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Implicit Learning of Scene Geometry from Poses for Global
Localization
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Fig. 1: Illustration of our visual localization proposal on samples from Cambridge Landmarks (Hospital scene). Our method
requires a set of images and the corresponding poses as the only labels for training. Left side: Given a single image, our method
estimates the global pose of the camera in a given scene. Right side: we display the intermediate outputs of our proposal which
are used to estimate the pose. For an input image, the proposed pipeline estimates two point clouds and a set of weights. The
first point cloud represents the scene geometry (X, Y, Z coordinates) in camera coordinate frame, while the second point cloud
represents the scene geometry in global coordinate frame. These two point clouds, along with the predicted weights are used
to estimate the camera’s global pose. In the right side of Fig. 1, we visualize three sample input images, their corresponding
indirectly estimated 3D scene representations (point clouds) and the weights. At the top, in the right side of Fig. 1, we can see
only one 3D point cloud, which corresponds to three overlaid point clouds in the global coordinate frame, also estimated by
our algorithm for the considered sample images. Though our method implicitly estimates 3D point clouds of the scene in local
and global reference frames, it is not a mapping or 3D reconstruction algorithm, but a localization algorithm that implicitly
learns and uses 3D scene geometry.

Abstract—Global visual localization estimates the absolute pose
of a camera using a single image, in a previously mapped area.
Obtaining the pose from a single image enables many robotics
and augmented/virtual reality applications. Inspired by latest
advances in deep learning, many existing approaches directly
learn and regress 6 DoF pose from an input image. However,
these methods do not fully utilize the underlying scene geometry
for pose regression. The challenge in monocular relocalization
is the minimal availability of supervised training data, which
is just the corresponding 6 DoF poses of the images. In this
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08193 Bellaterra (Cerdanyola del Vallès), Spain.

Digital Object Identifier (DOI): see top of this page.

paper, we propose to utilize these minimal available labels (.i.e,
poses) to learn the underlying 3D geometry of the scene and use
the geometry to estimate the 6 DoF camera pose. We present a
learning method that uses these pose labels and rigid alignment
to learn two 3D geometric representations (X, Y, Z coordinates)
of the scene, one in camera coordinate frame and the other
in global coordinate frame. Given a single image, it estimates
these two 3D scene representations, which are then aligned to
estimate a pose that matches the pose label. This formulation
allows for the active inclusion of additional learning constraints
to minimize 3D alignment errors between the two 3D scene
representations, and 2D re-projection errors between the 3D
global scene representation and 2D image pixels, resulting in
improved localization accuracy. During inference, our model
estimates the 3D scene geometry in camera and global frames
and aligns them rigidly to obtain pose in real-time. We evaluate
our work on three common visual localization datasets, conduct
ablation studies, and show that our method exceeds state-of-the-
art regression methods’ pose accuracy on all datasets.

Index Terms—Localization, Localization and Mapping, Deep
Learning for Visual Perception, Visual Learning
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I. INTRODUCTION

GLOBAL camera re-localization has driven many com-
puter vision applications in augmented/virtual reality and

robotics. The problem definition, which is to obtain position
and orientation (in metric units) of a camera from a single
image in a previously mapped area, requires the availability
of ground-truth poses for training. With training data that
is composed of images and the corresponding poses, these
methods follow a common learning process that maps the
input image to 6 DoF directly in an end-to-end manner. This
learning process goes as follows: the input image is passed to
a network that encodes it into a latent vector. Through one or
more regression layers, the latent vector is then mapped into
a pose as two quantities, one for the translation and the other
for the rotation. A pose loss is deployed to update the weights
of the network during training. With a new input image at
localization time, the network utilizes its memory formed
by the learned weights to estimate the pose. Recent works
[1]–[16] build upon this scheme with different variations to
constrain the weights to obtain a better pose estimate. This
approach is attractive for several reasons. Firstly, it provides a
pose directly in a single regression step. Secondly, the mapping
from image to pose is fast; no classic feature matching is
required, making it suitable for real-time applications. Thirdly,
the whole pose estimation pipeline is saved in a compact form
as network weights.

However, one limitation of this formulation is that it treats
pose estimation as a regression problem and consequently, it
strips out the geometry of the scene from pose estimation.
This conditions the design of the deep network’s last layer
to be fully connected layers. This precludes incorporating
geometric constraints such as depth or 3D scene coordinates.
These can only be included in the loss terms in the training
phase. Otherwise, they are explicitly required during inference
(for example, 3D models from structure from motion).

