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Abstract—We present a categorical theory of the composition
methods in finite model theory – a key technique enabling
modular reasoning about complex structures by building them
out of simpler components. The crucial results required by the
composition methods are Feferman–Vaught–Mostowski (FVM)
type theorems, which characterize how logical equivalence be-
haves under composition and transformation of models.

Our results are developed by extending the recently introduced
game comonad semantics for model comparison games. This level
of abstraction allow us to give conditions yielding FVM type
results in a uniform way. Our theorems are parametric in the
classes of models, logics and operations involved. Furthermore,
they naturally account for the positive existential fragment, and
extensions with counting quantifiers of these logics. We also reveal
surprising connections between FVM type theorems, and classical
concepts in the theory of monads.

We illustrate our methods by recovering many classical theo-
rems of practical interest, including a refinement of a previous
result by Dawar, Severini, and Zapata concerning the 3-variable
counting logic and cospectrality. To highlight the importance of
our techniques being parametric in the logic of interest, we prove
a family of FVM theorems for products of structures, uniformly
in the logic in question, which cannot be done using specific game
arguments.

I. INTRODUCTION

Composition methods constitute a family of techniques in
finite model theory for understanding the logical properties of
complex structures [1]. One works in a modular fashion, build-
ing a structure out of simpler components. The larger structure
can then be understood in terms of the logical properties of
its parts, and how they behave under the operations used in
the construction.

The first result of this type was proved by Mostowski [2],
who showed that the first-order theory of the product of two
structures A×B is determined by the first-order theories of A
and B. Later, Feferman and Vaught famously proved a very
general result for first-order logic, which included showing
that the same holds true for infinite products and infinite
disjoint unions of structures of the same type [3]. Since then
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many more Feferman–Vaught–Mostowski (FVM) theorems1

have been shown for various operations, logics and types of
structures. These theorems have important applications in the
theory of algorithms [4], for example in the development of
algorithmic meta-theorems such as Courcelle’s theorem [5].

For our purposes, the typical form of an FVM theorem for a
fixed n-ary operation H and logics L1, . . . , Ln+1 is as follows.
Given structures A1, . . . , An and B1, . . . , Bn,

For all i, Ai ≡Li Bi,
implies H(A1, . . . , An) ≡Ln+1

H(B1, . . . , Bn).
(1)

Here ≡L denotes equivalence with respect to the logic L.
Typically, n is either one or two. For example, writing ≡FO
for equivalence in first-order logic, Mostowski’s result is given
in the form of (1) as:

A1 ≡FO B1 and A2 ≡FO B2 implies A1×A2 ≡FO B1×B2

A key tool in finite model theory for establishing that two
structures are logically equivalent is that of a model com-
parison game. Examples of such games are the Ehrenfeucht–
Fraïssé [6], [7], pebbling [8] and bisimulation games [9],
establishing equivalence in fragments of first order and modal
logic. FVM theorems are typically proven using these games,
building a winning strategy for the composite structure out of
winning strategies for the components.

Despite their usefulness, working with model comparison
games often requires intricate combinatorial arguments that
have to be carefully adapted with even the slightest change of
problem domain. To mitigate the difficulty with using game
arguments directly, finite model theorists introduced higher-
level methods such as locality arguments or 0–1 laws to
establish model equivalences or inexpressibility.

The recently introduced game comonad framework [10],
[11] provides a new such tool. This provides a unifying
formalism for reasoning about model comparison games, using
categorical methods. The definition of a comonad enables a
transfer of results from the formally dual theory of mon-
ads, commonly encountered in the categorical semantics of
computation and universal algebra [12], [13], [14]. Game
comonads are designed to encapsulate a particular model
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comparison game, and are the key abstraction allowing us
to give uniform results, whilst avoiding making arguments
specific to a particular logic or its corresponding game.

The early work on game comonads focused on capturing
many important logics [15], [16], [17], laying the foundations
for further developments. More recent results recover classical
theorems from finite model theory, as well as completely new
results [18], [19], [20], [21]. See [22] for a recent survey
and [23] for an axiomatic formulation.

Until now, there has been no account of the composition
method with the game comonad framework. We close this
gap by introducing a novel method for proving FVM theorems
within the game comonad approach, giving results uniformly
in the classes of structures, operations and logics involved. In-
stantiating the abstract results for our example game comonads
yields concrete FVM theorems with respect to three typical
fragments of first-order logic:

1) the positive existential fragment, i.e. the fragment of first-
order logic of formulas not using universal quantification
or negations,

2) counting logic, i.e. the extension of first-order logic with
counting quantifiers,

3) full first-order logic.

As is standard in finite model theory [1], [24], it is natural to
grade these logics by a resource parameter, such as quantifier
depth. Correspondingly, the game comonadic approach to
grading is to consider collections of comonads Ck, indexed
by a resource parameter k. As a source of concrete examples
we shall consider three particular game comonads, Ek, Pk and
Mk. The pair Ek and Pk capture first-order logic, with their
resource parameters being quantifier depth and variable count
respectively. The comonad Mk encapsulates modal logic up
to modal depth k.

Conventionally, proving an FVM theorem involves cleverly
combining several winning model-comparison game strategies
to form a winning strategy on the composite structures. In our
game comonads approach, we only need to find a collection
of morphisms of a specified form to obtain an FVM theorem
for the positive existential logic. This collection of morphisms
is a formal witness to a combination of strategies. Perhaps
surprisingly, to witness equivalence in the counting logic,
the same collection of morphisms only has to satisfy two
additional axioms which coincide with the standard definition
of Kleisli law [25].

Although of practical interest, the FVM theorems in Sec-
tions III and IV are relatively straightforward to prove. We
present them in detail for pedagogical reasons to develop
the ideas gradually. The abstract FVM theorem for the full
fragment is more technically challenging. This theorem shows
that two additional assumptions suffice to extend an FVM
theorem from counting logic to the full logic. We can rephrase
these assumptions categorically as showing the operation lifts
to a parametric relative right adjoint over an appropriate
category. Surprising connections arise with classical results in
monad theory, generalizing the notion of bilinear map and its

classifying tensor product from ordinary linear algebra [26],
[27].

Our three running example game comonads Ek,Pk,Mk

are introduced in Section II, along with some necessary
background on comonads. Sections III, IV and V all follow
the same pattern. We introduce the categorical structure ab-
stracting logical equivalence with respect to the studied logical
fragment, establish the corresponding categorical FVM theo-
rem and illustrate this with concrete examples. The examples
in Section IV include a new refinement of a result by Dawar,
Severini, and Zapata [28], showing that equivalence in 3-
variable counting logic without equality and with restricted
conjunctions implies cospectrality. Section VI develops FVM
theorems for products of structures, uniformly in the logic
of interest, greatly generalising Mostowski’s original result.
Unlike our methods, which are parametric in the choice of
game comonad, a typical game argument cannot be used to
prove such a result, as the game is tied to a specific choice of
logic.

In fact, the game comonads Ek and Pk naturally deal with
first-order logic without equality. There is a standard and
very flexible technique for incorporating equality, and other
“enrichments” of logics [11]. This is introduced and related
to FVM theorems in Section VII, and illustrated with further
examples, including the handling of weak-bisimulation.

II. PRELIMINARIES

A. Categories of Relational Structures

We assume the basic definitions of category theory, includ-
ing categories, functors and natural transformations, as can
be found in any standard introduction such as [29] or [30].
Background on comonads, and any less standard material is
introduced as needed.

A relational signature σ is a set of relation symbols, each
with an associated strictly positive natural number arity. A σ-
structure A consists of a universe set, also denoted A, and for
each relation symbol R ∈ σ of arity n, an n-ary relation RA

on A. A morphism of σ-structures f : A→ B is a function of
type A→ B, preserving relations, in the sense that for n-ary
R ∈ σ

RA(a1, . . . , an) implies RB(f(a1), . . . , f(an)).

For a fixed σ, σ-structures and their morphisms form our
main category of interest R(σ). We will also have need of
the category of pointed relational structures R∗(σ). Here the
objects (A, a) are a σ-structure A with a distinguished element
a ∈ A. The morphisms are σ-structure morphisms that also
preserve the distinguished element.

