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Nonnegative Joint Diagonalization by Congruence
Based on LU Matrix Factorization

Lu Wang, Student Member, IEEE, Laurent Albera, Senior Member, IEEE, Amar Kachenoura,
Huazhong Shu, Senior Member, IEEE, and Lotfi Senhadji, Senior Member, IEEE

Abstract—In this letter, a new algorithm for joint diagonaliza-
tion of a set of matrices by congruence is proposed to compute the
nonnegative joint diagonalizer. The nonnegativity constraint is im-
posed bymeans of a square change of variables. Then we formulate
the high-dimensional optimization problem into several sequential
polynomial subproblems using LU matrix factorization. Numer-
ical experiments on simulated matrices emphasize the advantages
of the proposed method, especially in the case of degeneracies such
as for low SNR values and a small number of matrices. An illus-
tration of blind separation of nuclear magnetic resonance spec-
troscopy confirms the validity and improvement of the proposed
method.

Index Terms—Blind source separation, independent component
analysis, LU factorization, nonnegative joint diagonalization by
congruence, nuclear magnetic resonance spectroscopy.

I. INTRODUCTION

Consider a set of real symmetric matrices
sharing the common structure:

(1)

where denotes an unknown transformation matrix,
and is a set of unknown real diagonal ma-
trices. is called a joint diagonalizer of . According to different
applications, the matrices can be time-delayed covariance
matrices, or higher order cumulant matrix slices. The objective of
Joint Diagonalizing by Congruence (JDC) such matrices consists
of estimating up to a scale factor and a permutation of columns.
Such a problem appears in many signal processing contexts such
as Blind Source Separation (BSS) and Independent Component
Analysis (ICA). Some BSS applications involve a nonnegative
mixing matrix . For instance, in Nuclear Magnetic Resonance
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(NMR) spectroscopy, columns of represent the positive con-
centration of source metabolites [13]. Therefore we propose to
impose a nonnegativity constraint on the matrix in the JDC
problem. Generally, can be estimated either indirectly or di-
rectly [4]:
1) Indirect algorithms, such as JAD [3], FFDIAG [22], QDIAG
[18], LUJ1D [1], FLEXJD [21], J-DI [14] and CVFFDIAG
[19], estimate from the inverse of a transformation ma-
trix , which minimizes the non-diagonal parts of
using the following criterion:

(2)

where eliminates the non-diagonal parts of its input
and denotes the Frobenius norm. These algorithms use
additional constraint on , such as orthogonality [3] or unit-
determinant [1], in order to avoid the trivial solution . There
also exist some other criterions. For example, LUJ2D [1]
minimizes a scale and permutation invariant criterion. An
information theoretic criterion is proposed by Pham [12] and
adopted by Joho [8] and Todros et al. [16], which requires
the target set to be positive definite. However, the nonneg-
ativity of can be hardly guaranteed in such approaches.

2) ACDC [20] and the subspace fitting algorithm [17] directly
estimate and the set in order to best approximate the
target set by minimizing the following criterion:

(3)

Herein the nonnegativity of can be enforced explicitly.
In this letter, we present a nonnegative JDC algorithm based on

criterion (3), which is committed to seek a nonnegative joint di-
agonalizer . The nonnegativity constraint is imposed by means
of a square change of variable. Then the high-dimensional op-
timization problem is formulated into several sequential polyno-
mial subproblems using LU matrix factorization. Numerical ex-
periments on simulated matrices emphasize the advantages of the
proposed method, especially in the case of degeneracies such as
for low Signal to Noise Ratio (SNR) values and a small number
of matrices. An illustration of blind separation of NMR spec-

troscopy confirms the validity and improvement of the proposed
method.

II. NONNEGATIVE JOINT DIAGONALIZATION

A way of including the nonnegativity constraint in (3) is
through a square change of variable with
as originally proposed in [5] for Nonnegative Matrix Factoriza-
tion (NMF), where stands for Hadamard product. Then (3) can
be reformulated as the following unconstrained problem:

(4)

 



 

Minimizing (4) is the main purpose of this paper. To estimate ,
based on LUmatrix factorization, the high dimensional optimiza-
tion is reduced to search a sequence of sparse triangular matrices.
Let’s recall the following definition:
Definition 1: A unit triangular matrix is a triangular matrix

whose main diagonal elements are equal to 1.
Then any matrix with full column rank can be factorized as