In this work, we regard these limitations and propose a
novel approach for global camera re-localization. Similar to
other pose regression methods, our method is subject to the
constraint of using minimalistic training data: a set of images
with their intrinsics and the corresponding poses in a global
reference frame. However, our pipeline does not estimate a
pose by regression. Instead, it obtains geometric information
of the scene which can be used, in turn, to estimate the pose
geometrically; from pose labels only. The proposed pipeline
learns 3D geometric representations (X, Y, Z coordinates) of
the scene as seen by the image, given guidance from ground-
truth poses alone as shown in Fig. 1. It takes a single image and
obtains 3D point cloud of the scene in two coordinate systems:
camera frame and a global reference frame. To accomplish
this, we utilize rigid alignment as a means to adjust the
network weights in order to obtain two geometric maps. The
rigid alignment module aligns the two clouds to obtain a pose.
This pose is adjusted, through gradient descent while training,
so as to match the ground-truth pose, thus, implicitly adjusting
the two geometric representations (3D clouds) as well.

In our end-to-end pipeline, deep learning is used to learn
scene-specific geometric representations while we perform

pose estimation in a geometric manner by parameter-free
rigid alignment. During inference, it obtains a pose by rigidly
aligning the two predicted 3D geometric representations. In
contrast to pose regression, the proposed formulation allows
the explicit use of additional constraints during training. We
minimize re-projection errors in order to limit the deviation
of the 3D map representation in the global frame from the
corresponding 2D pixels. We complement that by constraining
the deviation of the two 3D clouds according to ground-truth
pose, which we refer to as consistency loss. This formulation
results in higher localization accuracy than state-of-the-art
regression methods. Additionally, we observe that our method
can improve both position and orientation localization when
finetuned with absolute position labels only. This is useful
in applications where initially only a small set of training
poses are available, but during operation, more data as partial
geometric labels (position information from GPS) is available.

In summary, our contributions are:
• We propose to utilize poses to train a network to learn

geometric representations of a given scene implicitly.
These are 3D coordinates in camera and a scene/global
reference frame. For this goal, we utilize parameter-free
and differentiable rigid alignment supervised by pose loss
to guide the learning of scene geometry.

• We also propose to employ additional loss terms, specifi-
cally, re-projection loss to constrain the learning of the 3D
scene coordinates and introduce a consistency loss term
that harmonizes the implicit geometric representations,
according to the pose.

• Apart from extensive evaluation on public datasets, we
conduct ablation studies to evaluate the influence of the
three different losses on our method’s performance. The
ablation studies show that our method can be finetuned
using partial pose labels, i.e., with position information
alone and still offers fairly good performance by improv-
ing both position and orientation accuracy.

II. RELATED WORK

The problem at hand is monocular global re-localization,
which is to obtain metric poses (in meters and degrees) in a
previously mapped area. Existing works utilize different sets
of labels for training a localization pipeline. While some works
utilize 3D geometric information such as 3D scene coordinates
and depth, others utilize only pose labels. Similar to pose
regression methods, our proposed method learns from pose
labels only).

Initial works [1]–[16] followed the regression approach and
implemented different network architectures, learning strate-
gies, and constraints on the learning process to reduce localiza-
tion errors. In the following, we briefly review these methods
and point out the coincidences and differences with respect
to ours. PoseNetLSTM [4] utilizes LSTMs to reduce the
dimensionality of the latent vector (that encodes the image) as
a way to mitigate overfitting and obtain a more accurate pose
estimate. PoseNetLearned [2] improves localization accuracy
of their initial work PoseNet [1] by addressing the issue of loss
imbalance between the orientation and translation losses by
learning weighting factors for these terms using homoscedatic
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Fig. 2: A diagram of the proposed training method. Given images and the corresponding global pose labels, the network learns
to indirectly (i.e., without explicit labels) estimate two 3D point clouds (one in global and the other in camera coordinate
systems) and a set of weights. For the 3D coordinates in the camera coordinate system, the network predicts the depth, which
is then back-projected to 3D space using Equation. (6). A rigid alignment module aligns the two point clouds according to the
weights to estimate pose. The loss terms employed for training are visualized in red.

uncertainty. PoseNetGeo [2] further improves the accuracy
for some scenes by utilizing explicit 3D coordinate labels
through re-projection loss in addition to pose loss. Though
explicit 3D coordinate labels are used, the re-projection loss
plays a limited role as it is used to constrain the image latent
representation for regression instead of learning 3D scene
geometry for pose estimation. Our proposal does not use 3D
coordinate labels for training but still learns 3D geometry
and uses it for pose estimation. Hourglass PN [6] replaces
the initial architecture of PoseNet [1] by a Resnet34 [17]
and complements it with up-convolutions to preserve the fine-
grained information of the input image forming an Hourglass-
like architecture. BranchNet [7] also adapts the architecture
of PoseNet [1] to account for the complex coupling between
position and orientation. The split in network branches for
position and orientation is performed at an earlier stage of
the series of convolutions. Other works [8], [10]–[12] utilize
sequences of images to gain additional source of training
signal by imposing relative pose constraints that are obtained
between consecutive camera frames.