B. Comonads

A comonad in Kleisli form on a category C is a triple
(C, ε, (−)∗) where C is an object map obj(C) → obj(C),
the counit ε is an obj(C)-indexed family of morphisms
εA : C(A) → A, for A ∈ obj(C). Lastly, the operation (−)∗



maps morphisms f : C(A) → B to their coextension
f∗ : C(A)→ C(B), subject to the following equations:

(εA)
∗ = idC(A), εB ◦ f∗ = f, (g ◦ f∗)∗ = g∗ ◦ f∗, (2)

It is then standard [14] that C extends to a functor, with the
action on morphisms defined by C(f) = (f ◦ εA)∗. Also, the
counit is a natural transformation C ⇒ Id, from C to the
identity functor Id : C → C and the morphisms δA := id∗C(A) :
C(A) → C2(A) form a comultiplication natural transforma-
tion satisfying ε ◦ δ = id = C(ε) ◦ δ and δ ◦ δ = C(δ) ◦ δ.

We now introduce the game comonads that we shall reg-
ularly refer to in our examples. Each is parameterized by a
positive integer k. We shall write A+ for the set of non-empty
words over A, and A≤k for its restriction to words of at most k
elements. The first two comonads are defined over R(σ):
Ehrenfeucht–Fraïssé comonad Ek: The universe of Ek(A)
is A≤k. The counit εA maps [a1, . . . , an] to an. R ∈ σ an
n-ary relation symbol, REk(A)(s1, . . . , sn) iff:

1) the si are pairwise comparable in the prefix order on words,
and

2) RA(εA(s1), . . . , εA(sn)).
The coextension of h : Ek(A)→ B is

h∗([a1, . . . , an]) = [h([a1]), . . . , h([a1, . . . , an])].

Pebbling comonad Pk: The universe of Pk(A) is

({0, . . . , k − 1} ×A)+.

The counit εA maps [(p1, a1), . . . , (pn, an)] to an. We refer
to the first element in a pair (p, a) as a pebble index. For
n-ary R ∈ σ, RPk(A)(s1, . . . , sn) iff:

1) The si are pairwise comparable in the prefix order on words.
2) For si, sj with si a prefix word of sj , the pebble index

of the last pair of si does not reappear in the remaining
elements of sj .

3) RA(εA(s1), . . . , εA(sn)).
For h : Pk(A)→ B, the coextension h∗ acts on words as:

h∗([(p1, a1), . . . , (pn, an)]) :=

[(p1, h([a1])), . . . , (pn, h([a1, . . . , an]))]

We say that a signature σ is a modal signature if it only has
relational symbols of arity one or two.
Modal comonad Mk: Defined over R∗(σ) for a modal sig-
nature σ, the universe of Mk(A, a0) consists of paths in A
starting from a0, i.e. sequences

a0
R1−−→ a1

R2−−→ a2
R3−−→ . . .

Rn−−→ an

such that n ≤ k and, for every i, Ri ∈ σ and RAi (ai−1, ai).
The counit and coextension act as for Ek.
Given a sequence s′ = a0

R1−−→ . . .
Rn−1−−−→ an−1 and its exten-

sion s by an−1
Rn−−→ an in Mk(A, a0), then R

Mk(A,a0)
n (s′, s)

and RMk(A,a0)
n only consists of such pairs. For a unary P ∈ σ,

PMk(A,a0)(s) iff PA(an).

Theorem II.1 ([10], [11]). Ek, Mk and Pk are comonads in
Kleisli form.

The intuition for each of these comonads is that they encode
the moves within one structure during the corresponding model
comparison game. We shall introduce their mathematical
properties as needed in later sections. See [11] for detailed
discussions of all three comonads.

III. FVM THEOREMS FOR POSITIVE EXISTENTIAL
FRAGMENTS

For a game comonad C, we introduce the following two
relations on structures:
• AV∃+C B if there exists a morphism C(A)→ B.
• A ≡∃+C B if AV∃+C B and B V∃+C A.

It is a standard fact, formulated categorically in [11], that
A V∃+Ek B if and only if for every positive existential
sentence ϕ of quantifier depth at most k, A |= ϕ implies
B |= ϕ, and therefore A ≡∃+Ek B if and only if structures A
and B agree on the quantifier depth k fragment. Similarly,
A V∃+Pk B and A ≡∃+Pk B correspond to the same
relationships, but for the k variable fragment [10].
Remark III.1. For conciseness, in this section, and Sections IV,
V and VI, references to first-order logic implicitly means
the variant without equality and with infinite conjunctions
and disjunctions. We shall return to the variant with equality
in Section VII. Note that logical equivalence of two finite
structures in a fragment of logic with infinite conjunctions
and disjunctions is the same as in the corresponding fragment
of first-order logic with finite conjunctions and disjunctions.

We now consider FVM theorems for V∃+C and ≡∃+C,
parametric in C. To motivate our abstract machinery, we first
consider a warm-up example, that is nevertheless sufficient to
highlight the key ideas. For a signature σ, and τ ⊆ σ, the
τ -reduct of a σ-structure A is the τ -structure on the same
universe which interprets all the relation symbols in τ as in
A. We aim to show that equivalence in positive existential
first-order logic with quantifier rank ≤ k is preserved by
taking τ -reducts of σ-structures for any τ ⊆ σ. We can view
the τ -reduct operation as a functor (−)|τ : R(σ) → R(τ).
Observe that taking reducts admits an FVM theorem for the
Ehrenfeucht–Fraïssé comonad Ek, viewed as a comonad on
both R(σ) and R(τ) categories. Given the logical reading of
V∃+Ek , it is an easy observation that A V∃+Ek B implies
A|τ V∃+Ek B|τ . Indeed, if the positive existential sentences
of quantifier depth ≤ k in signature σ that are true in A are also
true in B, then the same must hold for the positive existential
sentences in the reduced signature τ .

In this case, the FVM theorem can be proved using an
ad-hoc argument about the operation involved. However, to
identify a general strategy, we would like to prove this
fact categorically. Given a morphism f : Ek(A) → B in
R(σ) witnessing A V∃+Ek B, we wish to construct an
f : Ek(A|τ ) → B|τ witnessing A|τ V∃+Ek B|τ . To this end,
observe that there is a morphism of τ -structures

κA : Ek(A|τ )→ Ek(A)|τ



which sends a word [a1, . . . , an] in Ek(A|τ ) to the same word
in Ek(A)|τ . Therefore, f can be computed as the composite

Ek(A|τ )
κA−−→ Ek(A)|τ

f |τ−−→ B|τ . (3)

It is immediate that, since the definition of κA was not
specific to A, there is such a morphism for every structure.
Consequently, we obtain the following trivial pair of FVM
theorems:

AV∃+Ek B implies A|τ V∃+Ek B|τ
A ≡∃+Ek B implies A|τ ≡∃+Ek B|τ

As this exercise demonstrates, all that is required to prove an
FVM theorem for the relationsV∃+Ek or ≡∃+Ek , and a unary
operation H , is to define for every structure A a morphism of
σ-structures κA : Ek(H(A)) → H(Ek(A)). It is not difficult
to see that the same proof goes through when we parameterise
over the comonads involved and allow operations of arbitrary
arity. We obtain our first abstract FVM theorem.

Theorem III.2. Let C1, . . . ,Cn and D be comonads on
categories C1, . . . , Cn, and D respectively, and

H : C1 × · · · × Cn → D

a functor. If for every A1 ∈ obj(C1), . . . , An ∈ obj(Cn) there
exists a morphism

D(H(A1, . . . , An))
κA1,...,An−−−−−→ H(C1(A1), . . . ,Cn(An)) (4)

in D, then

A1 V∃+C1
B1, . . . , An V∃+Cn Bn

implies

H(A1, . . . , An)V∃+D H(B1, . . . , Bn)

The same result holds when replacing V∃+C with ≡∃+C.

Remark III.3 (Infinitary Operations). For readability reasons,
we state this as well as the other abstract FVM theorems,
such as Theorems IV.4 and V.14 below, for operations of finite
arities only. Nevertheless, all these statements hold verbatim
for infinitary operations as well.

