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Lifelong Federated Reinforcement Learning: A Learning Architecture for
Navigation in Cloud Robotic Systems

Boyi Liu!3, Lujia Wang! and Ming Liu?

Abstract— This paper was motivated by the problem of how
to make robots fuse and transfer their experience so that
they can effectively use prior knowledge and quickly adapt
to new environments. To address the problem, we present a
learning architecture for navigation in cloud robotic systems:
Lifelong Federated Reinforcement Learning (LFRL). In the
work, we propose a knowledge fusion algorithm for upgrading
a shared model deployed on the cloud. Then, effective transfer
learning methods in LFRL are introduced. LFRL is consistent
with human cognitive science and fits well in cloud robotic
systems. Experiments show that LFRL greatly improves the
efficiency of reinforcement learning for robot navigation. The
cloud robotic system deployment also shows that LFRL is capable
of fusing prior knowledge. In addition, we release a cloud
robotic navigation-learning website to provide the service based
on LFRL: www.shared-robotics.com.

I. INTRODUCTION

Autonomous navigation is one of the core issues in mobile
robotics. It is raised among various techniques of avoiding
obstacles and reaching target position for mobile robotic
navigation. Recently, reinforcement learning (RL) algorithms
are widely used to tackle the task of navigation. RL is a
kind of reactive navigation method, which is an important
meaning to improve the real-time performance and adaptability
of mobile robots in unknown environments. Nevertheless,
there still exists a number of problems in the application of
reinforcement learning in navigation such as reducing training
time, storing data over long time, separating from computation,
adapting rapidly to new environments etc [1].

In this paper, we address the problem of how to make
robots learn efficiently in a new environment and extend
their experience so that they can effectively use prior
knowledge. We focus on cloud computing and cloud robotic
technologies [2], which can enhance robotic systems by fa-
cilitating the process of sharing trajectories, control policies
and outcomes of collective robot learning. Inspired by human
congnitive science present in Fig.1, we propose a Lifelong
Federated Reinforcement Learning (LFRL) architecture to
realize the goal. With the scalable architecture and knowledge
fusion algorithm, LFRL achieves exceptionally efficiency in
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\" The man needs to make decisions based on the
rules of the chess, his chess experience and the
\chess experience of others he has seen.

Fig. 1. The person on the right is considering where should the next step go.
The chess he has played and the chess he has seen are the most two influential
factors on making decisions. His memory fused into his policy model. So
how can robots remember and make decisions like humans? Motivated by
this human cognitive science, we propose the LFRL in cloud robot systems.
LFRL makes the cloud remember what robots learned before like a human
brain.

reinforcement learning for cloud robot navigation. LFRL en-
ables robots to remember what they have learned and what
other robots have learned with cloud robotic systems. LFRL
contains both asynchronization and synchronization learning
rather than limited to synchronous learning as A3C [3] or
UNREAL [4]. To demonstrate the efficacy of LFRL, we test
LFRL in some public and self-made training environments.
Experimental result indicates that LFRL is capable of enabling
robots effectively use prior knowledge and quickly adapt to
new environments. Overall, this paper makes the following
contributions:

« We present a Lifelong Federated Reinforcement Learning
architecture based on human cognitive science. It makes
robots perform lifelong learning of navigation in cloud
robotic systems.

« We propose a knowledge fusion algorithm. It is able to
fuse prior knowledge of robots and evolve the shared
model in cloud robotic systems.

« Two effective transfer learning approaches are introduced
to make robots quickly adapt to new environments.

« A cloud robotic navigation-learning website is built in the
work: www.shared-robotics.com. It provides the service
based on LFRL.

II. RELATED THEORY

A. Reinforcement learning for navigation

Eliminating the requirements for location, mapping or path
planning procedures, several DRL works have been presented



that successful learning navigation policies can be achieved
directly from raw sensor inputs: target-driven navigation [5],
successor feature RL for transferring navigation policies [6],
and using auxiliary tasks to boost DRL training [7]. Many
follow-up works have also been proposed, such as embedding
SLAM-like structure into DRL networks [8], or utilizing DRL
for multi-robot collision avoidance [9]. Tai et al [10] suc-
cessfully appplied DRL for mapless navigation by taking the
sqarse 10-dimensional range findings and the target position
, defining mobile robot coordinate frame as input and contin-
uous steering commands as output. Zhu et al. [S] input both
the first-person view and the image of the target object to the
A3C model, formulating a target-driven navigation problem
based on the universal value function approximators [11]. To
make the robot learn to navigate, we adopt a reinforcement
learning perspective, which is built on recent success of deep
RL algorithms for solving challenging control tasks [12-15].
Zhang [16] presented a solution that can quickly adapt to new
situations (e.g., changing navigation goals and environments).
Making the robot quickly adapt to new situations is not
enough, we also need to consider how to make robots capable
of memory and evolution, which is similar to the main purpose
of lifelong learning.