AtLoc [9] proposes a method based on attention to guide
the network to output latent image representation that encodes
robust objects and features for pose regression. It further
utilizes a sequence of images to learn temporally consistent
and informative features. CoordiNet [16] embeds pixel coor-
dinates into the convolution operation to encode geometric
feature locations into pose regression. It appends two addi-
tional channels that contain 2D pixel locations, to the input
tensor before applying the convolution. MsTransformer [15]
proposes a transformer-based approach for localization. It uti-
lizes image latent representations that are obtained from CNN,
for processing by separate Transformers to regress position
and orientation. Transformer encoders are used to aggregate
activation maps with self-attention and decoders convert latent
features and scene encoding into pose predictions. With the
advances in graph neural networks (GNN), PoGo-Net [13] and
GNNPose [14] formulates the pose regression based on GNNs,

naturally propagating information between different views for
the benefit of pose regression.

Similar to previous regression works, we train from the
available image-pose labels for the given datasets. In contrast,
we propose using deep learning to implicitly learn represen-
tations of the 3D geometry of the scene instead of directly
learning the pose regression. Accordingly, we solve for the
pose by a single-step closed form solution through the rigid
alignment of 3D scene representations. There are other works
that use additional sensing modality such as LiDAR or labeled
depth data or structure from motion results for training and/or
inference [18]–[21]. However, in this work, we solely focus
on training with posed images only.

III. METHOD

A. Overview
Figure 2 shows an overview of the proposed method. We

propose to use the global camera pose T of a given input
image I as a label to guide the training of a deep neural
network to obtain representations of the scene.

For that purpose, we define our localization pipeline to take
a given image as input and yield two sets of 3D points, each
in a different coordinate system. The first one is a set of 3D
coordinates G = {ĝi, ..., ĝM} in the global reference frame
of the scene. These are predicted directly by the network. The
second one is a set of 3D coordinates C = {ĉi, ..., ĉM} in
the camera frame. For the latter, the network predicts depth,
which is then back-projected using intrinsics parameters to get
3D coordinates in camera frame. Inherently, the two 3D points
clouds are matched via the image pixel coordinates.

Using rigid alignment, a pose T̂ can be estimated by
aligning the two point clouds. We utilize Kabsch algorithm
[22] for this goal. It is differentiable, parameter-free, and
obtains a closed-form solution in a single step. This makes
the pipeline end-to-end trainable.

To account for imperfections in predictions, the network
predicts a set of weights W = {wi, ..., wM}, which evaluates
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how much each 3D correspondence between point clouds
from camera and global coordinate frame contributes to the
rigid alignment. Given such correspondences, the weighted
Kabsch algorithm [22] is then applied to estimate the relative
pose from camera coordinate system to the global coordinate
system. Given M 3D coordinates, this weighted minimization
goal is defined as:

argmin
R̂,t̂

M∑
i

wi||ĝi − R̂ĉi − t̂||2, (1)

which can be described as follows: the translation t̂ of the
pose is removed by centering both point clouds:

µg =

∑
i wiĝi∑
i wi

, Ḡ = G− µg

µc =

∑
i wiĉi∑
i wi

, C̄ = C− µc.

Rotation R̂ and translation t̂ are then recovered with SVD
as follows:

USVT = svd(C̄TW Ḡ)

s = det(VUT )

R̂ = V

1 0 0
0 1 0
0 0 s

UT

t̂ = −R̂µc + µg.
We apply a pose loss to guide the rigid alignment so that

the network learns the 3D geometric representations. Given
a ground-truth pose T with rotation R and translation t
components, a cost function can be defined to minimize the
difference between the estimated and ground-truth compo-
nents. We define the loss as the summation of position loss
and the rotation loss:

Lpose = Lposition + Lrotation, (2)
where

Lposition =∥ t− t̂ ∥2, (3)
defines the position error between the computed translation t̂
and the actual translation t and

Lrotation = cos−1(
1

2
(trace(R̂R−1)− 1)) (4)

measures the angular error between computed rotation R̂ and
the ground-truth rotation R.

The predicted pose is adjusted by gradient descent that is
guided, during training, by the pose loss Equation. (2), to
match the ground-truth pose. This process indirectly adjusts
the two geometric representations by passing gradients through
the differentiable rigid alignment. The proposed formulation
allows for the inclusion of additional constraints that ac-
tively guide the optimization of the implicit 3D geometric
representations from the poses. Consequently, we introduce
a consistency loss to constrain the geometric predictions to be
aligned according to the ground-truth pose. We first transform
the 3D points C from camera coordinate frame to global
coordinate frame using the ground-truth pose. The consistency
loss measures the error between the 3D points G in global
coordinate frame and the 3D points C transformed from
camera coordinate frame, using the ground-truth poses. We
define the consistency loss as:

Lconsistency =
1

M

M∑
i

∥ ĝi −Tĉi ∥2, (5)

Rather than predicting the 3D coordinates directly, we can
adjust the network to predict one quantity which is depth.
Given depth, which forms the Z coordinate in the camera
perspective, the X and Y are obtained directly from the
image pixels and depth, given camera intrinsics parameters.
Accordingly, the 3D points C in camera coordinate frame are
obtained by back-projecting the depth according to:

ĉi = d̂iK
−1ui, (6)

where ui, K, d̂i, and ĉi denote the homogeneous pixel
coordinates, the camera intrinsic matrix, the depth, and the
corresponding point in the camera frame, respectively.

