects based on the point cloud from the depth
camera and LIDAR on the robot.

F. Affordance Templates (ATs)

An AT [5] is an adjustable pairing of 3D object geometries
and sequence of robot actions represented in object-centric
coordinates. At run-time, virtual object frames are registered
by the user, defining waypoint frames that are converted into
robot specific end-effector frames. To facilitate the creation
and management of ATs, we have developed our user interface
that allows for easy editing, saving, and loading.

G. Blending ProMPs to ATs

The generation of training trajectories for ProMPs does not
require high precision. The object pose information ensures
accuracy because ProMPs are updated to reach the detected
object pose. However, the object’s centroid may not align with
the desired grasping point encoded in the AT. Hence, transi-
tioning to the AT needs to occur before the ProMP motion is
completed. To achieve a smooth transition, a policy blending
mechanism adjusts the ProMP-generated motion yyyProMP by
incorporating the first sample from the AT-generated trajectory
yyy0

AT . This process determines the refined reference for the
movement using the following blending equation:

yyy′ = (1−α)yyyProMP +αyyy0
AT . (9)

Here, α represents the blending coefficient, which is defined
by the function:

α(x) =
1

1+a e−b(x−c)
, α ∈ [0,1] (10)

The value of x is given by x = i
Nb

, where i ranges from 0 to
Nb, and Nb is the number of blending samples. The values of
a,b, and c ∈R are chosen to ensure that α(0) = 0, α(1) = 1,
and 0.8 < α(0.7)< 0.9. This allows for an early transition to
the affordance, discarding any imprecision present in the final
part of the recorded training trajectories.

H. Robot Controller

The robot uses a momentum-based whole-body controller
that is framed as a quadratic program (QP) [18]. The con-
troller’s primary task is to track a desired rate of change
of momentum, but it can simultaneously track a set of ex-
ternal motion objectives for the robot’s pelvis height, chest
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Fig. 3. Operator’s view in mixed reality while remotely controlling the robot
using the proposed teleoperation assistance. The virtual panel provides real-
time guidance, presenting the user with essential instructions for each step
of the operation. Pre-activation. An object has been detected (highlighted
in blue and with an orange arrow) for which the autonomy is available, and
the user can activate the teleoperation assistance. Generation. The user can
start doing the task and provide initial input to the autonomy that will adapt
accordingly. Validation. The user can preview the proposed motion via a
ghost robot and spline trajectories, validate it or reject it. Execution. The
user can execute the proposed motion via joystick control.

orientation and arm configurations. By solving the QP, the
controller produces a joint acceleration vector and contact
wrenches. These values are then used to calculate the desired
actuator torques through inverse dynamics. In the context of
humanoid teleoperation [1], references for the tracked body
segments are determined using an Inverse Kinematics (IK)
QP. This IK QP ensures the feasibility and safety of the
specified references [19]. The output of the Inverse Kinematics
QP is then supplied to the momentum-based whole-body con-
troller, further enhancing the overall performance and balance
of the robot’s movements during teleoperation and assistive
autonomy scenarios. For a more in-depth understanding of the
whole-body controller, additional detailed information can be
found in [18].

III. MIXED REALITY INTERFACE

Throughout our work, we have formulated a set of robust
principles that inform the design of human-robot operator
interfaces. These principles have a central focus on three es-
sential elements: observability, predictability, and directability
[6]. Essentially, the user should be able to observe the robot’s
current state and behaviors, predict its actions in response to
instructions, and direct the robot’s next actions.

Our current interface includes a camera view to display the
robot’s perspective, alongside a created “digital twin” world
view. This world view integrates all perception inputs from
a depth camera and LIDAR, as well as a third-person view
of the robot generated from proprioception sensors and state
estimation. This interface provides the user with the option
to operate the robot using a mouse and keyboard or via a
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Phase Operator (Performer) Robot (Supporting Team Member)
Pre-activation

Remote scene understanding
Context (object) recognition
Display real scene and detected virtual object pose

Activate the AA
Generation

Start doing the task 
Ask for user input
Current task detection

Keep doing initial portion of the task
User input processing
AA update based on initial input

Validation Visualize the AA motion Display preview via virtual gray ghost and spline trajectories
Accept or reject the AA plan Reset AA (if rejected)

Execution Display the progress barProceed with the planned trajectory 
via joystick control Execute task
Observe deviations and stop proceeding if needed Display tracking accuracy via virtual yellow ghost

Disengage the AA once completed task

Legend:

I can do it all My assistance could improve efficiency
I can do it all but my reliability is < 100% My assistance could improve reliability
I can contribute but need assistance My assistance is required
I cannot do it I cannot provide assistance
Not applicable / Not significant Not applicable / Not significant

AA: Assistive Autonomy
O: observability
P: predictability
D: directability

AA information panel pop-up
O

P

D

Operator (Performer) Robot (Supporting Team Member)

O

O

D

D

D

Fig. 4. Interdependence analysis of a teleoperated task using the assistive autonomy.

