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Multispecies fruit flower detection using a refined
semantic segmentation network

Philipe A. Dias1, Amy Tabb2, and Henry Medeiros1

Abstract—In fruit production, critical crop management deci-
sions are guided by bloom intensity, i.e., the number of flowers
present in an orchard. Despite its importance, bloom intensity
is still typically estimated by means of human visual inspection.
Existing automated computer vision systems for flower identifi-
cation are based on hand-engineered techniques that work only
under specific conditions and with limited performance. This
work proposes an automated technique for flower identification
that is robust to uncontrolled environments and applicable to
different flower species. Our method relies on an end-to-end
residual convolutional neural network (CNN) that represents
the state-of-the-art in semantic segmentation. To enhance its
sensitivity to flowers, we fine-tune this network using a single
dataset of apple flower images. Since CNNs tend to produce
coarse segmentations, we employ a refinement method to better
distinguish between individual flower instances. Without any pre-
processing or dataset-specific training, experimental results on
images of apple, peach and pear flowers, acquired under different
conditions demonstrate the robustness and broad applicability of
our method.

Index Terms—Bloom intensity estimation, flower detection,
semantic segmentation networks, precision agriculture

I. INTRODUCTION

BLoom intensity corresponds to the number of flowers
present in orchards during the early growing season. Cli-

mate and bloom intensity information are crucial to guide the
processes of pruning and thinning, which directly impact fruit
load, size, coloration, and taste [1], [2]. Accurate estimates
of bloom intensity can also benefit packing houses, since
early crop-load estimation greatly contributes to optimizing
postharvest handling and storage processes.

Visual inspection is still the dominant approach for bloom
intensity estimation in orchards, a technique which is time-
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consuming, labor-intensive and prone to errors [3]. Since only
a limited sample of trees is inspected, the extrapolation to
the entire orchard relies heavily on the grower’s experience.
Moreover, it does not provide information about the spatial
variability in the orchard, although the benefits of precision
agriculture practices are well known [4].

These limitations added to the short-term nature of flower
appearance until petal fall make an automated method highly
desirable. Multiple automated computer vision systems have
been proposed to solve this problem, but most of these
methods rely on hand-engineered features [5], making their
overall performance acceptable only under relatively con-
trolled environments (e.g. at night with artificial illumination).
Their applicability is in most cases species-specific and highly
vulnerable to variations in lightning conditions, occlusions by
leaves, stems or other flowers [6].

In the last decade, deep learning approaches based on
convolutional neural networks (CNNs) led to substantial im-
provements in the state-of-the-art of many computer vision
tasks [7]. Recent works have adapted CNN architectures
to agricultural applications such as fruit quantification [8],
classification of crops [9], and plant identification from leaf
vein patterns [10]. To the best of our knowledge, our work in
[11] was the first to employ CNNs for flower detection. In that
work, we combined superpixel-based region proposals with a
classification network to detect apple flowers. Limitations of
that approach are intrinsic to the inaccuracies of superpixel
segmentation and the network architecture.

In the present work, we provide the following contributions
for automated flower segmentation:

• A novel technique for flower identification that is i)
automated, ii) robust to clutter and changes in illumina-
tion; and, iii) generalizable to multiple species. Using as
starting point a fully convolutional network (FCN) [12]
pre-trained on a large multi-class dataset, we describe
an effective fine-tuning procedure that adapts this model
for fine pixel-wise flower segmentation. Our final method
evaluates in less than 50 seconds high-resolution images
covering each a full tree. Although the task comparison
is not one-to-one, human workers may need on average
up to 50 minutes to count the number of flowers per tree.

• A feasible procedure for evaluating high-resolution im-
ages with deep FCNs on commercial GPUs. Fully con-
volutional computations require GPU memory space that
exponentially increases according to image resolution.
We employ an image partitioning mechanism with par-
tially overlapping windows, which reduces artifacts in-
troduced by artificial boundaries when evaluating disjoint
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image regions.
• Release of an annotated dataset with pixel-accurate labels

for flower segmentation on high resolution images [13].
We believe this can greatly benefit the community, since
this is a very time consuming yet critical task for both
training and evaluation of segmentation models.