, where is a unit lower triangular matrix,
and , and are unit upper triangular matrix, diagonal
matrix and permutation matrix, respectively. Hence, due to the
fact that and the indeterminacies of
the JDC problem, the matrix solving (4) can be chosen as

without loss of generality. Now, let’s consider the following
definition and lemma:
Definition 2: An elementary triangular matrix is a

unit triangular matrix whose non-diagonal elements are zeros ex-
cept the -th entry, which is equal to .
Lemma 1: Any unit lower (or upper) triangular matrix be-

longing to can be factorized as a product of
elementary lower (or upper, respectively) triangular ma-

trices.
The proof of lemma 1 is straightforward by reducing (or )

into an elementary triangular matrix whose all non-diagonal ele-
ments are zeros, using Gaussian elimination. Lemma 1 yields that
can be written as a product of elementary triangular matrices:

(5)

where is defined for the sake of convenience: it stands
for when and for when with

being the total number of elementary lower
and upper triangular matrices. The sizes of all the and

matrices are and , respectively, ex-
cept that of which is . Ideally the mini-
mization of (4) consists of finding matrices and the
diagonal matrix set such that is a
global minimum. As Yeredor’s ACDC (Alternating Columns and
Diagonal Centers) algorithm [20], the algorithm proposed in this
paper alternates between two minimization schemes:
• The AC (“Alternating Columns”) phase1 minimizes (4) with
respect to (w.r.t) one matrix of , while keeping
its other factors as well as fixed.

• The DC (“Diagonal Centers”) phase minimizes (4) w.r.t the
diagonal matrix set while keeping fixed.

Hence, we name the proposed algorithm .

A. AC Phase

In this phase, we minimize (4) w.r.t . Instead of si-
multaneously computing these matrices, each with
a selected index is identified sequentially. Suppose that
and are the current estimate of and , respectively. The up-
date of by one is . Then we can show
the following lemma:

1The update of by right multiplying with different index
affects the -th column of sequentially. Thus we retain the terminology ‘Al-
ternating Columns phase’.

Lemma 2: The Hadamard square of the update is given by:

(6)

where and denote the -th and -th columns of respec-
tively, and is the -th column of the identity matrix.
The proof of lemma 2 is omitted due to lack of space. The

optimization of (4) w.r.t only consists of minimizing
the following cost function:

(7)

Inserting (6) into (7), the only unknown variable can be com-
puted by minimizing the following cost function:

(8)

with:

(9)

where denotes the -th entry of . Equation (8) shows
that is a 8-th degree polynomial in . The global min-
imum can be obtained by computing the roots of its derivative
and selecting the root yielding the smallest value of .
Once the optimal is computed, the matrix is updated by
computing .
However, it is observed that if the matrix set well fulfills

the model (1), classical non-constrained JDC methods can give
nonnegative . In this situation, imposing the nonnegativity con-
straint explicitly is unnecessary and increases the computational
burden. Therefore, the nonnegativity constraint can be relaxed by
decomposing directly instead of using .
Each parameter can be found by minimizing the following
4-th degree polynomial:

(10)

In practice, it is suggested to compute by minimizing (10)
first. If all the elements in the -th column of have
the same sign, the update is adopted, where
denotes the absolute value. Otherwise, is computed by

minimizing (8). Then the AC procedure is repeated to estimate



with the next index. The processing of all the
factors is called a full AC iteration.

B. DC Phase

In this phase, the minimization of (4) w.r.t the diagonal ma-
trices can be separated into distinct linear least
square subproblems:

(11)

The optimal solution of given by [20] is:

(12)

where , and .
converts a matrix into a column vector by stacking its columns
vertically.
In this context, one sweep is referred to the combination of one

full AC iteration and one DC phase. The overall numerical com-
plexity per sweep is , which is higher than
of ACDC [20]. In practice, several sweeps are necessary to en-
sure convergence. One can stop the algorithm when the value
of , or the decrease of between two successive
sweeps falls below a fixed positive threshold. Such a stopping
criterion is guaranteed to be met since is non-increasing
in each sweep. We observed empirically that the proposed algo-
rithm converges linearly.

III. SIMULATION RESULTS

In this section, the proposed method is compared
with several state-of-the-art JDC methods and BSS algorithms.
The performance is measured in terms of the error between the
true joint diagonalizer and its estimate , as well as the source
and its estimate when a BSS context is considered. So the

scale and permutation invariant distance defined in [7] is chosen
as the preferred measure:

(13)

where the solution (13) requires to sweep all the permu-
tation matrices , and:

(14)

with and denoting the -th columns of and , respec-
tively. Moreover, we repeat all the experiments with 500 inde-
pendent Monte Carlo trials. All the algorithms stop either when
the relative error of the corresponding criterion between two suc-
cessive sweeps is less than or when the number of sweeps
exceeds 2000. In the following experiments, all the algorithms
are initialized by identity matrices. All the simulations are im-
plemented in Matlab v7.14 and run on Intel Duad-Core 2.8 GHz
CPU with 32 Gb memory.