VR headset and controllers. The latter mode, which we call
kinematics streaming, allows the operator to directly control
the robot’s hands (and other parts via VR trackers) and use the
VR controller triggers to open and close the grippers. During
kinematics streaming, a yellow virtual ghost robot appears,
overlaying the robot visualizer model (Fig. 3). This ghost robot
serves as a reference, representing the solution found by our
IK algorithm based on the current VR input.

Fig. 4 depicts the interdependence analysis [6] highlighting
the relationships between the user and the robot during a
teleoperation task facilitated by the assistive autonomy and
showing how Coactive Design principles govern their interac-
tion. While the user is directly controlling the robot and when-
ever an object is detected for which the assistive autonomy
is available, a virtual object representing the detected object
appears in the UI at the estimated location. An information
panel also appears on top of the right VR controller (Fig.
3). This panel informs the user that the assistive autonomy is
available and can be activated by pressing a dedicated button
on the left controller.

Once activated, the panel prompts the user to move and start
performing the task (Fig. 3). This allows the robot to analyze
the user’s initial inputs and determine trajectories for each
controlled body part accordingly. At this stage, the robot can
either be directly controlled by the user or remain in an idle
state. The assistive autonomy processes the motion, identifies
the task, and adapts to the user’s preferred way of performing
it. Following this initial processing, the system presents a
preview of the computed motion to the user. Predictability
over the robot actions is provided through a visualization
of the robot’s motion with a gray ghost preview and spline
trajectories (Fig. 3). At this point, the user has the option
to either accept or reject the suggested motion by pressing
a dedicated button on the VR controller. The preview of the
planned trajectory determined by the assistive autonomy can
be disabled if the user wants to speed up operation.

Upon validation, the user gains control over the robot and
can direct the movements along the computed trajectories by
tilting the joystick of a controller forward. This enables the
user to control the robot’s actions frame by frame. In fact,
the motion can be paused by stopping the tilting motion
at any time. To provide extra safety, a yellow ghost robot
model is displayed as feedback on how well the robot is
following the reference trajectories. If the operator observes
significant deviations between the yellow ghost and the actual

Fig. 5. ProMP-based reference trajectories for reaching the door handle.
Left column: learned ProMPs (light thick lines with transparent regions)
alongside the corresponding 20 demonstrations (dark thin lines), expressed in
the door handle frame. These demonstrations include reaching motions from
different approach locations. Right column: updated ProMPs (dark lines) after
observing the user input (lighter short lines followed by a vertical gray bar).

robot’s movement, they can pause the motion, exit the assistive
autonomy mode, or provide a different initial input. Thus,
safety is guaranteed by the joystick control (directability) and
the visualization of the yellow ghost (observability).

The information panel was designed with key usability
heuristics in mind, such as visibility of system status, matching
the system with the real world, and recognition over recall
[20], [21]. The assistive autonomy mode state is indicated by
the color of a small robot icon (green for engaged, white
for disengaged), and a horizontal progress bar shows the
completion percentage of the task, helping the user observe
robot’s status (Fig. 3). As the operator tilts the joystick
forward, the blue bar expands, and when it reaches the edge,
the task is complete, and the robot icon turns white. The
panel utilizes representations of real-world VR controller icons
for more intuitive control. Additionally, it guides the operator
through the steps required to direct the assistive autonomy
by highlighting the corresponding buttons or actions in green
(Fig. 3).



6 IEEE ROBOTICS AND AUTOMATION LETTERS. ARXIV VERSION. ACCEPTED DECEMBER, 2023

Fig. 6. ProMP-AT blending policy during teleoperation. The reference
trajectories for the robot during the teleoperation process are illustrated. In
the first part, the trajectories are the user’s input with the robot following
their motions. After the user has provided some input, they can stop. The
ProMP trajectory is updated according the initial user input, allowing the
robot to execute the updated motion. When the ProMP motion reaches its
end, a blending mechanism smoothly transitions between the ProMP and the
AT trajectories. Finally, the AT motion is executed.