In addition, the 3D global coordinates are further con-
strained by utilizing a re-projection loss to minimize the error
between the re-projection of the 3D global coordinates into
the image frame and the 2D image pixels. It is defined as:

Lreprojection =
1

M

M∑
i

∥ ui − π(Tĝi) ∥2, (7)

where π projects points from the 3D global frame into the
image frame.

With pose labels and the defined formulation, our method
implicitly learns geometric representations of the scene. Given
an image at inference, the proposed method estimates the
scene’s geometry and utilizes it for pose computation.

The overall loss is then the weighted combination of the
pose loss, the re-projection loss, and the consistency loss:

Ltotal = λpLpose + λcLconsistency + λrlreprojection, (8)
where λp, λc, and λr are the losses weighting factors.

IV. RESULTS

A. Datasets
We conduct our experiments on three common visual local-

ization datasets. These are the outdoor Cambridge Landmarks
[1], the indoor 7Scenes [23], and the indoor 12scenes [24]
datasets. They exhibit different characteristics:

Cambridge landmarks is an outdoor re-localization dataset
that covers different landmarks of several hundred or thousand
square meters in Cambridge, UK. The provided reference
poses are reconstructed from structure from motion. The
challenges in this dataset arise from variety of illumination
changes due to weather and dynamic objects such as cars and
pedestrians. In addition, the training set size is relatively small
(few hundred of images).

7Scenes contains 7 scenes that depict difficult scenarios,
such as motion blur, reflective surfaces, repeating structures,
and texture-less surfaces. Several thousand frames with cor-
responding ground-truth poses are provided for each scene’s
train and test splits.

12Scenes consists of 12 sequences with challenges similar
to 7Scenes dataset. However, compared to 7scenes, it covers
larger indoor environments with smaller number of training
images, about several hundred frames for each scene.
B. Setup

We resize the input images to a standard 480 px height
and normalize them by mean and standard deviation. During
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TABLE I: Comparison against state-of-the-art localization methods on Cambridge Landmarks [1] and 7Scenes [23] datasets.
First and second best results are marked in bold and underline respectively. ’ ’ denotes unavailable results.

Cambridge 7Scenes
Method Backbone College Hospital Shop Church Average Chess Fire Heads Office Pumpkin Kitchen Stairs Average
PoseNetGeo [2] GoogLeNet 0.88/1.04 3.20/3.29 0.88/3.78 1.57/3.32 1.63/2.86 0.13/4.48 0.27/11.3 0.17/13.0 0.19/5.55 0.26/4.75 0.23/5.35 0.35/12.4 0.23/8.12
PoseNetLSTM [4] GoogLeNet 0.99/3.65 1.51/4.29 1.18/7.44 1.52/6.68 1.30/5.51 0.24/5.77 0.34/11.9 0.21/13.7 0.30/8.08 0.33/7.00 0.37/8.83 0.40/13.7 0.31/9.85
GPoseNet [3] GoogLeNet 1.61/2.29 2.62/3.89 1.14/5.73 2.93/6.46 2.08/4.59 0.20/7.11 0.38/12.3 0.21/13.8 0.28/8.83 0.37/6.94 0.35/8.15 0.37/12.5 0.31/9.95
BranchNet [7] GoogLeNet - 0.18/5.17 0.34/8.99 0.20/14.2 0.30/7.05 0.27/5.10 0.33/7.40 0.38/10.3 0.29/8.32
SVS-Pose [5] VGGNet 1.06/2.81 1.50/4.03 0.63/5.73 2.11/8.11 1.32/5.17 -
Hourglass PN [6] ResNet34 - 0.15/6.17 0.27/10.8 0.19/11.6 0.21/8.48 0.25/7.01 0.27/10.2 0.29/12.5 0.23/9.54
MapNet [8] ResNet34 0.94/1.99 2.03/3.60 0.80/6.34 1.66/4.01 1.36/3.99 0.08/3.25 0.27/11.7 0.18/13.3 0.17/5.15 0.22/4.02 0.23/4.93 0.30/12.1 0.21/7.78
AtLoc [9] ResNet34 - 0.10/4.07 0.25/11.4 0.16/11.8 0.17/5.34 0.21/4.37 0.23/5.42 0.26/10.5 0.20/7.56
CoordiNet [16] ResNet34 0.80/1.22 1.43/2.86 0.73/4.69 1.32/4.10 1.07/3.22
CoordiNet [16] EffNet b3 0.70/0.92 0.97/2.08 0.69/3.74 1.32/3.56 0.92/2.58 0.14/6.7 0.27/11.6 0.13/13.6 0.21/8.6 0.25/7.2 0.26/7.5 0.28/12.9 0.22/9.72
PoGO-Net [13] Not Applicable -/0.94 -/1.69 -/2.40 -/2.12 -/1.78 -/1.72 -/6.23 -/7.34 -/3.93 -/3.56 -/3.85 -/7.88 -/4.93
MsTransformer [15] EfficientNetB0 0.83/1.47 1.81/2.39 0.86/3.07 1.62/3.99 1.28/2.73 0.11/6.38 0.23/11.5 0.13/13.0 0.18/8.14 0.17/8.42 0.16/8.92 0.29/10.3 0.18/9.51
GNNPose [14] ResNet34 0.59/0.65 1.88/2.78 0.50/2.87 1.90/3.29 1.22/2.40 0.08/2.82 0.26/8.94 0.17/11.41 0.18/5.08 0.15/2.77 0.25/4.48 0.23/8.78 0.19/6.32
Ours ResNet34 0.48/0.84 0.67/1.14 0.47/1.91 0.90/3.05 0.63/1.74 0.05/1.86 0.14/4.15 0.09/5.29 0.14/3.61 0.11/2.78 0.10/2.66 0.19/4.14 0.12/3.50