A. Examples

Example III.4. As our first simple application of Theo-
rem III.2, we obtain an FVM theorem showing that V∃+Pk
is preserved by taking the disjoint union A1 ] A2 of two σ-
structures A1, A2. The universe of A1 ] A2 can be encoded
as pairs (i, a) where i ∈ {1, 2} and a ∈ Ai. For r-ary relation
R ∈ σ, the interpretation RA1]A2 is defined as

RA1]A2((i1, a1), . . . , (ir, ar))

if and only if there exists an i such that for all 1 ≤ j ≤ r,
ij = i and RAi(a1, . . . , ar). We define a morphism of σ-
structures

κA1,A2 : Pk(A1 ]A2)→ PkA1 ] PkA2

which sends a word s = [(p1, (i1, a1)), . . . , (pn, (in, an))]
in Pk(A1 ]A2) to the pair (in, ν(s)), where the word ν(s) is
the restriction of s to the pairs (pj , aj) such that ij = in. Since
the definition of κA1,A2

is not specific to the structures A1, A2,
by Theorem III.2, the following holds:

A1 V∃+Pk B1 and A2 V∃+Pk B2

implies A1 ]A2 V∃+Pk B1 ]B2

Consequently, the same statement holds with V∃+Pk replaced
by ≡∃+Pk . The statement demonstrates that if both A1 and
B1, and A2 and B2, satisfy the same sentences of the positive
existential fragment of k-variable logic, then the disjoint
unions A1 ]A2 and B1 ]B2 also satisfy the same sentences
of that fragment. Similar κ morphisms can be defined to
demonstrate that V∃+Pk , ≡∃+Pk and also V∃+Ek and ≡∃+Ek
are preserved by taking disjoint unions of arbitrary sets of
σ-structures.

Even in the case of relatively simple operations on struc-
tures, it may be the case that logical equivalence is not
preserved.

Counterexample III.5. For the modal fragment, a positive
modal formula is one without negation or the � modality. As
shown in [11], for pointed structures

A = (A, a) and B = (B, b)

in a modal signature, A V∃+Mk B if and only if for every
positive modal formula ϕ of modal depth at most k, A |= ϕ
implies B |= ϕ, and therefore A ≡∃+Mk B if and only if the
two structures agree on positive modal formulae with modal
depth bounded by k.

Categorically, the disjoint union of σ-structures is their
coproduct in R(σ). The formal definition of coproducts is
unimportant for this example, but we note that coproduct
of two pointed σ-structures (A1, a1) + (A2, a2) in R∗(σ) is
a quotient of their disjoint union, where the distinguished
points a1 and a2 are identified. Unlike with Ek and Pk,
the relations V∃+Mk and ≡∃+Mk are not preserved by this
operation on pointed σ-structures, essentially because the two
components can interact. This shows that although coproduct
FVM theorems are relatively simple, it is by no means
automatic that they will hold.

Example III.6. For every binary relation R in a modal

signature σ, there is an operation A1

R
∨ A2 which combines

the two pointed structures by adding a new initial point ?
with R-transitions to a1 and a2. Operations such as this are
commonly found when modelling concurrent systems with
process calculi [31], [32]. Intuitively this operation avoids the
interactions that caused problems in Counterexample III.5.

There is a morphism of pointed σ-structures

κA1,A2 : Mk+1(A1

R
∨ A2)→Mk(A1)

R
∨Mk(A2)

All sequences in the domain are of the form

∗ R−→ (i, c0)
R1−−→ . . .

Rn−−→ (i, cn),



with i ∈ {1, 2} and each (i, cj) ∈ A1 ] A2 in the same
component. Then, κA1,A2 must preserve the distinguished
element, and for sequences of length greater than one it sends
∗ R−→ (i, c0)

R1−−→ . . .
Rn−−→ (i, cn) to (i, c0

R1−−→ . . .
Rn−−→ cn).

Applying Theorem III.2 yields the FVM theorem:

A1 V∃+Mk B1 and A2 V∃+Mk B2

implies A1

R
∨ A2 V∃+Mk+1

B1

R
∨ B2

Notice that the resource index actually increases from k to
k + 1 because of the shape of κA1,A2

.

Example III.7. A nice feature of the generality of Theo-
rem III.2 is that for different comonads C and D over the
same category C, a natural transformation between the functors
C⇒ D or, more generally, a collection of morphisms

{κA : DA→ CA | A ∈ obj(C)}

can be seen as instances of (4), with H equal to the identity
functor Id : C → C. This allows us to provide semantic
translations for the logics captured by game comonads, a
question that had not previously been addressed. For example,
if we consider P2 as a comonad over R∗(σ) where P2(A, a0)
has distinguished point [(0, a0)], then for every k ∈ N and
object (A, a0) we define a morphism of pointed σ-structures

κ(A,a0) : Mk(A, a0)→ P2(A, a0)

which sends the sequence of transitions

a0
R1−−→ . . .

Rn−1−−−→ an−1
Rn−−→ an

in Mk(A, a0) to the word in P2(A, a0) where elements are
labeled by the parity of their position

[(0, a0), (1, a1), . . . , (n mod 2, an)].

Applying Theorem III.2 yields the well-known fact that
structures which satisfy the same sentences of the positive
existential fragment of two-variable logic must also satisfy
the same positive modal formulas for any modal depth k

(A, a0) ≡∃+P2
(B, b0)

implies (∀k ∈ N. (A, a0) ≡∃+Mk (B, b0)).

Similarly, there exist morphisms κA : EkA → PkA for ev-
ery A in R(σ) where [a1, . . . , an] with n ≤ k is sent
to [(0, a1), . . . (n − 1, an)] demonstrating that V∃+Pk re-
fines V∃+Ek .

IV. FVM THEOREMS FOR COUNTING LOGIC

We now consider another relationship induced by a game
comonad. To do so, we first introduce one of the two standard
categories associated with any comonad.

The Kleisli category [33] Kl(C) for a comonad C on C, has
the same objects as C. The morphisms of type A → B in
Kl(C) are the morphisms of type C(A) → B in C. To avoid
ambiguity, we shall write f : A →C B if we intend f to be
understood as a Kleisli morphism. The identity morphism at
A is the counit component εA : C(A) → A. As composition

is different to that in the base category, we use the distinct
notation g • f for the composite of morphisms f : A →C B
and g : B →C C, which is defined as g ◦ f∗, where we recall
f∗ : C(A)→ C(B) is the coextension of f : C(A)→ B. The
axioms for a comonad in Kleisli form ensure that this is a
well-defined category. Notice that the morphisms in the Kleisli
category are exactly those that were important for positive
existential fragments in Section III.

As with any category, we can consider the isomorphisms in
Kl(C). We shall write A ≡#C B if structures A and B are
isomorphic in the Kleisli category. For finite structures, the
relations A ≡#Ek B and A ≡#Pk B correspond to equivalence
in counting logic [10], [11]. The ideas of Theorem III.2 can be
extended to establish an FVM theorem for counting fragments
and the ≡#C relation. All that is required is to impose extra
conditions on the collection of morphisms (4). Furthermore,
these extra conditions turn out to be those of the well-known
Kleisli laws related to lifting functors to Kleisli categories [25].

To motivate our comonadic method, we return to the min-
imal reduct example from Section III. We can show that
A ≡#Ek B implies A|τ ≡#Ek B|τ , via a similar ad-hoc
argument to before. In our setting, we wish to establish
that, for mutually inverse morphisms f : A →Ek B and
g : B →Ek A in Kl(Ek), the composites f |τ ◦κA and g|τ ◦κB ,
constructed as in (3), are also mutually inverse in the Kleisli
category. In the following we analyse the abstract setting in
which the relation ≡#C is defined and derive a general result,
similar to Theorem III.2.