IV. TELEOPERATION ASSISTANCE IN ACTION

A. Experiments

We conducted experiments with Nadia1, our advanced hu-
manoid robot, provided with 31 degrees of freedom and
partially powered by hydraulics. Users were equipped with a
Valve Index VR headset and controllers to operate the robot.
To evaluate the effectiveness of our approach, we conducted
a door opening task. The training phase consists in having a
single expert user perform a given task several times and in
different ways. Hence for the door opening task, we collected
data by attempting to reach the door handle from various
angles and positions, using the VR controllers to control the
robot’s hand poses. This resulted in a diverse set of training
data, which allows the system to learn and adapt to differ-
ent scenarios that may be encountered during teleoperation,
including variations in environmental conditions.

The training data is recorded in the door handle frame,
which provides additional flexibility and adaptability to the
detected pose of the door handle. This adaptive approach
ensures that the robot can successfully complete the door
opening task while compensating for variations in the envi-
ronment and any inaccuracies in the user’s input, especially
when approaching the real object due to poor situational
awareness. As shown in Fig. 5, the updated ProMPs also
align with the initial user’s intention. This enables the user
to effectively direct the robot’s motion as they desire, while
maintaining fidelity to the demonstrations. When approaching
the object, a blending policy gradually shifts the input from the
ProMP-calculated trajectory to the AT, as illustrated in Fig. 6.
This blending mechanism ensures smooth transitions between
the autonomous motion generated by the ProMP and the
controlled manipulation governed by the AT. By seamlessly

1https://boardwalkrobotics.com/Nadia.html

integrating these two components, the robot can effectively
and accurately interact with the object, reducing the risk of
errors or unintended consequences during physical interaction.

To further emphasize the adaptability to the user intention of
our system, we extended our evaluation to include a punching
task. The unique aspect of this task lies in its multifaceted
execution: a single action, such as a punch, can be manifested
in diverse techniques, each so distinct that they’re individually
labeled, like hook punches, uppercuts, and jabs. Instead of
devising separate ProMPs for each distinct punching technique
and target, we opted for a more integrated strategy. A singular
ProMP was developed to cover all techniques, adapting to
different targets within the task. This approach aligns with the
concept of having a limited number of movement primitives
associated with each context.

By employing this unified ProMP for the punching task, we
aimed to assess the system’s ability to generalize and adapt its
punching actions to the different ways the user wants to per-
form the motion2. Differently from the door opening task, the
punching motion required the coordination of multiple body
parts, necessitating additional ProMPs for the forearm orien-
tations, and chest orientation. In this case the user was also
equipped with three Vive trackers 3.0 that tracked the forearms
and chest motion. Fig. 7 shows the ProMPs adaptation during
a left punching motion. The left column displays the learned
ProMPs alongside the corresponding demonstrations, while the
remaining columns show the updated ProMPs after observing
a portion of the test trajectories. The updated ProMPs align
with the user’s intended punching motion, allowing the robot
to punch different targets with the user’s chosen punching
technique.

Table I reports the mean Root Mean Square (RMS) com-
parison – with associated standard deviation (SD) – between
the trajectories generated by the user with those generated
by the assistive autonomy after using a portion (about a
third) of the same user directed trajectories as observation.
The mean is calculated based on 10 test trajectories for the
punching motion3. The RMS errors across different motion
components indicate a remarkably small deviation between
the trajectories generated by the assistive autonomy system
and the user-directed robot motion (2.35cm with a standard
deviation of 0.87cm for position and no more than 0.05rad
with a standard deviation of 0.02rad for orientation). The
similarity between the adapted trajectories and the user’s
intended motion demonstrates the system’s ability to perform
the task as intended by the user. Videos and data of the
experiments are available online4.

B. Feasibility Studies
The IHMC Robotics Team conducted feasibility studies to

test whether the humanoid robot can achieve the door opening

2Note that the punching task does not incorporate an AT; hence no blending
is involved.

3The RMS error for a single test is calculated by evaluating the errors
between each sample of the two compared trajectories. Next, the overall RMS
in position or orientation is computed, followed by calculating the mean and
SD over all the tests.

4Dataset: https://doi.org/10.5281/zenodo.8215964, video: https://youtu.be/
oN-FD6YnF2c

https://boardwalkrobotics.com/Nadia.html
https://doi.org/10.5281/zenodo.8215964
https://youtu.be/oN-FD6YnF2c
https://youtu.be/oN-FD6YnF2c
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Fig. 7. ProMP adaptation during punching motion. The ProMPs for the most relevant body parts involved in a left punching motion are shown. Left column:
learned ProMPs (light thick lines with transparent regions) alongside the corresponding 27 demonstrations (dark thin lines), expressed in the target frame.
These demonstrations include 9 jabs, 9 hook punches, and 9 uppercuts. Remaining columns: updated ProMPs (dark thick lines) after observing a portion of
the test trajectories (portion of the lighter thinner lines up to the vertical gray bar). We compare these updated ProMPs with the previously learned ProMPs.
From left to right, the test trajectory represents a jab, a hook punch, and an uppercut, respectively.