B. Lifelong machine learning

Lifelong machine learning, or LML [17], considers system
that can learn many tasks from one or more domains over its
lifetime. The goal is to sequentially store learned knowledge
and to selectively transfer that knowledge when a robot learns
a new task, so as to develop more accurate hypotheses or poli-
cies. Robots are confronted with different obstacles in different
environments, including static and dynamic ones, which are
similar to the multi-task learning in lifelong learning. Although
learning tasks are the same, including reaching goals and
avoiding obstacles, their obstacle types are different. There
are static obstacles, dynamic obstacles, as well as different
ways of movement in dynamic obstacles. Therefore, it can be
regarded as a low-level multitasking learning.

A lifelong learning should be able to efficiently retain
knowledge. This is typically done by sharing a representation
among tasks, using distillation or a latent basis [18]. The agent
should also learn to selectively use its past knowledge to solve
new tasks efficiently. Most works have focused on a special
transfer mechanism, i.e., they suggested learning differentiable
weights are from a shared representation to the new tasks [4,
19]. In contrast, Brunskill and Li [20] suggested a temporal
transfer mechanism, which identifies an optimal set of skills
in new tasks. Finally, the agent should have a systematic
approach that allows it to efficiently retain the knowledge of
multiple tasks as well as an efficient mechanism to transfer
knowledge for solving new tasks. Chen [21] proposed a
lifelong learning system that has the ability to reuse and
transfer knowledge from one task to another while efficiently
retaining the previously learned knowledge-base in Minecraft.
Although this method has achieved good results in Mincraft,
there is a lack of multi-agent cooperative learning model.
Learning different tasks in a same scene is similar but different
for robot navigation learning.

C. Federated learning

LFRL realizes federated learning of multi robots through
knowledge fusion. Federated learning was first proposed in
[22], which showed its effectiveness through experiments on
various datasets. In federated learning systems, the raw data
is collected and stored at multiple edge nodes, and a machine
learning model is trained from the distributed data without
sending the raw data from the nodes to a central place [23,
24]. Different from the traditional joint learning method where
multiple edges are learning at the same time, LFRL adopts the
method of first training then fusing to reduce the dependence
on the quality of communication[25, 26].

D. Cloud robotic system

LFRL fits well with cloud robotic system. Cloud robotic
system usually relies on many other resources from a network
to support its operation. Since the concept of the cloud robot
was proposed by Dr. Kuffner of Carnegie Mellon University
(now working at Google company) in 2010 [27], the research
on cloud robots is rising gradually. At the beginning of
2011, the cloud robotic study program of RoboEarth [28] was
initiated by the Eindhoven University of Technology. Google
engineers have developed robot software based on the Android
platform, which can be used for remote control based on the
Lego mind-storms, iRobot Create and Vex Pro, etc. [29]. Wang
et al. present a framework targeting near real-time MSDR,
which grants asynchronous access to the cloud from the robots
[30]. However, no specific navigation method for cloud robots
has been proposed up to now. We believe that this is the first
navigation learning architecture for cloud robotic systems.

Generally, this paper focuses on developing a reinforcement
learning architecture for robot navigation, which is capable of
lifelong federated learning and multi robots federated learning.
This architecture is well fit in cloud robot systems.