A. Kleisli laws

Akin to our motivating example, we assume a unary op-
eration H : C → D, comonads (C, εC, (−)∗) on C and
(D, εD, (−)∗) on D, and also a collection of morphisms

{κA : DH(A)→ HC(A) | A ∈ obj(C)},

as in Theorem III.2. We wish to find conditions on this
collection of morphisms ensuring that A ≡#C B implies
H(A) ≡#D H(B). Rephrasing, we require axioms such that
if f : A→C B and g : B →C A are mutually inverse, then the
composites

H(f) ◦ κA : H(A)→D H(B)

and

H(g) ◦ κB : H(B)→D H(A)

are also mutually inverse. To do so, we observe that if both

H(εA) ◦ κA = εH(A) (5)

and

H(f∗) ◦ κA = κB ◦ (H(f) ◦ κA)∗ (6)



then, from g • f = id in Kl(D) (i.e. g ◦ f∗ = εA), we obtain
that

(H(g) ◦ κB) • (H(f) ◦ κA)
= H(g) ◦ κB ◦ (H(f) ◦ κA)∗ definition
= H(g) ◦H(f∗) ◦ κA (6)
= H(g ◦ f∗) ◦ κA functoriality
= H(g • f) ◦ κA definition
= H(εA) ◦ κA assumption
= εH(A) : D(H(A))→ H(A) (5)

and, similarly, f • g = id implies that

(H(f) ◦ κA) • (H(g) ◦ κB)

equals to identity in Kl(D). In fact, equations (5) and (6) are
equivalent to requiring that κ is a Kleisli law [25].

Lemma IV.1. A collection of morphisms {κA} satisfies equa-
tions (5) and (6) for every f : C(A) → B iff κ is a natural
transformation D ◦ H ⇒ H ◦ C such that the following
commute:

D ◦H

H ◦ C H

κ
εH

Hε

D ◦H D2 ◦H D ◦H ◦ C

H ◦ C H ◦ C2

κ

δH Dκ

κC

Hδ

Remark IV.2. Kleisli laws correspond precisely to liftings of
the operation H : C → D to operations Kl(C)→ Kl(D) com-
muting with the cofree functors C → Kl(C) and D → Kl(D).
See for example [34]. Furthermore, a Kleisli law κ : C ⇒ D
with respect to the identity functor is the same thing as
a comonad morphism.

To generalise to operations of arbitrary arities, we first
introduce some notation. For a set I , and family of categories
{Ci}i∈I , we shall write

# »

Ai for a family of objects, with each
Ai ∈ Ci, and similarly

#»

fi for families of morphisms. These
form the product category

∏
i∈I Ci, with composition and

identities defined componentwise. Given a family of comonads
Ci : Ci → Ci, they induce a comonad

∏
iCi on the product

category, again componentwise.
Using this notation, we define the n-ary version of the

axioms from Lemma IV.1. Kleisli laws for an n-ary operation
H are the natural transformations κ : D◦H ⇒ H ◦

∏
iCi such

that the following diagrams commute:

(K1)
D ◦H

H ◦
∏
iCi H

κ εH

H(
∏
i ε)

(K2)
D ◦H D2 ◦H D ◦H ◦

∏
i Ci

H ◦
∏
iCi H ◦

∏
iC2

i

κ

δH Dκ

κ

H(
∏
i δ)

Remark IV.3. To reduce clutter, in the axioms above and
in the rest of this text we often omit the subscripts for the

components of natural transformations, if they can be easily
inferred from the context.

The previous argument generalises smoothly to operations
of any arity. We obtain our FVM theorem for counting
fragments.

Theorem IV.4. Let C1, . . . ,Cn and D be comonads on cate-
gories C1, . . . , Cn and D, respectively, and H :

∏
i Ci → D a

functor. If there exists a Kleisli law of type

D ◦H ⇒ H ◦
∏

i
Ci

then
A1 ≡#C1

B1 . . . , An ≡#Cn Bn

implies

H(A1, . . . , An) ≡#D H(B1, . . . , Bn).

B. Examples

Example IV.5. The collection of κ morphisms described
in each of Examples III.4, III.6 and III.7 of Section III-A
are natural and satisfy axioms (K1) and (K2). Therefore, by
applying Theorem IV.4 to the Kleisli laws in Examples III.4
and III.6 we have that ≡#Ek and ≡#Pk are preserved by taking
coproducts of structures and the merge operation maps ≡#Mk
to ≡#Mk+1

. Recalling Remark IV.2, by applying Theorem IV.4
to the comonad morphism in Example III.7 we have that for
all k ∈ N, ≡#P2

refines ≡#Mk , and ≡#Pk refines ≡#Ek .

Example IV.6 (Cospectrality). Two graphs G and H are
cospectral if the adjacency matrices of G and H have the
same multiset of eigenvalues. We shall use Theorem IV.4 to
strengthen a result in [28] showing that equivalence in 3-
variable counting logic with equality implies cospectrality.

Since cospectrality is a notion on graphs, we move to the
full subcategory of loopless undirected graphs in signature σ =
{E} where E is a binary edge relation. The comonad Pk
restricts to this category and we also consider a comonad Cos

defined in [35, Section 3] which characterizes cospectrality, in
that G ≡#Cos H is equivalent to G and H being cospectral.
The universe of Cos(G) can be encoded as pairs (c, vi) where
c is a closed walk v0

E−→ v1
E−→ . . .

E−→ vn
E−→ v0 that passes

through vi. Two pairs (c, vi), (c′, vj) are adjacent in Cos(G) if
c = c′ and vi is adjacent to vj in the closed walk c. The counit
εG maps (c, vi) to vi. For h : Cos(G) → H , the coextension
h∗ maps the pair (c, vi) with c being the closed walk v0

E−→
v1

E−→ . . .
E−→ vn

E−→ v0 to (d, h(c, vi)) where d is the closed
walk h(c, v0)

E−→ h(c, v1) . . .
E−→ h(c, vn)

E−→ h(c, v0).
We define a comonad morphism κ : Cos(G) → P3(G)

where (c, vi) is mapped to the word

[(2, v0), (1, v1), (0, v2), (1, v3), . . . , (i mod 2, vi)].

Recalling Remark IV.2, we apply Theorem IV.4, deducing that
≡#P3

implies ≡#Cos. Since ≡#P3
captures equivalence in 3-

variable counting logic without equality and ≡#Cos captures
cospectrality, we have avoided the need for equality in the
logic. This fact is also a consequence of [19, Theorem 32]



and the original theorem of Dawar, Severini, and Zapata [28].
However, the same reasoning allows us to define a comonad
morphism Cos ⇒ PR3 where PR3 is the pebble-relation
comonad from [17], capturing the restricted conjunction frag-
ment of 3-variable counting logic. The universe of PR3(G)
consists of pairs (s, i) with s ∈ P3(G) is a sequence of length
n and i ∈ {1, . . . , n} is an index into the sequence s. This
proves a genuine strengthening of the previous result.

V. FVM THEOREMS FOR THE FULL LOGIC

In Sections III and IV we described FVM theorems for
the equivalence relations ≡∃+C and ≡#C, typically expressing
logical equivalence for the positive existential and counting
logic variants. To do the same for the full logic requires us
to move from the Kleisli category to the richer setting of the
Eilenberg–Moore category of coalgebras.

For a comonad C on C, a pair (A,α) where α : A→ C(A)
is a morphism in C is a C-coalgebra or simply just coalgebra
if the following two diagrams commute.

A

C(A) A

α id

εA

A C(A)

C(A) C(C(A))

α

α

δA

C(α)

(7)

A morphism of coalgebras f : (A,α) → (B, β) is a mor-
phism f : A→ B such that β◦f = C(f)◦α. We write EM(C)
for the Eilenberg–Moore category of coalgebras of C.

Remark V.1. A coalgebra (A,α) of any of the game comonads
defined in Section II-B is endowed with a preorder vα, where
x vα y whenever the word α(x) is a prefix of α(y). A forest
order is a poset in which the set of predecessors of any element
in a finite chain. It follows from the axioms in (7) that vα is
a forest order on the universe.

For example, the category EM(Ek) is equivalent to the
category of σ-structures endowed with a compatible forest
order of depth ≤ k. Similar characterisations of the categories
EM(Pk) and EM(Mk) can be made as well, cf. [11, Section
9].

We are now almost ready to define the relation ≡C. Given
A,B ∈ C, define A ≡C B if there exists a span of open
pathwise-embeddings

FC(A)← X → FC(B)

where FC(A) is the cofree coalgebra on A, concretely this
is the pair (C(A), δA). We postpone the definition of open
pathwise-embeddings to Section V-B.