MobileNetV3 0.46/0.81 0.61/1.09 0.44/1.71 0.87/2.88 0.60/1.62 0.05/1.42 0.16/4.57 0.09/6.14 0.13/3.46 0.12/2.48 0.10/2.51 0.17/3.48 0.12/3.44

training, we apply, on the fly, color jittering and random in-
plane rotations in the range [-30°, 30°].

We adjust every backbone network that we use in our
experiments to obtain three outputs. The first is a 3 channels
output that corresponds to the X, Y, Z coordinates in the
global frame. The second is a one-channeled depth prediction.
Depth is obtained from a Sigmoid function and is then scaled
to a range of [0.1 10] for indoor scenes and [0.1 600] for
outdoor scenes. These hyperparameters are generalizable and
adjustable to specific scenes. The third is also of one channel,
followed by a Sigmoid, which stores the weights that weigh
the contribution of the correspondences to the rigid alignment.

For updating the network weights, we use Adam optimizer
with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and a weight decay of
5×10−4. We train the whole architecture from scratch for 400
epochs with learning rate 10−4. We set the weighting factors
λp, λc, and λr of Equation. (8) to 1, 1, and 0.001 respectively
to provide a balanced contribution to gradient updates. The low
factor for the reprojection error aims to stabilize the training.

Following previous methods, we report localization errors
as median translation (in meters) and median orientation
(in degrees) errors for all the experiments below. For some
experiments, we list as well the average localization errors
that is computed on all scenes of the corresponding datasets.
C. Results: comparison to previous methods

In this section, we compare our proposed method against
state-of-the-art. We consider the methods that utilize pose
labels to train a deep network for global localization from a
single image without including additional supervision signals
or more sensory data. To marginalize improvements that may
come out of using a recent backbone, we implement our
method using ResNet34 backbone [17], which is adopted by
previous methods. We report the median localization errors in
Table I. As listed, our method, with both backbones, obtains
the lowest localization errors on all of the scenes, except
for the rotation measurements on the college and church
scenes. Even though our method does not rely on labeled 3D
ground-truth coordinates, it surpasses PoseNetGeo [2], which
uses explicit 3D coordinates. PoseNetGeo [2] obtains pose by
regression which doesn’t directly incorporate these available
geometric information. In contrast, our method uses poses to
infer the geometry of the scene, which is directly embodied

for pose estimation by rigid alignment. AtLoc [9] implements
attention to utilize informative regions of a given image for
pose regression. On the contrary, our method obtains weight-
ing factors that are directly used to minimize contributions
from outliers, thus, improving localization accuracy. We show
the benefit of these weights in section IV-E. Previous methods
also implement other strategies such as graph-neural-networks
[13], [14], transformers [15] relative poses supervision [8],
and LSTMs [4] to better encode the image representation
for the task of pose estimation. However, their performances
are leveled by regression incapability to utilize geometric
quantities directly for localization. Our method uses pose
labels to guide the network to learn certain geometric features,
which, in return, are used to compute a pose. It lets the
network, through pose targets, to freely choose the suitable
geometric features that are best for localization. Besides using
ResNet34 [17] as a backbone, we implement our method using
MobileNetV3 [25] due to its efficiency. As shown in Tab. I,
employing MobileNetV3 [25] as the backbone, gives the best
results across datasets. In the rest experiments of following
sections, we adopt MobileNetV3 [25] as our backbone while
also providing a comparison with other backbones.

TABLE II: Ablation results of section IV-D on Cambridge
Landmarks [1], 7Scenes [23], and 12Scenes [24] datasets.