II. RELATED WORK

Previous attempts at automating bloom intensity estimation
were mostly based on color thresholding, such as the works
described in [14], [15] and [16]. Despite differences in terms
of color-space used for analysis (e.g. HSL and RGB), all
these methods fail when applied in uncontrolled environments.
Apart from size filtering, no morphological feature is taken
into account, such that thresholding parameters have to be
adjusted in case of changes in illumination, camera position
or flowering density. Even strategies using aerial multispectral
images such as [17] also rely solely on color information for
image processing.

Our previous work in [11] introduced a novel approach for
apple flower detection that relies on a fine-tuned Clarifai CNN
[18] to classify individual superpixels composing an image.
That method highly outperformed color-based approaches,
especially in terms of generalization to datasets composed
of different flower species and acquired in uncontrolled envi-
ronments. However, existing superpixel algorithms rely solely
on local context information, representing the main source of
imprecisions in scenarios where flowers and the surrounding
background present similar colors.

While early attempts for autonomous fruit detection also
relied on hand-engineered features (e.g. color, texture, shape)
[6], recent works have been exploring more advanced com-
puter vision techniques. One example is the work of Hung
et al. [19], which combines sparse autoencoders [7] and sup-
port vector machines (SVM) for segmenting leaves, almonds,
trunks, ground and sky. The approaches described by Bargoti
and Underwood in [20] and Chen et al. in [8] for fruit
detection share some similarities with our method for flower
segmentation. In [20], the authors introduce a Faster R-CNN
trained for the detection of mangoes, almonds and apple fruits
on trees. The method introduced in [8] for counting apples
and oranges employs a fully convolutional network (FCN)
to perform fruit segmentation and a convolutional network to
estimate fruit count.

End-to-end fully convolutional networks [21] have been
replacing traditional fully connected architectures for image
segmentation tasks [22]. Conventional architectures such as
the Alexnet [23] and VGG [24] networks are very effective
for image classification but provide coarse outputs for image
segmentation tasks. This is a consequence of the image
downsampling introduced by the max-pooling and striding
operations performed by these networks, which allow the
extraction of learned hierarchical features at the cost of pixel-
level precision [12].

Different strategies have been proposed to alleviate the ef-
fects of downsampling [22], including the use of deconvolution
layers [21], [25], and encoder-decoder architectures with skip

layer connections [26], [27]. The DeepLab model introduced
in [12] is one of the most successful approaches for semantic
image segmentation using deep learning. By combining the
ResNet-101 [28] model with atrous convolutions and spatial
pyramid pooling, it significantly reduces the downsampling
rate and achieves state-of-the-art performance in challenging
semantic segmentation datasets such as the PASCAL VOC
[29] and COCO [30].

In addition to the changes in CNN architecture, the authors
of DeepLab also employ the dense CRF model described in
[31] to produce fine-grained segmentations. Although provid-
ing visually appealing segmentations, this refinement model
relies on parameters that have to be optimized by means of
supervised grid-search. In [32], we introduced a generic post-
processing module that can be coupled to the output of any
CNN to refine segmentations without the need for dataset-
specific tuning. Called region growing refinement (RGR), this
algorithm uses the score maps available from the CNN to
divide the image into regions of high confidence background,
high confidence object and uncertainty region. By means of
appearance-based region growing, pixels within the uncer-
tainty region are classified based on initial seeds randomly
sampled from the high confidence regions.

III. OUR APPROACH

In this section, we first describe the pre-training and fine-
tuning procedures carried out to obtain a CNN highly sensitive
to flowers. Subsequently, we describe the sequence of oper-
ations that our pipeline performs to segment flowers in an
image.

A. Network training

One of the largest datasets available for semantic segmen-
tation, the COCO dataset [30] was recently augmented by
Caesar et al. [33] into the COCO-Stuff dataset. This dataset
includes pixel-level annotations of classes such as grass,
leaves, tree and flowers, which are relevant for our application.
In the same work, the authors also discuss the performance
of modern semantic segmentation methods on COCO-Stuff,
with a DeepLab-based model outperforming the standard FCN.
Thus, we opted for the publicly available DeepLab-ResNet
model pre-trained on the COCO-Stuff dataset as the starting
point for our pipeline. Rather than fine-tuning the dense CRF
model used in the original DeepLab work, we opt for the
generic RGR algorithm as a post-processing module to obtain
fine-grained segmentations.