In terms of our example comonads, A ≡Ek B and A ≡Pk B
correspond to agreement on first-order sentences of k-bounded
quantifier depth and variable count respectively [11]. Similarly,
(A, a) ≡Mk (B, b) characterises agreement on modal formulae
of modal depth at most k.

Returning again to the example of reducts, showing the
trivial fact that A ≡Ek B implies A|τ ≡Ek B|τ in our setting
suggests the strategy:

1) Lift an n-ary operation H to the level of coalgebras, in
a manner that commutes with the construction FC(−) of
cofree coalgebras.

2) Check that open pathwise-embeddings are preserved by
the lifted operation.

Tackling step 1 is the topic of Section V-A. Step 2 is the
subject of the subsequent Section V-B.

A. Lifting operations to coalgebras

Here we focus on the task of lifting a given operation to the
level of coalgebras. By a lifting of a functor H :

∏
i Ci → D

we mean a functor Ĥ :
∏
i EM(Ci) → EM(D) such that the

following diagram commutes up to isomorphism:∏
i EM(Ci) EM(D)

∏
i Ci D

Ĥ

∏
i F

Ci

H

FD

To this end, we generalise a standard technique from monad
theory, used for lifting adjunctions to the Eilenberg–Moore
categories [36] or to lifting monoidal structure to the algebras
of commutative monad [37] (see also [34], [38], [27]). For
such a lifting to exist, given a Kleisli law, it is sufficient that
the codomain category of coalgebras has sufficient equalisers.
In our case, it is enough to check that the comonad on the
target category preserves embeddings and the rest is ensured
by Linton’s theorem [39].

In the following we say that a homomorphism of (pointed)
σ-structures f : A→ B is an embedding, written f : A� B,
if it is injective and reflects relations. Further, we say that a
comonad C preserves embeddings if C(f) is an embedding
whenever f is. In similar fashion, an n-ary operation H pre-
serves embeddings if H(f1, . . . , fn) is an embedding when-
ever f1, . . . , fn are embeddings in their respective categories.
All the comonads that we have introduced thus far preserve
embeddings.
Remark V.2. For concreteness, in the following C1, . . . , Cn,D
are categories of σ-structures or pointed σ-structures. Never-
theless, a categorically minded reader will readily see that our
statements hold more generally, typically for categories which
have coproducts, a proper2 factorisation system (E ,M) and
are M-well-powered.

The following theorem allows us to lift a functor
H :

∏
i Ci → D if the comonad on the target category

preserves embeddings.

Theorem V.3. If κ is a Kleisli law of type D◦H ⇒ H ◦
∏
iCi

and D preserves embeddings then the lifting of H to Ĥ exists.

In what follows, we do not need to understand how exactly
Ĥ is computed. However, we often need to analyse morphisms
of the form (A,α) → Ĥ(

#              »

(Bi, βi)), for some coalgebras
(A,α), (B1, β1), . . . , (Bn, βn). To aid with this we restate a

2As proper we identify any factorisation system (E,M) with E ⊆ epis
and M⊆ monos.



direct generalisation of the universal property of bimorphisms,
known from linear algebra and also from the setting of
commutative monads [26], to our setting:

Proposition V.4. Morphisms of coalgebras

f : (A,α)→ Ĥ
( #              »

(Bi, βi)
)

are in one-to-one correspondence with morphisms

f# : A→ H(
# »

Bi)

in D such that

A H(
# »

Bi)

D(A) DH(
# »

Bi) H
( #            »

Ci(Bi)
)

f#

α H(
#»
βi)

D(f#) κ

(8)

Furthermore, the correspondence f 7→ f# commutes with
compositions with coalgebra morphisms. That is, for D-
coalgebra morphism h : (A′, α′) → (A,α) and Ci-coalgebra
morphisms gi : (Bi, βi)→ (B′i, β

′
i):(

Ĥ( #»gi) ◦ f ◦ h
)#

= H( #»gi) ◦ f# ◦ h.

B. Open pathwise-embeddings and their preservation

In this section we define open pathwise-embeddings and
give sufficient conditions for the lifted functors of Section V-A
to preserve them. In fact, our condition is a combination of two
other categorical properties: parametric adjoints and relative
adjoints, which we discuss in Section V-C.

The coalgebras of game comonads are structures carrying
a forest order compatible with their underlying σ-structures.
We fix a collection of, typically linearly ordered, coalgebras
P ⊆ EM(C) which we call paths. In concrete applications,
there is typically a natural choice of paths, and we will leave
this parameter implicit in the theorems that follow. We call a
morphism of coalgebras (A,α)→ (B, β) an embedding if the
underlying morphism A→ B is an embedding of σ-structures,
and a path embedding if furthermore (A,α) is a path.

P Q

X Y

e

g

m

f

A morphism f : X → Y in EM(C) is a
pathwise-embedding if f ◦ e is an embed-
ding for every path embedding e : P � X
in EM(C). Further, f is open if for every
commutative square as shown on the right,
where e,m are path embeddings, there exists a morphism
d : Q→ X such that e = d ◦ g and m = f ◦ d.

Remark V.5. Recall from Remark V.1 that coalgebras (A,α),
for our example comonads, Ek,Pk, or Mk, come equipped
with a forest order vα on the universe. In the following, we
always assume that path coalgebras of these comonads are the
coalgebras (A,α) which are finite linear orders in vα.

We now come back to our original goal. In order for an
n-ary operation H :

∏
i Ci → D to admit an FVM theorem,

we wish to show that its lifting Ĥ :
∏
i EM(Ci) → EM(D)

described in Theorem V.3, sends tuples of open pathwise
embeddings to pathwise embeddings.

In the remainder of this section we assume the following
two conditions and show that they suffice:
(S1) Ĥ :

∏
i EM(Ci)→ EM(D) preserves embeddings.

(S2) Any path embedding e : P � Ĥ(
# »

Xi) has a min-
imal decomposition as e0 : P → Ĥ(

#»

Pi) followed by
Ĥ( #»ei) : Ĥ(

#»

Pi) → Ĥ(
# »

Xi), for some path embeddings
ei : Pi� Xi, for 1 ≤ i ≤ n.

Minimality in (S2) expresses that for any decomposition of e
as g0 : P → Ĥ(

# »

Qi) followed by Ĥ( #»gi) : Ĥ(
# »

Qi)→ Ĥ(
# »

Xi), for
some path embeddings gi : Qi � Xi, there exist necessarily
unique morphisms hi : Pi → Qi such that ei = gi ◦ hi, for
i = 1, . . . , n.

We are going to need the following basic properties of
embeddings in categories of coalgebras, derived from the
properties of embeddings in R(σ) and R∗(σ).

Lemma V.6. Let C be a comonad over a category of (pointed)
relational structures. Then, the following hold for embeddings
in EM(C):

1) Every embedding e is a monomorphism, that is, if e◦f =
e ◦ g then f = g.

2) Embeddings are closed under composition.
3) If g ◦ f is an embedding then so is f .

Remark V.7. Categorically speaking, the above statement
only restates properties of factorisation systems lifted to the
category of coalgebras. Namely, (pointed) relational structures
come equipped with a proper factorisation system (E ,M)
where E are surjective homomorphisms and M are embed-
dings. Then, it is a standard fact that, for C which preserves
embeddings, EM(C) admits a proper factorisation system
(E ,M) where a morphism of coalgebras h is in E (resp. M)
if the underlying homomorphisms of h is in E (resp. M).
Furthermore, surjective homomorphisms and embeddings of
(pointed) relational structures are precisely epimorphisms and
regular monomorphism, respectively. In fact, regular monos
are the same as strong, extremal, or effective monos in this
category.

These basic properties of embeddings listed in Lemma V.6
allow us to show the first half of our desired result, preserva-
tion of pathwise-embeddings.

Lemma V.8. If f1, . . . , fn are pathwise-embeddings in
EM(C1), . . . , EM(Cn), respectively, then so is Ĥ(f1, . . . , fn).

Proof. Assume e : (P, π)� Ĥ
( #              »

(Ai, αi)
)

is a path embedding
where, for i = 1, . . . , n, the coalgebra (Ai, αi) is the domain
of fi. By (S2), e decomposes as e0 : (P, π) � Ĥ

( #             »

(Pi, πi)
)

followed by

Ĥ
(

#»ei
)
: Ĥ
( #             »

(Pi, πi)
)
� Ĥ

( #              »

(Ai, αi)
)
.