III. METHODOLOGY

LFRL is capable of reducing training time without sacri-
ficing accuracy of navigating decision in cloud robotic sys-
tems. LFRL uses Cloud-Robot-Environment setup to learn
the navigation policy. LFRL consists of a cloud server, a
set of environments, and one or more robots. We develop a
federated learning algorithm to fuse private models into the
shared model in the cloud. The cloud server fuses private
models into the shared model, then evolves the shared model.
As illustrated in Fig.2, LFRL is an implementation of lifelong
learning for navigation in cloud robotic systems. Compared
with A3C or UNREAL approaches which update parame-
ters of the policy network at the same time, the proposed
knowledge fusion approach is more suitable for the federated
architecture of LFRL. The proposed approach is capable of
fusing models with asynchronous evolution. The approach of
updating parameters at the same time has certain requirements
for environments, while the proposed knowledge fusion algo-
rithm has no requirements for environments. Using generative
network and dynamic weight labels are able to realize the
integration of memory instead of A3C or UNREAL method,
which only generates a decision model during learning and
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Fig. 2. Proposed Architecture. In Robot—Environment, the robot learns to avoid some new types of obstacles in the new environment through reinforcement
learning and obtains the private Q-network model. Not only from one robot training in different environments, private models can also be resulted from
multiple robots. It is a type of federated learning. After that, the private network will be uploaded to the cloud. The cloud server evolves the shared model
by fusing private models to the shared model. In Cloud—Robot, inspired by transfer learning, successor features are used to transfer the strategy to unknown
environment. We input the output of the shared model as added features to the Q-network in reinforcement learning, or simply transfer all parameters to the
Q-network. Iterating this step, models on the cloud become increasingly powerful.

Fig. 3. LFRL compared with A3C or UNREAL

has no memory. As illustrated in Fig.3. In the algorithm of
A3C or UNREAL, the training environment is constant. States
of agents are countable. The central node only needs to fuse
parameters, which can be performed at the same time. The
two methods are capable of fusing parameters while training.
Network structures of agents must be the same. However, in
LFRL, the training environment is variable. State of agents
are uncountable with more training environments uploading.
In different agents, the structure of hiden layers of the policy
network can be different. The cloud fuse training results. The
robots are trained in new environments based on the shared
model. Robots and the cloud have interactions in upload and
download procedures. LFRL is more suitable for the cloud
robot system where the environment is uncountable, especially
in the lifelong learning framework.

A. Procedure of LFRL

This section displays a practical example of LFRL: there
are 4 robots, 3 different environments and cloud servers.
The first robot obtains its private strategy model Q1 through
reinforcement learning in Environment 1 and upload it to the

cloud server as the shared model 1G. After a while, Robot
2 and Robot 3 desire to learn navigation by reinforcement
learning in Environment 2 and Environment 3. In LFRL, Robot
2 and Robot 3 download the shared model 1G as the initial
actor model in reinforcement learning. Then they can get their
private networks Q2 and Q3 through reinforcement learning
in Environment 2 and Environment 3. After completing the
training, LFRL uploads Q2 and Q3 to the cloud. In the cloud,
strategy models Q2 and Q3 will be fused into shared model
1G, and then shared model 2G will be generated. In the future,
the shared model 2G can be used by other cloud robots. Other
robots will also upload their private strategy models to the
cloud server to promote the evolution of the shared model.

The more complicated tasks responded to more kinds of
obstacles in robot navigation. The learning environment is
gigantic in robot navigation learning. This case is different
from the chess. So we borrow the idea of lifelong learning.
Local robots will learn to avoid more kinds of obstacles and
the cloud will fuse these skills. These skills will be used
in more defined and undefined environments. For a cloud
robotic system, the cloud generates a shared model for a time,
which means an evolution in lifelong learning. The continuous
evolution of the shared model in cloud is a lifelong learning
pattern. In LFRL, the cloud server achieves the knowledge
storage and fusion of a robot in different environments. Thus,
the shared model becomes powerful through fusing the skills
to avoid multi types of obstacles.

For an individual robot, when the robot downloads the cloud
model, the initial Q-network has been defined. Therefore,
the initial Q-network has the ability to reach the target and
avoid some types of obstacles. It is conceivable that LFRL
can reduce the training time for robots to learn navigation.
Furthermore, there is a surprising experiment result that the



robot can get higher scores in navigation with LFRL. However,

Algorithm 1: Processing Algorithm in LFRL

Initialize action-value Q-network with random weights 9;
Input: 6,: The parameters of the a-th shared model in
cloud ; m: The number of private networks.
QOutput: The evolved 6,
while cloud server is running do
if service_request=True then
Transfer 6, to «;
for i=1;i<m;i++ do
0; + robot (i) perform reinforcement learning
with 7 in environment.;
Send 6; to cloud;
end
end
if evolve time=True then
Generate 0,1 = fuse(6,,6,---,6,,,6,)
ea <~ 6a+1

end
end

in actual operation, the cloud does not necessarily fuse models
every time it receives a private network, but fuses at a fixed
frequency rate. So, we present the processing flow of LFRL
shown in Algorithm 1. Key algorithms in LFRL include
knowledge function algorithm and transferring approaches, as
introduced in the following.