The base model was originally designed for segmentation
within the 172 COCO-Stuff classes. To adapt its architec-
ture for our binary flower segmentation task, we perform
procedures known as network surgery and fine-tuning [34].
The surgery procedure is analogous to the pruning of unde-
sired branches in trees: out of the original 172 classification
branches, we preserve only the weights and connections re-
sponsible for the segmentation of classes of interest.

We considered first an architecture preserving only the
flower classification branch, followed by a sigmoid classifi-
cation unit. However, without the normalization induced by
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Fig. 1: Best viewed in color. Diagram illustrating the sequence of tasks performed by the proposed method for flower
detection. Each task and its corresponding output (shown below the arrows) are described in Algorithm 1. In the heatmaps,
blue is associated with lower scores, while higher scores are illustrated with red.

the model’s original softmax layer, the scores generated by the
transferred flower branch are unbounded and the final sigmoid
easily saturates. To alleviate the learning difficulties caused
by such a poor initialization, we opted for tuning a model
with two-branches, under the hypothesis that a second branch
would allow the network to learn a background representation
that properly normalizes the predictions generated by the
foreground (flower) branch.

We have observed experimentally that nearby leaves repre-
sent one of the main sources of misclassification for flower
segmentation. Moreover, predictions for the class leaf pre-
sented the highest activations when applying the pre-trained
model to our training dataset. For these reasons, we opt for
this branch together with the one associated with flowers to
initialize our two-branch flower segmentation network.

The adapted architecture was then fine-tuned using the
training set described in Section IV, which contains 100
images of apple trees. For our experiments, the procedure was
carried out for 10, 000 iterations using the Caffe framework
[35], with an initial learning rate of 10−4 that polynomially
decays according to 10−4 × (1 − i/10000)0.9, where i is the
iteration number. Aiming at scale robustness, our fine-tuning
procedure employs the same strategy used for model pre-
training, where each training portrait is evaluated at (0.5, 0.75,
1.0, 1.25, 1.5) times its original resolution.

While the validation set has pixel-accurate annotations ob-
tained using the procedure described in Section IV, the training
set was annotated using the less precise but quicker superpixel-
based procedure described in our previous work [11]. Less
than 5% of the total image areas in this dataset contain flowers.
To compensate for this imbalance, we augmented portraits
containing flowers by mirroring them with respect to vertical
and horizontal axes. Following the original network parame-
terization, we split the 100 training images into portraits of
321× 321 pixels, corresponding to a total of 52, 644 training
portraits after augmentation.

Algorithm 1 Proposed approach for flower detection

Input: Image I .
Output: Estimated flower segmentation map Ŷ of image I .

1: Sliding window: divide I into a set of n portraits P .
2: for each portrait p(i) ∈ P do
3: Compute scoremaps m

(i)
B and m

(i)
F using the fine-

tuned CNN
4: end for
5: Obtain MB and MF by fusing m

(i)
B and m

(i)
F (i =

1, . . . , n), respectively according to Eq. 2.
6: Normalize MB and MF into M̃B and M̃F , respectively

according to Eq. 3.
7: Generate Ŷ by applying RGR to M̃B and M̃F .

B. Segmentation pipeline

The method we propose for fruit flower segmentation con-
sists of three main operations: 1) divide a high resolution
image into smaller patches, in a sliding window manner; 2)
evaluate each patch using our fine-tuned CNN; 3) apply the
refinement algorithm on the obtained scoremaps to compute
the final segmentation mask. These steps are described in detail
below. In our description, we make reference to Algorithm 1
and Figure 1.