TABLE I
ASSISTIVE AUTONOMY MOTION VS USER DIRECTED ROBOT MOTION FOR

THE LEFT PUNCHING TASK.

RMS error adapted ProMP vs test
left hand position [cm] 2.35 (0.87)

left hand orientation [rad] 0.03 (0.01)
left forearm orientation [rad] 0.05 (0.02)

chest orientation [rad] 0.04 (0.01)

TABLE II
RESULTS FROM FEASIBILITY STUDIES

Completion Rate Time on Task Failed Attempts
Experts [%] [s] #

DC 75.0 (16.7) 81.1 (7.1) 1.9 (0.5)
DC-AA 100 (0.0) 40.2 (11.7) 0.0 (0.0)
Novices

DC 58.3 (31.9) 86.6 (22.6) 2.0 (0.7)
DC-AA 100 (0.0) 43.3 (15.8) 0.0 (0.0)
DC: Direct Control, AA: Assistive Autonomy

task via teleoperation5. A total of eight members of IHMC
participated in the feasibility studies. The group of participants
included four expert users who were well acquainted with the
system and its operation, and four individuals who were not

5The feasibility studies were classified as Non-Human-Subject Research
(NHSR) and were conducted under approval from IHMC’s IRB. No human
research participants were involved or evaluated.

familiar with the system and that have declared not having
used VR nor directly teleoperated a robot before. Each user
was tasked with performing the door opening activity using
two different methods: (i) direct control, and (ii) direct control
with assistive autonomy. For each method, the users had to
repeat the teleoperated task three times.

During each repetition, the robot’s initial position and
approach angle were varied relative to the door. Specifically,
one trial was conducted with the robot positioned on the left
side of the door, another at the center, and the third one on
the right side of the door6. As a result, each user performed
a total of six door opening trials - three for each of the
robot positions, using each of the teleoperation methods. The
following measures were collected: task completion rate, time
on task, and the number of failed attempts. A trial time limit of
120 seconds was set, based on observations made during the
development phase, and multiple door opening attempts were
allowed within the time limit. Within the trial, we recorded the
number of failed attempts as the number of times the robot
was unable to successfully grasp the door handle, unlock the
door after turning the handle, or both. Table II presents the
summarized results of the feasibility studies, displaying the
mean values with their corresponding SD.

6https://youtu.be/KeQwt9a9wV8

https://youtu.be/KeQwt9a9wV8
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V. LIMITATIONS AND FUTURE WORK

The system does not dynamically adjust to the user’s pace
in real-time. It is capable of registering the user’s movement
and can estimate or be pre-set to a custom speed. Nonetheless,
it fails to respond to variations in the user’s speed during live
input, as showcased in the supplementary online video7. This
issue is particularly significant in the context of human-robot
interactions and can be resolved by utilizing Interaction Prim-
itives [22], which are an extension of ProMPs that facilitates
real-time speed adaptation.

Another drawback of the current approach is that attempting
to adapt the model based on observations that deviate signifi-
cantly from the trained standard deviation can lead to improper
conditioning of the model, resulting in undesirable behaviors6.
During the door-opening task within our feasibility study,
such issues did not arise, as the demonstrations encompassed
a wide range of possible methods and angles of approach.
Nevertheless, in scenarios such as punching tasks, users might
execute the action in unforeseen and alternative manners. To
mitigate this in future developments, we plan to introduce a
validation step for such trajectories, which will identify and
rectify outliers by mapping them to the nearest point within
the confines of the learned model.

In our future work, we also plan to conduct extensive user
studies to thoroughly analyze the benefits of our approach in
terms of user workload and situational awareness. This will
provide valuable insights into how effectively the system meets
user needs and expectations.

VI. CONCLUSIONS

Our work addresses the inefficiencies observed in humanoid
robot teleoperation by introducing autonomous assistance
features. We have identified challenges in traditional direct
control methods and proposed a shared-control framework that
combines user input as high-level guidance for the robot’s
autonomous capabilities. By leveraging ProMPs and ATs we
facilitate robot operation. Further enriched by mixed reality
technology, we provide users with an immersive platform
that integrates the assistive autonomy. This unique framework
equips users with interface elements designed for effective
supervision, prediction, and management of the robot’s assis-
tance.
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