Observe that, by Lemma V.6.3, e0 is an embedding because e
is. Further, since fi is a pathwise-embedding, for i = 1, . . . , n,
the morphism fi ◦ ei is an embedding. Therefore, by (S1),
Ĥ
( #          »

fi ◦ ei
)

is also an embedding. We obtain that the composite



Ĥ
( #»

fi
)
◦ e = Ĥ

( #          »

fi ◦ ei
)
◦ e0 is an embedding because embed-

dings are closed under composition, cf. Lemma V.6.2.

For the preservation of openness, we need the following
technical lemma.

Lemma V.9. Let fi : (Ai, αi) → (Bi, βi) in EM(Ci) be
pathwise-embeddings, for i = 1, . . . , n, and let e and g be path
embeddings making the diagram on the left below commute.

(P, π)

Ĥ(
#              »

(Ai, αi)) Ĥ(
#              »

(Bi, βi))

e g

Ĥ(
#»
fi)

Pi Qi

Ai Bi

f ′i

ei gi

fi

Then, for i = 1, . . . , n, there exist morphisms

f ′i : (Pi, πi)→ (Qi, ρi),

such that the diagram on the right above commutes. Here, the
ei and gi are the minimal embeddings given by (S2) such that
e and g decompose through Ĥ ( #»ei) and Ĥ ( #»gi), respectively.

Proof. Let e0 : (P, π)� Ĥ
( #             »

(Pi, πi)
)

be the embedding such
that Ĥ ( #»ei) ◦ e0 is the minimal decomposition of e by (S2).
Since

Ĥ(
#»

fi) ◦ e = Ĥ(
#          »

fi ◦ ei) ◦ e0

is another decomposition of g, there exists morphisms
li : (Qi, ρi) � (Pi, πi) such that gi = fi ◦ ei ◦ li, for
i = 1, . . . , n.

Next, we observe that e0 = Ĥ(
#»

li ) ◦ g0 where

g0 : (P, π)� Ĥ
( #              »

(Qi, ρi)
)

is such that Ĥ( #»gi) ◦ g0 is the minimal decomposition of g.
Observe that

Ĥ
( #          »

fi ◦ ei
)
◦ e0 = g

= Ĥ
(

#»gi
)
◦ g0

= Ĥ
( #                   »

fi ◦ ei ◦ li
)
◦ g0

= Ĥ
( #          »

fi ◦ ei
)
◦ Ĥ

( #»

li
)
◦ g0.

Therefore, since by (S1) Ĥ
( #          »

fi ◦ ei
)

is an embedding, we
obtain by Lemma V.6.1 that e0 = Ĥ(

#»

li ) ◦ g0.
Consequently, we obtain another decomposition of e, given

by Ĥ
( #         »

ei ◦ li
)
◦ g0. By minimality #»ei, there exists

f ′i : (Pi, πi)→ (Qi, ρi),

for i = 1, . . . , n, such that ei = ei ◦ li ◦ f ′i . Therefore, for
i = 1, . . . , n,

fi ◦ ei = fi ◦ ei ◦ li ◦ f ′i = gi ◦ f ′i .

We are now ready to proof the main theorem of this section.

Theorem V.10. If Ĥ satisfies (S1) and (S2) and f1, . . . , fn
are open pathwise-embeddings, then so is Ĥ(

#»

fi).

Proof. Given for i = 1, . . . , n, open pathwise-embeddings
fi : (Ai, αi)→ (Bi, βi) in EM(Ci), it is enough to check that

Ĥ(
#»

fi) is open by Lemma V.8. Assume that the outer square
of path embeddings in the diagram below commutes, with
the left-most and right-most morphisms being their minimal
decompositions by (S2).

(P, π) (Q, ρ)

Ĥ
( #             »

(Pi, πi)
)

Ĥ
( #              »

(P ′i , π
′
i)
)

Ĥ
( #              »

(Qi, ρi)
)

Ĥ
( #              »

(Ai, αi)
)

Ĥ
( #              »

(Bi, βi)
)

h

e0
e′0

g0

Ĥ( #»ei)

Ĥ(
#»

f ′i)

Ĥ(
#»
e ′
i )

Ĥ(
#»
hi)

Ĥ( #»gi)

Ĥ(
#»
fi)

The path embedding Ĥ
( #          »

fi ◦ ei
)
◦e0 has a minimal decomposi-

tion going via Ĥ(
#»

e′i) as shown above. Then, by minimality of
this decomposition and by Lemma V.9, for i = 1, . . . , n, there
exist f ′i : (Pi, πi)→ (P ′i , π

′
i) and hi : (P ′i , π

′
i)→ (Qi, ρi) such

that fi ◦ ei = e′i ◦ f ′i and e′i = gi ◦ hi. Since fi is open and
fi ◦ ei = gi ◦ hi ◦ f ′i , there is a morphism di : ρi → αi such
that di◦hi◦f ′i = ei and gi = di◦fi. Finally, because the outer
rectangle and the bottom rectangle commute and Ĥ ( #»gi) is a
monomorphism (cf. Lemma V.6.1), the top rectangle commute
as well. Consequently, Ĥ(

#»

di) ◦ g0 : (Q, ρ) → Ĥ
( #              »

(Ai, αi)
)

is
the required diagonal filler of the outer square.

C. Parametric relative right adjoints

In this section we show how the axioms (S1) and (S2) relate
to mathematical concepts that have previously appeared in the
literature, specifically parametric relative adjoints. Parametric
adjoints, also sometimes called local adjoints, originate in
the work of Street [40]. We use their equivalent definition
due to Weber [41], [42], [43]. Relative adjoints are a com-
mon tool in the semantics of programming languages, see
for example [44], and are connected to relative comonads
which can be used to encapsulate the translations discussed
in Section VII [11]. We will be interested in a combination of
these two notions.

We first review the required terminology. By T ↓ A we
denote the slice category consisting of pairs (X, f), where
f : X → A is a morphism in T . A morphism (X, f)→ (Y, g)
between objects in T ↓A is a morphism h : X → Y such that
f = g ◦ h. A functor F : T → S is said to be a parametric
right adjoint if, for each object A of C, the functor

FA : T ↓A→ S ↓ F (A)

sending f : X → A to F (f) : F (X) → F (A), is a right
adjoint. Finally, a functor R : T → U is a relative right adjoint
between a category T and a functor I : S → U if there is a
functor L : S → T and a natural bijection between sets of
morphisms

L(S)→ T in T
I(S)→ R(T ) in U

These definitions motivate our definition of parametric rela-
tive adjoints for categories of coalgebras with a selected class
of path objects and a class of embeddings.



For simplicity we consider unary Ĥ : EM(C) → EM(D).
We write PC and PD for the class of paths in EM(C) and
EM(D) respectively.

For D ∈ EM(D), let ID be the inclusion functor

ID : PD

�

D → EM(D)

�

D

where EM(D)

�

D and PD

�

D denote the full subcategories
of the comma category EM(D) ↓D consisting of pairs (X, e)
where e is an embedding or a path embedding, respectively.
Ĥ is a parametric relative right adjoint if, for every C ∈

EM(C), the functor

ĤC : PC

�

C −→ EM(D)

�

Ĥ(C),

which sends a path embedding e, with e : X � C, to the
embedding Ĥ(e) of type Ĥ(X)� Ĥ(C), is a relative right
adjoint between PC

�

C and IĤ(C). Following the above
terminology, the last condition assumes the existence of a
functor L : PD

�

Ĥ(C)→ PC

�

C such that there is a natural
bijection between morphisms:

L(e)→ f in PC

�

C

I(e)→ ĤC(f) in EM(D)

�

Ĥ(C)

Proposition V.11. Assuming (S1), Ĥ satisfies (S2) if and only
if Ĥ is a parametric relative right adjoint.

D. Simplifying the axioms

In this section we simplify axioms (S1) and (S2) so that we
can establish their validity easily, without having to analyse
the lifted functor Ĥ . As before, we assume that H lifts to Ĥ
as in Theorem V.3.