Lpose Lreproj Lconsist Cambridge 7Scenes 12Scenes
1 ✓ 0.72/3.91 0.138/3.88 0.067/2.48
2 ✓ ✓ 0.71/2.89 0.119/3.49 0.063/2.41
3 ✓ ✓ 0.67/1.75 0.118/3.49 0.066/2.34
4 ✓ ✓ ✓ 0.60/1.62 0.116/3.44 0.061/2.33
5 Input Resolution/4 0.59/1.62 0.115/3.13 0.060/2.31
6 Input Resolution/8 0.60/1.62 0.116/3.44 0.061/2.33
7 Input Resolution/16 0.68/1.77 0.134/4.15 0.068/2.65
8 Ours + 3D Coordinates 0.64/1.85 0.131/4.03 0.064/2.57
9 Ours + Depth 0.60/1.62 0.116/3.44 0.061/2.33

Backbone Run-time
10 HRNetV2 [26] 256 ms 0.64/2.01 0.131/3.78 0.068/2.61
11 ResNet34 [17] 45 ms 0.63/1.74 0.124/3.50 0.064/2.49
12 DenseNet121 [27] 90 ms 0.62/1.69 0.121/3.52 0.062/2.43
13 MobileNetV3 [25] 14 ms 0.60/1.62 0.116/3.44 0.061/2.33

D. Results: ablation study
Here, we delve into our proposal by examining the effect

of the employed three different losses, and the performance of
our method with different output resolutions and backbones.
We list the results in Tab. II.
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Losses: we evaluate the contribution of every loss in our
proposed method. Our method utilizes pose labels to guide
the network through a pose loss Equation. (2). In addition,
we apply consistency loss to align the two geometric repre-
sentations (local and global) according to the input pose, and
lastly a re-projection loss to align 3D global coordinates to 2D
image pixels. The Tab. II (rows 1 to 4) presents the averaged
results over all sequences on considered datasets, with different
combination of loss terms.

The results from Tab. II (rows 1 to 4) show that adding
the re-projection loss (row 2) or the consistency loss (row 3)
to the pose loss (row 1) results in lower errors than when
training the network with the pose loss only (row 1, rigid
alignment module). The consistency loss is more effective than
the re-projection loss in supporting the pose loss to reduce
localization errors on outdoor scenes. On indoor scenes, they
exhibit almost similar behavior. Combining all the losses (row
4) obtains the lowest errors on all datasets.

Resolutions: we evaluate the performance of our proposed
method with different output resolutions. In our experiments,
the resolution of the output geometric representations is 1/8
of the input resolution. Here, we change the output resolution
by changing the stride parameter. We report the results of two
additional down-sampling factors: 4 and 16 in Tab. II (rows 5
to 7). For a down-sampling factor of 16, we observe a slight
increase in localization errors compared to a down-sampling
factor of 8. On average, down-sampling by a factor of 4 results
in slight improvement in localization.

Depth versus 3D Camera coordinates: we can adjust
the network to either obtain 3D coordinates in the camera
frame directly or obtain the depth. For the latter, 3D camera
coordinates can be computed by Equation. (6). Rows 8 and 9
in Tab. II suggest that learning just the depth results in a better
localization performance. This constrains the 3D coordinates
predictions and eases the learning process, so that the network
learns one quantity rather than 3 quantities.

Backbones: while many backbones could be used to imple-
ment our method, we look into them from the perspective of
localization accuracy, run-time and compactness. The rows 10
to 13 in Tab. II show the results using different backbones
together with the run-time. Being the most compact, that
is, with the smallest number of parameters (3.7 million),
MobileNetV3 [25] obtains the best localization results with
the fastest run-time (for a down-sampling factor of 8).

TABLE III: Effect of different filtering methods (section IV-E).
Best results are marked in bold.

Method College Hospital Shop Church
Rigid + No Filtering 0.55/0.87 0.79/1.63 0.59/2.32 1.13/3.55
Rigid + Filter Dynamic 0.53/0.86 0.79/1.62 0.56/2.27 1.06/3.49
Rigid + Filter Dynamic + Others 0.52/0.93 0.76/1.51 0.50/2.19 1.01/3.46
PnP + RANSAC 0.49/1.04 0.58/1.64 0.41/2.72 1.45/4.72
Rigid + RNASAC 0.46/1.13 0.60/1.73 0.46/3.30 1.12/3.58
Rigid + Weights [ours] 0.46/0.81 0.61/1.09 0.44/1.71 0.87/2.88

E. Results: outliers filtering
Our method estimates weighting factors for each 3D-3D

correspondence. These account for imperfections in 3D coordi-
nates predictions and aim to down-weigh 3D correspondences

that lead to inferior localization results (i.e., outliers). We
conduct experiments to assess the impact of these weighting
factors. Since our method relies on a single image for local-
ization, we consider the following methods:

Rigid + No Filtering: we compute pose using rigid align-
ment without incorporating the obtained weights. That is, all
predicted 3D correspondences are of equal importance.

Rigid + Filter Dynamic: we utilize semantics to filter out
contributions from sources of outliers, mainly dynamic objects.
Specifically, we utilize the recently released InternImage [28]
to segment the input image into semantic classes. We filter out
3D points that correspond to pixels of dynamic classes. These
are pedestrians, cars, bicycles, and trucks.

Rigid + Filter Dynamic + Others: we complement the re-
moval of dynamic points by pruning 3D points that correspond
to semantic classes that are presumably inferior to localization
such as sky and trees.