1) Step 1 - Sliding window: As mentioned above, the
adopted CNN architecture either crops or resizes input images
to 321×321 portraits. Since our datasets are composed of im-
ages with resolution ranging from 2704×1520 to 5184×3456
pixels (see Section IV), we emulate a sliding window approach
to avoid resampling artifacts. More specifically, we split each
input image I into a set P of n portraits p(i) ∈ P . Each portrait
is 321 × 321 pixels large, i.e. p(i) ∈ Rr×r with r = 321.
Cropping non-overlapping portraits from the original image
introduces artificial boundaries that compromise the detection
quality. For this reason, in our approach each portrait overlaps
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a percentage s of the area of each immediate neighbor. For
our experiments, we adopted s = 10%. When the scoremaps
are fused, the results corresponding to the overlapping pixels
are discarded. Figure 2 illustrates this process for a pair of
subsequent portraits. The scores obtained for each portrait are
depicted as a heatmap, where blue is associated with lower
scores and higher scores are illustrated with red.

Fig. 2: Best viewed in color. Illustration of the sliding window
and subsequent fusion process that comprise our segmentation
pipeline. Each portrait overlaps a certain area of its neighbors,
which is discarded during fusion to avoid artifacts caused by
artificial boundaries.

2) Step 2 - CNN prediction: We evaluate in parallel each
portrait p(i) with our fine-tuned network for flower identifica-
tion. The CNN is equivalent to a function f

f : p(i) → {m(i)
F ,m

(i)
B }, (1)

which maps each input p(i) into two pixel-dense scoremaps:
m

(i)
F ∈ Rr×r represents the pixel-wise likelihood that pixels in

p(i) belong to the foreground (i.e., flower), while m(i)
B ∈ Rr×r

corresponds to the pixel-wise background likelihood. The
heatmaps in Figures 3(a) and (b) are examples of scoremaps
computed for a given portrait.

(a) m(i)
B (b) m(i)

F
(c) Coarse
segmentation

(d) Refined
segmentation

Fig. 3: Best viewed in color. Example of segmentation refine-
ment for a given pair of scoremaps. a) Background scoremap
m

(i)
B . b) Foreground scoremap m(i)

F . c) Coarse segmentation by
direct thresholding of the scoremaps. d) Refined segmentation
using RGR.

3) Step 3 - Fusion and refinement: After evaluating each
portrait, we generate two global scoremaps MB and MF by
combining the predictions obtained for all p(i) ∈ P . Let c(i)

represent the pixel-coordinates of p(i) in I after discarding the
padding pixels. The fusion procedure is defined as

∀p(i) ∈ P, MF,B(c
(i)) = m

(i)
F,B , (2)

such that both scoremaps MB and MF have the same resolu-
tion as I . As illustrated in Figure 2, the padded areas of m(i)

F,B

(outside the red box) are discarded during fusion. For every
pixel in the image, a single prediction score is obtained from
exactly one portrait, such that artifacts introduced by artificial
boundaries are avoided.

After fusion, the scoremaps MB and MF are normalized
into scoremaps M̃B and M̃F using a softmax function

M̃F,B(qj) =
exp(MF,B(qj))

exp(MB(qj)) + exp(MF (qj))
, (3)

where qj is the j-th pixel in the input image I . With this
formulation, for each pixel qj the scores M̃B(qj) and M̃F (qj)
add to one, i.e. they correspond to the probability that qj
belongs to the corresponding class.

As Figure 3(c) shows, the predictions obtained directly from
the CNN are coarse in terms of adherence to actual flower
boundaries. Therefore, rather than directly thresholding M̃F ,
this scoremap and the image I are fed to the RGR refinement
module described in [32]. For our application, the refinement
algorithm relies on two high-confidence classification regions
RF and RB defined according to

RF,B =
{
qj |M̃F,B(qj) > τF,B

}
, (4)

where τB and τF are the high-confidence background and
foreground thresholds. Using the high-confidence regions as
starting points, the RGR algorithm performs multiple Monte
Carlo region growing steps that groups similar pixels into
clusters. Afterwards, it performs majority voting to classify
each cluster according to the presence of flowers. Each pixel
qj within a cluster contributes with a positive vote if its
score M̃F (qj) is larger than a threshold τ0. As detailed in
Section V, this parameter can be empirically tuned according
to the dataset under consideration. Based on a grid-search
optimization on our training dataset, we selected τ0 = 0.3 for
all our experiments and fixed τB = 0.1 and τF = 1.25× τ0.