To begin with, we observe that (S1) is implied by a similar
property of H .

Proposition V.12. If H preserves embeddings then so does Ĥ .

By Proposition V.4 we observe that (S2) is implied by a
simple condition which can be stated entirely in the base
category of (pointed) relational structures.

Proposition V.13. The axiom (S2) is implied by the following
axiom:

(S2’) For any path (P, π) in EM(D) and coalgebras (Ai, αi)

in EM(Ci) for 1 ≤ i ≤ n, every morphism f : P → H(
# »

Ai)

which makes the following diagram commute

P H(
# »

Ai)

D(P ) DH(
# »

Ai) H
( #            »

Ci(Ai)
)

f

π H( #»αi)

D(f) κ

has a minimal decomposition through

H( #»ei) : H(
#»

Pi)→ H(
# »

Ai),

for some path embeddings ei : (Pi, πi)� (Ai, αi).

In fact, (S2) is equivalent to the version of (S2’) where we
only care about morphisms f : P → H(

# »

Ai) which arise from
embeddings via the correspondence in Proposition V.4.

As a corollary, we obtain an FVM theorem for the full logic.

Theorem V.14. Let C1, . . . ,Cn and D be comonads on cate-
gories C1, . . . , Cn and D, respectively, and H :

∏
i Ci → D a

functor which preserves embeddings. If there exists a Kleisli
law of type

D ◦H ⇒ H ◦
∏

i
Ci

satisfying (S2’), then

A1 ≡C1
B1, . . . , An ≡Cn Bn

implies

H(A1, . . . , An) ≡D H(B1, . . . , Bn).

Example V.15. We can apply Theorem V.14 to show that ≡Pk
is preserved by taking disjoint unions of structures. As the
functor ] preserves embeddings, we only have to check (S2’)
for the Kleisli law κA1,A2

: Pk(A1]A2)→ Pk(A1)]Pk(A2)
defined in Example III.4. For a path (P, π) in EM(Pk),
consider a morphism f : P → A1 ] A2 , where (A1, α1)
and (A2, α2) are Pk-coalgebras, and f makes the following
diagram of (S2’) commute.

P A1 ]A2

Pk(P ) Pk(α1 ] α2) Pk(A1) ] Pk(A2)

f

π α1]α2

Pk(f) κ

Recall from Remark V.1 that the coalgebra map π defines
a forest order vπ on the universe of P , and similarly for
coalgebra maps α1, α2. Furthermore, since (P, π) is a path,
(P,vπ) is a finite linear order x1 vπ · · · vπ xn.

We may assume without loss of generality that f(xn) is in
A1. Then, (α1 ] α2)(f(xi)) gives a word in Pk(α1), which
forms a finite linear order in the vαi order. By commutativity
of the above diagram, this must be the same word as the
down-to-right composition κ(Pk(f)(π(xn))). But, by defini-
tion, the latter is just the reduction of the word on elements
f(x1), . . . , f(xn) to the positions where f(xi) ∈ A1.

The same reasoning applies for the largest j such that f(xj)
is in A2. Each of the two words obtained this way yields a
path embedding ei : (Pi, πi)� (Ai, αi) as the embedding of
the induced substructure of Ai on given word letters. Define a
morphism e0 : P → P1]P2 by sending an element to its image
under f . By construction, (e1]e2)◦e0 forms a decomposition
of f and minimality of this decomposition is immediate, as any
other decomposition of f would contain Pi as a subpath. We
obtain the following FVM theorem for the k variable fragment:

A1 ≡Pk B1 and A2 ≡Pk B2

implies A1 ]A2 ≡Pk B1 ]B2

The same reasoning goes through for Pk and Ek with

coproducts over any index set I and for Mk with
R
∨ from

Example III.6.



VI. ABSTRACT FVM THEOREMS FOR PRODUCTS

In this section we show that FVM theorems for the operation
of the categorical product of two structures are automatic,
regardless of the chosen comonad. This shows the power
of the categorical approach since the theorem applies to
any situation where logical equivalence admits a comonadic
characterisation.

Recall that the universe of the product A1 × A2 of two
structures A1, A2 in category R(σ) consists of pairs (a, a′)
where a ∈ A1 and a′ ∈ A2. For an r-ary relation R ∈ σ, the
interpretation RA1×A2 is defined as

RA1×A2
(
(a1, a

′
1), . . . , (ar, a

′
r)
)

if and only if

RA1(a1, . . . , ar) and RA2(a′1, . . . , a
′
r)

This operation on the category of relational structures obeys
the usual universal property of products. Namely, for any
object C and morphisms h1 : C → A1 and h2 : C → A2, there
is a unique morphism h : C → A1×A2 such that hi = πi ◦h,
for i = 1, 2, where πi : A1 × A2 → Ai is the ith projection.
In case of products of relational structures, h sends c to the
pair (h1(c), h2(c)). Products inR∗(σ) work similarly, with the
distinguished element of (A, a)× (B, b) being the pair (a, b).

Next, we fix an arbitrary comonad C on R(σ) or R∗(σ).
Observe that, for objects A1, A2 of C, we have morphisms

C(πi) : C(A1 ×A2)→ C(Ai)

for i = 1, 2 and, by the universal property of products, also
the morphism κA1,A2

: C(A1 ×A2)→ C(A1)× C(A2)
Applying Theorem III.2 immediately yields the following

FVM theorem for positive existential fragments.

Proposition VI.1. For any comonad C over R(σ) or R∗(σ),

A1 V∃+C A2 and B1 V∃+C B2

implies A1 ×A2 V∃+C B1 ×B2

A direct calculation reveals that κ is natural in the choice
of A1 and A2 and, furthermore, is a Kleisli law.

Lemma VI.2. κ is a Kleisli law.

Consequently, Theorem IV.4 gives us an abstract FVM for
counting fragments.

Proposition VI.3. For any comonad C over R(σ) or R∗(σ),

A1 ≡#C A2 and B1 ≡#C B2

implies A1 ×A2 ≡#C B1 ×B2

We also have an FVM theorem for products and the
equivalence ≡C. Recall that in order to specify ≡C we need
to fix a choice of paths P in the category EM(C). As before,
we assume that embeddings of coalgebras are the morphisms
of coalgebras (A,α) → (B, β) whose underlying morphisms
A → B is an embedding of σ-structures. Similarly, we say
that a morphism of coalgebras (A,α) → (B, β) is surjective
if the underlying morphisms A→ B is surjective.

As a corollary of Theorem V.14, we obtain a general FVM
theorem for products. The proof proceeds by checking axioms
(S1) and (S2) for the lifting of H(A1, A2) = A1 × A2, by
checking the assumptions of Propositions V.12 and V.13.

Theorem VI.4. If C preserves embeddings and if for any sur-
jective morphism of coalgebras (A,α) → (B, β) in EM(C),
if (A,α) is a path then so is (B, β), then

A1 ≡C A2 and B1 ≡C B2

implies A1 ×A2 ≡C B1 ×B2

Remark VI.5. Instead of surjective homomorphisms and em-
beddings we could have picked any proper factorisation system
in sense of e.g. [45] on an arbitrary category with products.
The same reasoning would apply.

We would like to emphasise that, as mentioned in Re-
mark III.3, our abstract FVM theorems proved in this section
work equally well for infinitary products.

Example VI.6. In the case of Ek, it is immediate that Ek
preserves embeddings. Furthermore, for a surjective coalgebra
morphism (P, π) → (A,α) in EM(Ek) such that (P, π) is
a path, we also have that (A,α) is a path since, in view of
Remark V.1, we map a finite linear order onto a forest.

The same is true for our example comonads Pk, Mk,
yielding product FVM theorems for the bounded quantifier
rank, bounded variable and bounded modal depth fragments
and their positive existential and counting variants.

Example VI.7. More generally, the assumptions of Theo-
rem VI.4 hold for any comonad C which preserves em-
beddings and such that the category EM(C) is an arboreal
category, in sense of [23], by Lemma 3.5 therein.

In particular, all FVM theorems for products from this
section hold for hybrid logic because of the hybrid comonad
of [20], guarded logics captured by guarded comonads in [15],
the bounded conjunction and bounded quantifier rank frag-
ments of the k-variable first-order logic captured in [17] and
[18], respectively.