B. Knowledge fusion algorithm in cloud

Inspired by images style transfer algorithm, we develop a
knowledge fusion algorithm to evolve the shared model. This
algorithm is based on generative networks and it is efficient
to fuse parameters of networks trained from different robots
or a robot in different environments. The algorithm deployed
in the cloud server receives the privately transmitted network
and upgrades the sharing network parameters. To address
knowledge fusion, the algorithm generates a new shared model
from private models and the shared model in cloud. This new
shared model is the evolved model.

Fig.4 illustrates the process of generating a policy network.
The structure of the policy network has the same input
and output dimensions with the private policy network. The
number of outputs is equal to the number of action types
that robots can act. The dimensions of input also correspond
with sensor data and human-made features. The training data
of the network is randomly generated based on sensor data
attributes. The label on each piece of data is dynamically
weighted, which is based on the “confidence value” of each
robot in each piece of data. We define robots as actors in
reinforcement learning. Different robots or the same robot in
different environments are different actors.

The “confidence value” motioned above of the actor is the
degree of confirmation on which action the robot chooses to
perform. For example, in a piece of sample from training
data, the private Network 1 evaluates Q-values of different

actions to (85, 85, 84, 83, 86), but the evaluation of the k-
G sharing network is (20, 20, 100, 10, 10). In this case,
we are more confident on actor of k-G sharing network,
because it has significant differentiation in the scoring process.
On the contrary, the scores from actor of private Network
1 are confusing. Therefore, when generating the labels, the
algorithm calculates the confidence value according to the
score of different actors. Then the scores are weighted with
confidence value and summed up. Finally, we obtain labels
of training data by executing the above steps for each piece
of data. There are several approaches to define confidence,
such as variance, standard deviation, and information entropy.
From the definition of the above statistical indicators we can
infer that using variance to describe uncertainty will fail in
some cases because it requires uniform distribution of data
and ignores the occurrence of extreme events. The variance
needs to meet the relevant premise to describe the uncertainty
of the information. Entropy is more suitable for describing
the uncertainty of information than variance, which comes
from the definition of entropy. Uncertainty is the embodiment
of confidence. So, In this work, we use information entropy
to define confidence. Formula (1) is quantitative function of
robotic confidence (information entropy):
Robot j “confidence”:

o 1 & score;; 1 score;; )
T lam Y™ score;; o Y™ score;; (1)
i=1 i=1 1 i=1 3

m is the action size of robot, n is the number of private
networks. Memory weight of robot j:

(1—c¢j)
W= (2)
TYi(-¢))
Knowledge fusion function:
labelj = score x (ci,c2,-- -cm)T (3)

It should be noted that Fig.4 only shows the process of one
sample generating one label. Actually, we need to generate a
large number of samples. For each data sample, the confidence
values of the actors are different, so the weight of each actor is
not the same. For example, when we generate 50,000 different
pieces of data, there are nearly 50,000 kinds of different
combinations of confidence. These changing weights can be
incorporated into the data labels, and enable the generated
network to dynamically adjust the weights on different sensor
data. In conclusion, knowledge fusion algorithm in cloud can
be defined as:

n

oj=1-c))+ ) (1-c;) (4)
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Fig. 4. Knowledge Fusion Algorithm in LFRL: We generate a large amount of training data based on sensor data, target data, and human-defined features.
Each training sample is added into the private network and the k-th generation sharing network, while different actors are scored for different actions. Then,
we store the scores and calculate the confidence values of all actors in this training sample data. The “confidence value” is used as a weight, while the scores
are weighted and summed to obtain the label of the current sample data. By analogy, all sample data labels are generated. Finally, a network is generated and
fits the sample data as much as possible. The generated network is the (k+1)th generation. This step of fusion is finished.

Formula 4 takes the proportion of the confidence of robots
as a weight. Formula 5 obtains the label of the sensor data
by weighted summation. Formula 6 defines the error in the
training process of generative network. Formula 7 is the goal
of the training process. We discribe our approach in details in
Algorithm 2. For a single robot, private network is obtained
in different environments. Therefore, it can be regarded as
asynchronous learning of the robot in LFRL. When there are
multiple robots, we just need to treat them as the same robot
in different environments. At this time, the evolution process
is asynchronous, and multiple robots are synchronized.