IV. DATASETS

We evaluate our method on four datasets that we created and
made publicly available: AppleA, AppleB, Peach, Pear [13].
As summarized in Table I, images from different fruit flower
species were collected in diverse uncontrolled environments
and under different angles of capture.

Both datasets AppleA and AppleB are composed of images
of apple trees, which were collected in a USDA orchard on
a sunny day. In both datasets, the trees are supported with
trellises and planted in rows. AppleA is a collection of 147
images acquired using a hand-held camera. From this total,
we randomly selected 100 images to build the training set
used to train the CNN. Out of the remaining 47 images, 30
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TABLE I: Datasets specifications.

Dataset No. images Weather Background
panel

Camera
model Resolution Camera

support
AppleA 100 (train) + 30 (val) Sunny No Canon EOS 60D 5184× 3456 Hand-held
AppleB 18 Sunny Yes GoPro HERO5 2704× 1520 Utility vehicle
Peach 24 Overcast No GoPro HERO5 2704× 1520 Hand-held
Pear 18 Overcast No GoPro HERO5 2704× 1520 Hand-held

TABLE II: HSV statistics of images composing each dataset.

H [0− 360◦] S [%] V [%]
Dataset µH IQRH µS IQRS µV IQRV

AppleA 74.6 49.3 32.9 24.3 53.7 30.2
AppleB 219.6 21.1 88.6 44.3 47.1 16.9
Peach 223.8 199.9 11.8 20.7 42.3 46.6
Pear 85.9 178.8 16.4 23.4 42.4 20.8

TABLE III: HSV statistics of flowers composing each dataset.

H [0− 360◦] S [%] V [%]
Dataset µH IQRH µS IQRS µV IQRV

AppleA 136.6 205.5 6.3 9.8 77.3 24.3
AppleB 56.3 80.2 7.5 9.8 86.7 23.1
Peach 325.2 26.7 21.2 13.3 50.2 13.7
Pear 215.4 173.2 5.9 5.9 84.7 22.4

were randomly selected to compose the testing set for which
we report results in Section V.

This dataset contains flowers that greatly vary in terms of
size, cluttering, occlusion by leaves and branches. Flowers
composing its images have an average area of 10, 730 pixels,
but with a standard deviation of 17, 150 pixels. On average,
flowers compose only 2.5% of the total image area within this
dataset, which is otherwise vastly occupied by leaves.

Differently from AppleA, for the AppleB dataset, a utility
vehicle equipped with a background unit was used for imaging,
such that trees in other rows are not visible in the images. Fig-
ure 4 illustrates the utility vehicle used for image acquisition,
and Figures 6 and 7 illustrate the differences between datasets
AppleA and AppleB.

Fig. 4: Best viewed in color. Utility vehicle used for imaging.
For the AppleB dataset, this vehicle was used in conjunction
with a background panel.

The Peach and Pear datasets differ both in terms of species
and acquisition conditions, therefore representing adequate
scenarios for evaluating the generalization capabilities of the
proposed method. Both datasets contain images acquired on
an overcast day and without a background unit. Compared to
the AppleA dataset, images composing these datasets present
significantly lower saturation and value means. Tables II and
III summarize the differences among datasets in terms of the
statistics of the HSV color components, where µ stands for
mean values and IQR for interquartile ranges.

Regarding the flower characteristics, apple blossoms are
typically white, with hue components spread in the whole
spectrum (high IQRH ) and low saturation mean. Flowers
composing the AppleB dataset present higher brightness (µV ),
while peach flowers show a pink hue centered on µH = 325◦,
with higher saturation and lower value means. Moreover, pear
flowers are slightly different in terms of color (greener) and
morphology, as illustrated in Figure 9.