VII. ADDING EQUALITY AND OTHER ENRICHMENTS

Recall that the relations ≡Ek and ≡Pk express logical
equivalence with respect to the logic without equality. The
standard way to add equality to the language is to extend the
signature σ with an additional binary relation symbol I(·, ·),
and provide a translation tI : R(σ) → R(σ ∪ {I}) which
interprets this new relational symbol as equality, i.e. tI(A) is
the σ ∪ {I}-structure extension of A by setting I(a, b) if and
only if a = b. Since our game comonads are defined uniformly
for any signature, they are also defined overR(σ∪{I}), giving
us:
• tI(A) ≡Ek tI(B) iff A and B are logically equivalent

w.r.t. the fragment of first-order logic consisting of for-
mulas of quantifier depth ≤ k with equality, and

• tI(A) ≡Pk tI(B) iff A and B are logically equivalent
w.r.t. the fragment of first-order logic consisting of for-
mulas in k-variables with equality.



Moreover, an operation which commutes with the trans-
lation tI lifts FVM theorems for fragments without equal-
ity to fragments with equality. For example, disjoint unions
satisfy that tI(A ] B) = tI(A) ] tI(B) and, therefore, if
tI(A1) ≡Ek tI(B1), and tI(A2) ≡Ek tI(B2), then

tI(A1 ]A2) = tI(A1) ] tI(A2)

≡Ek tI(B1) ] tI(B2) = tI(B1 ]B2)

which shows that A1]A2 and B1]B2 are logically equivalent
w.r.t. formulas of quantifier depth ≤ k with equality.

In general, similar translations can be used for other logic
extensions. For example, in [46] a translation is used to obtain
description logics using Mk. Nevertheless, the above technique
applies verbatim to varying translations, operations and logics.
We arrive at the following simple but important fact, that
greatly increases the applicability of the results in the previous
sections.

Theorem VII.1. For i ∈ {1, . . . , n + 1}, let Li and
L′i be logics and ti a translation such that A ≡Li B iff
ti(A) ≡L′i ti(B). Further, let H ′ be an n-ary operation satis-
fying the FVM theorem from L′1, . . . ,L′n to L′n+1, with respect
to translated structures. That is:

t1(A1) ≡L′1 t1(B1), . . . , tn(An) ≡L′n tn(Bn)

implies
H ′
( #          »

ti(Ai)
)
≡L′n+1

H ′
( #          »

ti(Bi)
)

If H commutes with the translations in the sense that
H ′(

#          »

ti(Ai)) ∼= tn+1(H(
# »

Ai)), then H satisfies the FVM the-
orem from L1, . . . ,Ln to Ln+1. That is:

A1 ≡L1
B1, . . . , An ≡Ln Bn

implies
H
( # »

Ai
)
≡Ln+1

H
( # »

Bi
)

Example VII.2. Let tcom : R(σ)→ R(σcom) be a translation
of σ-structures into the extension σcom of σ∪{I} with an extra
binary relation com(·, ·). The interpretation of com in tcom(A)
consists of all pairs (a, b) appearing in the same component
of the Gaifman graph of A, that is, pairs (a, b) such that there
is a path a ! x1 ! · · · ! xn ! b where x ! y
holds whenever x and y are in a common tuple in an RA of
some R ∈ σ.

It is easy to see that tcom(A) ≡Ek tcom(B) expresses logical
equivalence in the bounded quantifier depth fragment extended
with the connectivity predicate, akin to [47], [48]. Since
tcom(A]B) ∼= tcom(A)]tcom(B), we obtain, by Theorem VII.1
and Example V.15, an FVM theorem for disjoint unions and
the quantifier rank k fragment of said logic. While still being
polynomial-time computable, the connectivity relation is not
definable in bounded quantifier depth fragments of first-order
logic, and so this is a proper extension.

Example VII.3. Continuing from Example VI.6, consider
t : R∗(σ) → R∗(σG) where σG is the extension of the
modal signature σ with the global relation G(a, b), true

in t(A, a) for any pair of elements. Then, it is immediate
that t((A, a) × (B, b)) ∼= t(A, a) × t(B, b), giving us by
Theorem VII.1 an FVM theorem for products and modal logic
with global modalities.

Example VII.4. As an example of Theorem VII.1 where
the two operations differ, we consider the notion of weak
(bi)simulation where transitions along a distinguished relation
S ∈ σ are considered to occur silently. We can model weak
bisimulation by considering bisimulation between translated
structures where t : R∗(σ) → R∗(σ) replaces all relations R
with their closure under sequences of prior and subsequent S
transitions.

For pointed structures A1 = (A1, a1) and A2 = (A2, a2),
there is an operation A1∨A2 which adds a new initial point ?
to A1 ] A2. We extend the transitions with R(?, (i, x)), for
R ∈ σ, whenever RAi(ai, x) for some i ∈ {1, 2} and x ∈ Ai.
This construction satisfies t(A1

S
∨ A2) ∼= t(A1) ∨ t(A2) by

design, and there is a Kleisli law

κA1,A2 : Mk(A1 ∨A2)→Mk(A1) ∨Mk(A2),

via a similar construction to that used in Example III.6. This
yields an FVM theorem:

A1 VWk
B1 and A2 VWk

B2

implies A1

S
∨ A2 VWk

B1

S
∨ B2

where A VWk
B indicates that A weakly simulates B up to

depth k.

VIII. CONCLUSION

We presented a categorical approach to the composition
method, and specifically Feferman–Vaught–Mostowski theo-
rems. We exploit game comonads to encapsulate the logics
and their model comparison games. Surprising connections to
classical constructions in category theory, and especially the
monad theory of bilinear maps emerged from this approach,
cf. Section V-A.

For finite model theorists, our work provides a novel high-
level account of many FVM theorems, abstracting away from
individual logics and constructions. Furthermore, concrete
instances of these theorems are verified purely semantically, by
finding a suitable collection homomorphisms forming a Kleisli
law satisfying (S2’), instead of the usual delicate verification
that strategies of model comparison games compose. For game
comonads, we provide a much needed tool that enables us
to handle logical relationships between structures as they are
transformed or viewed in terms of different logics.

The FVM results in this paper, combined with judicious
use of the techniques described in Section VII can be pushed
significantly further. FVM theorems and the compositional
method are of particular significance in the setting of monadic
second-order (MSO) logic [49]. Exploiting the results we have
presented for the composition method, a follow up paper will
give a comonadic semantics for MSO, and develop a semantic
account of Courcelle’s algorithmic meta-theorems [5].



The original theorem of Feferman–Vaught [3] is very flexi-
ble, including incorporating structure on the indices of families
of models to be combined by an operation, as well as the
models themselves. This aspect is currently outside the scope
of our comonadic methods. An ad-hoc adaptation of our
approach also gives a proof of the FVM theorem for free
amalgamations, but this does not follow directly from our
theorems. Developing these extensions is left to future work.

The present work bears some resemblance to Turi and
Plotkin’s bialgebraic semantics [50], a categorical model of
structural operational semantics (SOS) [51]. Turi and Plotkin
noticed that the SOS rules assigning behaviour to syntax
could be abstracted as a certain distributive law λ. An algebra
encodes the composition operations of the syntax, and a coal-
gebra the behaviour. If this pair is suitably compatible with λ,
forming a so-called λ-bialgebra, then crucially bisimulation
is a congruence with respect to the composition operations.
Both bialgebraic semantics and our work presented in this
paper give a categorical account of well-behaved composition
operations, with the interaction between composition and
observable behaviour mediated by some form of distributive
law. There are also essential differences: bialgebraic semantics
typically focuses on assigning behaviour to syntax, whereas
FVM theorems encompass operations on models. Our FVM
theorems are parametric in a choice of logic or observable
behaviour, while the notion of bisimulation in bialgebraic
semantics is fixed by the coalgebra signature functor. The
natural presence of positive existential and counting quan-
tifier variants of FVM theorems, and the incorporation of
resource parameters, do not seem to have a direct analogue
in bialgebraic semantics. The similarities are intriguing, and
exploring the relationship between bialgebraic semantics and
our approach to FVM theorems is left to future work.
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