It should be explained that the shared model in the cloud
is not the final policy model of the local robot. We only use
the shared model in the cloud as a pre-trained model or a
feature extractor. The shared model maintained in the cloud is
a cautious policy model but not the optimal for every robot.
That is to say, the shared model in the cloud will not make
serious mistakes in some private unstructured environments
but the action is not the best. It is necessary for the robot to
train its own policy model based on the shared model from
the cloud, otherwise the error rate will be high in its private
unstructured environment. As the saying goes, the older the
person, the smaller the courage. In the process of lifelong
learning, the cloud model will become more and more timid.
In order to remove the error rate, we should transfer the shared
model and train a new private model through reinforcement
learning in a new environment. This responded to the transfer
learning process in LFRL.

C. Transfer the shared model

Various approaches of transfer reinforcement learning have
been proposed. In the specific task that a robot learns to
navigate, we found that there are two applied approaches.

The first one is taking the shared model as initial actor
network. While the other one is using the shared model as a
feature extractor. If we adopt the first approach that takes the
shared model as an initial actor network, abilities of avoiding
obstacles and reaching targets can remain the same. In this
approach, the robot deserves a good score at the beginning.
The experimental data shows that the final score of the robot
has been greatly improved at the same time. However, every
coin has two sides, this approach is unstable. The training time
depends on the adjustment of parameters in some extent. For
example, we should accelerate updating speed, increase the
punishment, reduce the probability of random action etc.

The shared model also can be used as a feature extractor
in transfer reinforcement learning. As illustrated in Fig.5, this
method increases the dimension of the features. So, it can
improve the effect stably. One problem that needs to be solved
in experiment is that there is a structural difference between
input layer of the shared network and private network. The
approach in LFRL is that the number of nodes in the input
layer is consistent with the number of elements in the original
feature vector, as shown in Fig.5. The features from transfer
learning are not used as inputs to the shared network. They
are just inputs of training private networks. This approach has
high applicability, even though the shared model and private
models have different network structures.

It is also worth noting that if the robot uses image sensors
to acquire images as feature data. It is recommended to use the
traditional transfer learning method that taking the output of
some convolutional layers as features because the Q-network
is a convolutional neural network. If a non-image sensor such
as a laser radar is used, the Q-network is not a convolutional
neural network, then we will use the output of the entire



Algorithm 2: Knowledge Fusion Algorithm

Initialize the shared network with random Parameters 0 ;
Input: K: The number of data samples generated ; N:
The number of private networks; M: Action sizes
of the robot;
QOutput: 6
for i=1,i < N,i++ do
X; < Calculate indirct features from xj;
x; < [%,%] ;
for n=1,n < K;n++ do
scorey < fu(xi);
score; < score append scorej,
end
for n=1I,n < K;n++ do
for m=1,m < M,m++ do
cin < Calculate the confidence value of the
n-th private network in the i-th data based
on formula (1)

end

end

label; < Calculate the label; based on formula (2)
and (3);

label + label append label;;

end
0 <« training the shared network from (x,label);

network as additional features, as Fig.5 shows. The learning
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Fig. 5. A transfer learning method of LFRL

process of the robot can roughly divided into two stages,
the stage of avoiding obstacles and the stage of reaching the
target. With the former transfer algorithm, it is possible to
utilize the obstacle avoidance skills of the cloud model. In the
latter transfer method, it is obvious that the evaluation of the
directions by cloud model is valuable, which is useful features
for navigation.

D. Explanation from human cognitive science

The design of the LFRL is inspired by the human decision-
making process in cognitive science. For example, when play-
ing chess, the chess player will make decisions based on the
rules and his own experiences. The chess experiences include
his own experiences and the experiences of other chess players
he has seen. We can regard the chess player as a decision
model. The quality of the decision model represents the
performance level of the chess player. In general, this policy
model will become increasingly excellent through experience
accumulation, and the chess player’s skill will be improved.
This is the iteratively evolutionary process in LFRL. After each