A. Labeling

Image annotation for segmentation tasks is a laborious and
time-consuming activity. Labels must be accurate at pixel-
level, otherwise both supervised training and the evaluation
of segmentation techniques are compromised. Most existing
annotation tools rely on approximating segmentations as poly-
gons, which provide ground truth images that frequently lack
accurate adherence to real object boundaries [32].

Fig. 5: Best viewed in color. Example of ground truth
obtained from freehand annotations. Left: positive examples
are annotated in blue, while hard negatives are indicated in
red. Right: segmentation obtained after RGR refinement.

We opted for a labeling procedure that combines freehand
annotations and RGR refinement [32]. Using a tablet, the user
draws traces on regions of the image that contain flowers,
indicating as well hard negative examples when necessary.
These traces indicate high-confidence segmentation points,
which are used as reference by RGR to segment the remaining
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parts of the image. Figure 5 shows an example of a ground
truth segmentation obtained using this procedure1.

V. EXPERIMENTS AND RESULTS

We aim at a method capable of accurate multi-species flower
detection, regardless of image acquisition conditions and with-
out the need for dataset-specific training or pre-processing.
To verify that our method satisfies all these requirements, we
performed experiments on the four different datasets described
in Section IV while only using the AppleA dataset for training.

We adopt as the main baseline our previous model described
in [11], which highly outperformed existing methods by em-
ploying the Clarifai CNN architecture to classify individual su-
perpixels. We therefore refer to that model as SPPX+CLARIFAI
and to our new method as DEEPLAB+RGR. We also compare
our results against a HSV-BASED method [15] that segments
images based only on HSV color information and size filtering
according to threshold values optimized using grid-search.

True Positives False Negatives False Positives

Fig. 6: Best viewed in color. Examples of flower detection in
one image composing the AppleA dataset.

True Positives False Negatives False Positives

Fig. 7: Best viewed in color. Examples of flower detection in
one image composing the AppleB dataset.

1We will make the annotation tool publicly available as future work.

All three methods were tuned using the AppleA training
dataset, with differences in the pipeline for transfer learning.
For the three unseen datasets, the SPPX+CLARIFAI relies
on a pre-processing step that enhances contrast and removes
the different backgrounds present in the images. Our new
method DEEPLAB+RGR does not require any pre-processing.
Instead, it employs the same pipeline regardless of the dataset,
requiring only adjustments in portrait size. As summarized in
Table I, images composing the AppleA dataset have resolution
4.3× larger than images in the other three datasets. Thus, we
split images in these datasets into portraits of 155×155 pixels,
rather than the 321× 321 pixels portraits used for AppleA.

The quantitative analysis of segmentation accuracy relies on
precision, recall, F1 and intersection-over-union (IoU) metrics
[29] computed at pixel-level, instead of the superpixel-wise
metrics used in our previous work. Table IV summarizes the
results obtained by each method on the different datasets.

TABLE IV: Summary of results obtained for each method.

IoU F1 Recall Precision

AppleA
HSV-BASED 28.0% 43.7% 56.5% 35.7%
SPPX+CLARIFAI 51.3% 67.8% 73.2% 63.1%
DEEPLAB+RGR 71.4% 83.3% 87.7% 79.4%

AppleB
HSV-BASED 49.3% 66.0% 58.9% 75.1%
SPPX+CLARIFAI 50.6% 67.2% 68.4% 66.1%
DEEPLAB+RGR 63.0% 77.3% 91.2% 67.1%

Peach
HSV-BASED 0.1% 1.4% 1.4% 1.6%
SPPX+CLARIFAI 49.1% 67.2% 71.3% 61.2%
DEEPLAB+RGR 59.0% 74.2% 64.8% 86.8%

Pear
HSV-BASED 39.7% 56.8% 65.6% 50.1%
SPPX+CLARIFAI 40.5% 57.6% 49.6% 68.7%
DEEPLAB+RGR 75.4% 86.0% 79.2% 94.1%

Our new model outperforms the baseline methods for all
datasets evaluated, especially in terms of generalization to
unseen datasets. By combining a deeper CNN architecture and
the RGR refinement module, DEEPLAB+RGR improves both
prediction and recall rates in the validation AppleA set by more
than 15%. Figure 6 provides a qualitative example of flower
detection accuracy in this dataset.