Rigid + RANSAC: we utilize a robust outlier filter by
pairing the rigid alignment algorithm with a RANSAC scheme
[29]. We apply RANSAC with a maximum of 2000 iterations
and an inlier threshold of 10 cm between corresponding 3D
points. We use 10 correspondences for pose estimation.

PnP + RANSAC: our method uses poses to obtain 3D co-
ordinates in the global coordinate system of the scene. Besides
utilizing rigid-alignment, our method offers the flexibility to
adopt perspective-n-point (PnP) algorithm for pose estimation
using the 3D global coordinates and the corresponding 2D pix-
els. We compute pose using PnP [30] from 4 correspondences
using RANSAC [29]. We set 2000 as maximum number of
RANSAC iterations, with an inlier threshold of 10 pixels.

Rigid + Weights [ours]: we compute pose using weighted
rigid alignment where the weights are the ones obtained by
our method. These are obtained directly with a forward pass
of the network without further processing of the obtained 3D
correspondences or any off-the-shelf outlier filter.

Tab. III lists the results on Cambridge Landmarks [1].
Pruning off 3D points that correspond to dynamic objects
by semantic segmentation shows improvements in localiza-
tion compared to utilizing all the 3D points. In addition to
removing dynamic points, filtering out correspondences from
non-informative regions like sky and trees obtains additional
improvements. The hospital scene does not contain dynamic
objects which justifies the same result that is obtained without
filtering any 3D-3D correspondence. While semantics can be
used to filter complete dynamic objects, it might not filter
all sources of outliers. Besides, it is subject to segmentation
errors and may filter many useful features. Pairing a robust
outlier filter such as RANSAC [29] with both PnP [30]
and rigid alignment shows further improvements in estimated
translation. However, it leads to increased errors on the Church
scene and elevated orientation errors overall. We trace this
back to the reason that many 3D points may be inferior and
that few of them are subject to inlier checks. The Church scene
poses a difficult localization scenario where the camera moves
360° around the scene. To overcome this and improve further,
it would require increasing the number of considered points,
relaxing the inlier threshold and/or increasing the maximum
number of iterations. In summary, utilizing RANSAC [29] for
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filtering outliers requires adjusting hyperparameters for each
scene besides imposing a run-time burden.

In contrast to the mentioned methods, using the set of
weights that are obtained by our method delivers a consistent
reduction in position and orientation localization errors. These
weights form a prior about the useful 3D coordinates for
localization. It considers all correspondences for localization,
nevertheless, with different weights. We complement these
quantitative observations by showing visualizations of the
network outputs in Fig. 3. Inspecting the visualization, we
observe that the network guesses the architecture of the scene
from pose labels only. Furthermore, the heatmaps of the
weights show that it focuses on a small subset of features
mainly edges and corners, implying that the correct geometric
predictions lay on these features. It obtains an estimation of
the depth and 3D scene coordinates without supervised labels
for these quantities.

Input Image Weights Depth Scene Coordinates

Fig. 3: Visual samples of the predictions obtained by the
network on samples from 7Scenes. For visualizing the 3D
coordinates, we map the X, Y, Z coordinates to RGB values.

F. Results: finetuning with position labels only
In this section, we test our method with limited training

samples and also, explore the possibility of using only partial
labels (only position information and not orientation). This
partial position only labels can be easily available from GPS or
can be available on the fly, using another sensor. Testing with
limited data is challenging for deep learning-based methods
as they require more data for generalization. Accordingly, we
sample a third of the dataset for training by taking every third
training sample. The testing samples are kept in the original
size as provided by the dataset. After training, we finetune the
network for a few epochs (10-15) by feeding it with the other
two-thirds of the training samples. However, we assume that
these additional training samples have only partial geometric
labels (translation only instead of 6 DoF poses). Thus, we
apply only the translation loss for finetuning from Equa-
tion. (3). The consistency (Equation. (5)) and re-projection
(Equation. (7)) losses are excluded as they require full 6
DoF poses. In addition, we apply the same training scheme
(training with absolute position labels) on one of state-of-the-
art pose regression methods: MapNet [8]. The results are listed
in Table IV. As expected, the localization accuracy dropped
when training with fewer samples. MapNet [8] yields a larger
drop in accuracy than our method. Our method reports a little
reduction in accuracy on indoor scenes. Finetuning the model
given only position labels has reduced both the translation and
rotation errors on some of the scenes. In contrast, MapNet [8]

has significant increase in orientation errors when finetuned
with position labels. The reason behind the better performance
of our algorithm is driven by two correlated reasons. The
first is the separation between image representations and pose
estimation that is inherent to our algorithm, while the second
being, the computation of the pose using non-learned and
parameter-free rigid-alignment which updates both 3D point
clouds from position supervision. The rigid alignment module
passes gradients to all the network branches that predict the
geometric quantities. Finetuning using only positional labels
works well. While the accuracy did not reach that of training
on the complete dataset, the improvements for both location
and orientation given only translation labels open doors for
further research in this direction.
G. Results: run-time

In Table V, we report the run-time of our method for
different down-sampling factors (resolutions) on an input
with a standard resolution 480 × 640. We run our python
implementation on a machine equipped with GTX Titan X and
Intel Core i7-5960X CPU @ 3.00GHz. The results imply that
our method localizes in real run-time. We also report the run-
time of a minimal pose regression pipeline (PoseNet [1]) using
MobileNetV3 backbone [25]. Some state-of-the-art regression
methods further process the output of the network before pose
regression by applying attention [9], graph neural networks
[14] and transformers [15], demanding additional run-time.