chess player finishing playing chess, his chess level or policy
model evolves, which is analogous to the process of knowledge
fusion in LFRL. And these experiences will also be used in
later chess player, which is analogous to the process of transfer
learning in LFRL. Fig. 1 demonstrates a concrete example. The
person on the right is considering where should the next step
goes. The chess he has played and the chess he has seen are
the most two influential factors on making decision. But his
chess experiences may influence the next step differently. At
this time, according to human cognitive science, the man will
be more influenced by experiences with clear judgments. An
experience with a clear judgment will have a higher weight in
decision making. This procedure of humans makes decisions
is analogous to knowledge fusion algorithm in LFRL. The
influence of different chess experience is always dynamic in
the decision of each step. The knowledge fusion algorithm
in LFRL achieves this cognitive phenomenon by adaptively
weighting the labels of training data. The chess player is a
decision model that incorporates his own experiences. Corre-
sponding to this opinion, LFRL integrates experience into one
decision model by generating a network. This process is also
analogous to the operation of human cognitive science.

IV. EXPERIMENTS

In this section, we intend to answer three questions: 1) Can
LFRL help reduce training time without sacrifice accuracy of
navigation in cloud robotic systems? 2) Does the knowledge
fusion algorithm is effective to increase the shared model?
3) Are transfer learning approaches effective to transfer the
shared model to specific task? To answer the former question,
we conduct experiments to compare the performance of the
generic approach and LFRL. To answer the second ques-
tion, we conduct experiments to compare the performance of
generic models and the shared model in transfer reinforcement
learning. To answer the third question, we conduct experiments
to compare the performance of the two transfer learning
approaches and the native reinforcement learning.

A. Experimental setup

The training procedure of the LFRL was implemented
in virtual environment simulated by gazebo. Four training
environments were constructed to show the different conse-
quence between the generic approach training from scratch
and LFRL, as shown in Fig.6. There is no obstacle in Env-
1 except the walls. There are four static cylindrical obstacles
in Env-2, four moving cylindrical obstacles in Env-3. More
complex static obstacles are in Env-4. In every environment,
a Turtlebot3 equipped with a laser range sensor is used as
the robot platform. The scanning range is from 0.13m to 4m.
The target is represented by a red square object. During the
training process, the starting pose of the robot is the geometric
center of the ground in the training environment. The target
is randomly generated in pose where there are no obstacles
in the environment. An episode is terminated after the agent
either reaches the goal, collides with an obstacle, or after a
maximum of 6000 steps during training and 1000 for testing.
We calculated the average reward of the robot every two
minutes. We end the training when the average reward of the
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Fig. 6. We present both quantitative and compared results: Subfigure a to Subfigure d are the training environments. Subfigure e to h present scores of the
generic approach (blue) compared with LFRL approach (red) in training process.In the training procedure of Env-1, LFRL has the same result with generic
approaches. Because there is no antecedent shared models for the robot. In the training procedure of Env-2, LFRL obtained the shared model 1G, which made
LFRL get higher reward in less time compared with the generic approach. In Env-3 and Env-4, LFRL evolve the shared model to 2G and 3G and obtained
excellent result. From this figure, we demonstrate that LFRL can get higher reward in less time compared with the generic approach.

agent is enough and stable. We trained the model from scratch
on a single Nvidia GeForce GTX 1070 GPU. The actor-critic
network used two fully connected layers with 64 units. The
output is used to produce the discrete action probabilities by
a linear layer followed by a softmax, and the value function
by a linear layer.

B. Evaluation for the architecture

To show the performance of LFRL, we tested it and com-
pared with generic methods in the four environments. Then we
started the training procedure of LFRL. As mentioned before,
we initialized the shared model and evolved it as Algorithm 2
after training in Env-1. In the cloud robotic system, the robot
downloaded the shared model 1G. Then, the robot performed
reinforcement learning based on the shared model. The robot
got a private model after training and it would be uploaded to
the cloud server. The cloud server fused the private model and
the shared model 1G to obstain the shared model 2G. With
the same mode, follow-up evolutions would be performed. We
constructed four environments, so the shared model upgraded
to 4G. Performance of LFRL shown in Fig.6 where also shows
generic methods performance. In Env2-Env4, LFRL increased
accuracy of navigating decision and reduced training time in
the cloud robotic system. From the last row of Fig.6, we
can observe that the improvement are more efficient with the
shared model. LFRL is highly effective for learning a policy
over all considered obstacles. It improves the generalization
capability of our trained model across commonly encountered
environments. Experiments demonstrate that LFRL is capable
of reducing training time without sacrificing accuracy of
navigating decision in cloud robotic systems.