As Figure 7 illustrates, images composing the AppleB
dataset present a higher number of flower buds and illumi-
nation changes, especially in terms of sunlight reflection by
leaves. Despite the larger variance in comparison to the pre-
vious dataset, the performance obtained by DEEPLAB+RGR
surpasses 77% in terms of F1.

Results obtained for the Peach dataset demonstrate the
limitation of color-based methods and two important general-
ization characteristics of our model. The HSV-BASED method
is incapable of detecting peach flowers, since their pink color
is very different from the white apple blossoms used for
training. On the other hand, our method presents F1 near
75%, indicating that it can properly detect even flowers that
differ to a great extent from apple flowers in terms of color.
Moreover, images composing this dataset are characterized by
a cloudy sky and hence poorer illumination. Most cases of
false negatives correspond to flower buds, due to the lack of
such examples in the training dataset. As illustrated in Figure
8, poor superpixel segmentation leads the SPPX+CLARIFAI
approach to incorrectly classify parts of the sky as flowers.
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True Positives False Negatives False Positives

Fig. 8: Best viewed in color. Examples of flower detection in one image composing the Peach dataset. Left: detections provided
by the SPPX+CLARIFAI method. Right: detections obtained with our new DEEPLAB+RGR method.

This problem is overcome by our new model, which greatly
increases precision rates to above 80%.

True Positives False Negatives False Positives

Fig. 9: Best viewed in color. Examples of flower detection in
one image composing the Pear dataset.

Furthermore, the high recall rate provided by
DEEPLAB+RGR in the Pear dataset demonstrates its
robustness to slight variations in both flower morphology
and color. As shown in Figure 9, similar to the Peach
dataset, these images also present a cloudy background. In
addition to that, their background is characterized by a high
level of clutter caused by the presence of a large number
of branches. These high texture components compromise
the background removal model used by SPPX+CLARIFAI.
Still, the DEEPLAB+RGR method provides a very accurate
detection of flowers, with precision above 90%.

The results obtained by our method for AppleB, Peach
and Pear datasets can be further improved by adjusting the
parameter τ0 used for final classification and refinement. As
summarized in Figure 10, increasing τ0 from 0.3 to 0.5
increases in 3% the F1 performance on AppleB, reaching
both recall and precision levels around 80%. For the Peach
dataset, decreasing τ0 to 0.2 increases the recall rate to above
70%. Such adjustment can be carried out quickly through a
simple interactive procedure, where τ0 is chosen according to
its visual impact on the segmentation of a single image.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0

20

40

60

80

F
1
[%

]
AppleA

AppleB

Peach

Pear

Fig. 10: Segmentation performance in terms of F1 measure on
each dataset according to the parameter τ0.

In terms of inference time, the current implementation
of our algorithm on an Intel XeonTMCPU E5-2620 v3 @
2.40GHz (62GB) with a Quadro P6000 GPU requires on
average 50 seconds to evaluate each high-resolution image
composing our datasets. Around 5 seconds are required to save
portraits as individual files and load their corresponding pre-
diction scores, a process that can be simplified by generating
portraits directly within the neural network framework.

VI. CONCLUSION

We have presented a novel automated approach for flower
detection, which exploits state-of-the-art deep learning tech-
niques for semantic image segmentation. The applicability of
our method was demonstrated by its high flower segmentation
accuracy across datasets that vary in terms of illumination
conditions, background composition, image resolution, flower
density and flower species. Without any supervised fine-tuning
or image pre-processing, our model trained using only images
of apple flowers succeeded in generalizing for peach and pear
flowers, which are noticeably different in terms of color and
morphology.

In the future, we intend to further improve the generalization
capabilities of our model by training and evaluating it on
multi-species flower datasets. We ultimately aim at a com-
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pletely autonomous system capable of online bloom intensity
estimation. The current implementation of our model can
evaluate high-resolution images of complete trees an order of
magnitude faster than human workers. While in this work we
are not creating maps of flowers at the block level, this method
will scale well for precision agricultural applications such as
predicting thinning spray treatments and timing.
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