V. CONCLUSION

We presented a novel method for global 6 DoF pose
estimation from a single RGB image. The proposed work
shares with most existing pose regression methods the same
constraints, which are: train from a set of image-pose pairs,
estimate a pose from a single image, save only the weights
of the network, and obtain a pose in real run-time. However,
our method obtains more accurate pose estimates as we have
shown on common public datasets. The reason stems from
the incorporation of scene geometry into pose estimation. The
difficulty in achieving that, nonetheless, lies in the utilization
of the only given labels (poses) to estimate this geometry and
the use of the geometry for real run-time pose estimation. The
main novelty of our method is the use of pose targets only
to guide a deep neural network, through differentiable rigid
alignment, to estimate the scene geometry without explicit
ground-truth of this geometry at training time. The proposed
method takes a single image and implicitly obtains geometric
representations of the scene using only pose labels. These
implicitly learned geometric representations are the 3D scene
geometry (X, Y, Z coordinates) in two reference frames: global
and camera coordinate systems. We utilize a parameter-free
and differentiable rigid alignment to pass gradients through
a deep neural network to adjust its weights and continually
learn these representations without explicit ground-truth labels.
Besides pose loss, another novelty is that our method allows
for the inclusion of additional learning losses as opposed
to learning a localization pipeline by pose regression. We
introduce a consistency loss to make the two geometric
representations consistent with the geometric pose and a re-
projection loss to constrain the 3D global coordinates to the
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TABLE IV: Results of experiment of section IV-F. Median errors (meters/degrees) are reported. Improvements as a result of
finetuning by Lposition over training on 1/3 of samples are marked by underlines.

Method Training Scheme College Hospital Shop Church Chess Fire Heads Office Pumpkin Kitchen Stairs
trained on all samples 0.46/0.81 0.61/1.09 0.44/1.71 0.87/2.88 0.05/1.42 0.16/4.57 0.09/6.14 0.13/3.46 0.12/2.48 0.10/2.51 0.17/3.48

Ours trained on 1/3 of samples 0.52/0.85 0.69/1.49 0.59/2.53 0.95/3.04 0.06/1.60 0.18/4.73 0.13/7.7 0.14/3.48 0.11/2.73 0.12/2.81 0.19/3.50
finetuned with Lposition 0.50/0.88 0.68/1.32 0.59/2.44 0.93/2.95 0.05/1.55 0.18/5.28 0.13/7.7 0.12/3.41 0.12/3.13 0.11/2.63 0.18/3.74

trained on all samples 0.94/1.99 2.03/3.60 0.80/6.34 1.66/4.01 0.08/3.25 0.27/11.7 0.18/13.3 0.17/5.15 0.22/4.02 0.23/4.93 0.30/12.1
MapNet [8] trained on 1/3 of samples 1.12/6.10 3.14/7.81 1.29/8.76 2.65/6.54 0.12/4.75 0.30/11.51 0.18/14.02 0.20/6.20 0.21/5.33 0.27/5.76 0.37/11.53

finetunned with Lposition 1.25/93.02 3.03/139.79 1.34/95.01 2.63/53.50 0.12/38.98 0.31/24.68 0.18/20.28 0.19/41.52 0.22/35.62 0.26/32.00 0.37/24.23

TABLE V: Run-time analysis (section IV-G). Data Processing:
time needed to run the network and obtain the 3D clouds.
Pose Computation: time needed to obtain pose through rigid
alignment. FPS: frames per second.

Down-sampling Output Data Pose Total (ms)
Factor Resolution Processing Computation -FPS

4 120 × 160 9.0 ms 30.0 ms 39.0 ms - 26 Hz

ou
rs 8 60 × 80 9.2 ms 4.8 ms 14.0 ms - 71 Hz

16 30 × 40 9.6 ms 1.5 ms 11.1 ms - 90 Hz
Regression 12.5 ms - 80 Hz

2D image pixels. Through extensive experiments, we show
that the proposed method exceeds the localization accuracy of
state-of-the-art regression methods and runs in real-time. As
a final contribution, we show that the proposed formulation
can utilize partial labels (instantaneous position labels only) to
finetune a pre-trained model leading to improvements in both
position and orientation localization. In future, we would like
to leverage foundational models to generate embeddings and
integrate them into our learned 3D representations to perform
more accurate pose estimation using scene semantics.
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