C. Evaluation for the knowledge fusion algorithm

In order to verify the effectiveness of the knowledge fu-
sion algorithm, we conducted a comparative experiment. We
created three new environments that were not present in the
previous experiments. These environments are more similar
to real situations: Static obstacles such as cardboard boxes,
dustbin, cans are in the Test-Env-1. Moving obstacles such as
stakes are in Test-Env-2. Test-Env-3 includes more complex
static obstacles and moving cylindrical obstacles. We still used
the Turtlebot3 created by gazebo as the testing platform. In
order to vertify the advancement of the shared model, we
trained the navigation policy based on the generic model
1, model 2, model 3, model 4 in Test-Env-1, Test-Env-2
and Test-Env-3 respectively. The generic models are from
the previous generic approaches experiments. These policy
models are trained from one environment without knowledge
fusion. According to the hyper-parameters and complexity of
environments, the average score goal (5 consecutive times
above a certain score) in Test-Env-1 is 4000, Test-Env-2 is
3000, Test-Env-3 is 2600.

In the following, we present compared results in Fig.7 and
quantitative results in Table 1. The shared model steadily
reduces training time. In particular, we can observe that
the generic method models are only able to make excellent
decisions in individual environments; while the shared model
is able to make excellent decisions in plenty of different
environments. So, the proposed knowledge fusion algorithm
in this paper is effective.
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Fig. 7. We present both quantitative and compared results: Subfigure a to Subfigure ¢ are the testing environments. Because of the large amount of data, we
present the stacked figure to better repersent the comparison. From the subfigure d to subfigure f, it can seen that the reward of the shared model accounts for

a larger proportion in all positive rewards (greater than 0) models in the later stage of training.
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Test-Env-1  Test-Env-2  Test-Env-3  Test-Env-1  Test-Env-2  Test-Env-3  Test-Env-1  Test-Env-2  Test-Env-3
model 1 1h 32min >3h >6 h 1353.36 46.5 -953.56 1421.54 314.948 -914.16
model 2 [33min >3h >6 h 2631.57 7191 288.61  [I35163470  794.02 -132.07
model 3 37min >3h 5h 50min  [[72925:53°1 166.5 318.04 3097.64 -244.17 1919.12
model 4 4h 41min 2h 30min 5h 38min 1989.51 [INI5572400 14715 2483.18 2471.07 3087.83
Shared model 55min | 2h 18min  4h 48min = 2725.16 132776 1625.61  3497.66  2617.02 367092 |

The background color of the cell reflects the performance of the corresponding model. The darker the color, the better the performance.

D. Evaluation for the two transfer learning approaches

In order to verify and compare the two transfer learning
approaches, we conducted a comparative experiment. The
result is present in Fig.8. It can be seen from the figure
that both transfer learning approaches can effectively improve
the efficiency of reinforcement learning. Among them, the
approach of parameter transferring has faster learning speed
and the approach of feature extractor has higher stability.
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E. Real world experiments

Fig. 9. Trajectory tracking in the real environment

We also conducted real-world experiments to test the per-
formance of our approach with different sensor noise. We

-1000

Fig. 8.
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Transfer learning approaches comparison

use Turtlebot 3 platform, which is shown in Fig.9. The
shared model 4G in the cloud was downloaded. Then we
performed transferring reinforcement learning in Env-4 and
got the policy finally. The Turtlebot navigates automatically
in an indoor office environment as shown in Fig.9 under the



policy. The experiment indicates that the policy is reliable
in real environment. The reference [10] also corroborates the
conclusion.

V. CONCLUSION

We presented a learning architecture LFRL for navigation
in cloud robotic systems. The architecture is able to make
navigation-learning robots effectively use prior knowledge
and quickly adapt to new environment. Additionally, we pre-
sented a knowleged fusion algorithm in LFRL and introduced
transfer methods. Our approach is able to fuse models and
asynchronously evolve the shared model. We validated our
architecture and algorithmes in policy-learning experiments
and realsed a website to provide the service.

The architecture has fixed requirements for the dimensions
of input sensor signal and the dimensions of action. We leave
it as future work to make LFRL flexible to deal with different
input and output dimensions. The more flexible LFRL will
offer a wider range of services in cloud robotic systems.
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