A. Simulated JDC Model

In this test, the behavior of the proposed method
is evaluated and compared with several classical nonorthogonal
JDC methods, including one direct-type method, namely ACDC
[20], and three indirect-type methods, namely FFDIAG [22],
LUJ1D [1] and UWEDGE [15]. The synthetic matrix set is
generated randomly according to (1) with , and

Fig. 1. Error evolution versus SNR.

Fig. 2. Error evolution versus the number of matrices.

. and the diagonal part of are drawn from the
zero-mean unit-variance Gaussian distribution. Each resulting
target matrix is perturbed by a random symmetric “noise”
matrix as follows [4], [22]:

(15)

where is a scalar controlling the noise level and is drawn
from a standard normal distribution. Then the SNR is defined as

. We study the
influence of SNR and the effect of the number of matrices to
be jointly diagonalized.
Fig. 1 shows the average error as a function of SNR

ranging from 0 dB to 30 dB with . One can notice that
the direct-type algorithms ACDC and the proposed method

achieve better estimations than indirect-type methods.
maintains a competitive advantage over ACDC, es-

pecially when SNR values are below 15 dB. Fig. 2 depicts the
average error of the compared algorithms as a function
of the quantity varying from 3 to 30 with an SNR of 5 dB. As
the quantity grows, direct-type algorithms produce a larger
performance gain than indirect-type. It can be seen that the
proposed method gives the smallest estimation errors.
The interest of using nonnegativity is then significant in this
experimental context. The average running time of the compared
algorithms in the above experiments is presented in the upper
right corners of Fig. 1 and 2, respectively. It shows that the
proposed algorithm requires more time but can achieves better
results.

B. BSS Application on NMR Spectroscopy Data

In addition to the good performance of the proposed method
in simulated JDC model, we further illustrate its capability for
BSS. is compared with three well-known BSS algo-
rithms, namely the ICA methods CoM2 [6] and SOBI [2], and a



Fig. 3. NMR spectroscopy sourcemetabolites, mixtures and estimatedmetabo-
lites by , CoM2, SOBI and NNLS.

TABLE I
AVERAGE ESTIMATING ERRORS OF MIXING MATRIX ,

SOURCES AND COMPUTATION TIME OF FOUR METHODS
FOR BSS OF NMR SPECTROSCOPY SIGNALS

NMF method based on alternating NonNegativity Least Squares
(NNLS) [9], through an experiment carried out on simulated
NMR spectroscopy data [11]. Two source metabolites, namely
the Choline (Cho) and Myo-inositol (Ins) (see Fig. 3(a)), are
generated by means of Lorenzian functions with fixed parameters
for a realistic representation [10]. It is assumed that the linear
mixing model is valid, where is an additive white
Gaussian noise with an SNR of 30 dB. 10 linear observations
(see Fig. 3(b)) are created with similarly generated as in the
previous section. The matrix set is built using 100 4-th order
cumulant matrix slices.
Table I shows the average estimation errors of the

mixing matrices, that of the source metabolites and the
computation time of the compared methods. From the results of
NNLS and , it is obvious that the nonnegativity con-
straint allows us to improve the estimation since the two sources
are not totally independent. In addition, the proposed
method gives the smallest estimating errors both for and . The
estimated sources displayed in Fig. 3(c) to 3(f) coincide with the
results shown in Table I. Regarding the unconstrained methods,
SOBI can not separate both sources and CoM2 can not eliminate
the influence of the Ins peak in the estimated Cho metabolite.
NNLS gives a good result, but the two metabolites still slightly
exist in each other’s estimate. As far as is concerned,
the estimated sourcemetabolites are quasi-perfect. It appears that,
in this experimental context, the proposed technique
based on a nonnegativity constraint improves the BSS perfor-
mance in an acceptable running time.

IV. CONCLUSION

In this letter, we propose a novel nonnegative joint diagonaliza-
tion by congruence algorithm named which computes

a nonnegative joint diagonalizer. Simulation results illustrate its
improvement in dealing with degenerate JDC models and its po-
tential usefulness in BSS applications.
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