
HAL Id: lirmm-04564164
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04564164v1

Submitted on 30 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logic Locking: Exploration of a new key-gate based on
tristate logic

Sophie Dupuis, Nassim Riadi, Clémy Moroukian, Florence Azaïs, Marie-Lise
Flottes

To cite this version:
Sophie Dupuis, Nassim Riadi, Clémy Moroukian, Florence Azaïs, Marie-Lise Flottes. Logic Locking:
Exploration of a new key-gate based on tristate logic. LATS 2024 - 25th IEEE Latin American Test
Symposium, Apr 2024, Maceio, Brazil. �lirmm-04564164�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-04564164v1
https://hal.archives-ouvertes.fr

Logic Locking: Exploration of
a new key-gate based on tristate logic

Sophie Dupuis, Nassim Riadi, Clémy Moroukian, Florence Azaïs and Marie-Lise Flottes

LIRMM, University of. Montpellier/CNRS, Montpellier, France
firstname.lastname@lirmm.fr

Abstract—As a consequence of the tremendous rapid pace of

semiconductor technology evolution over the last decades, most
semiconductor companies have become fabless and outsource the
manufacturing step of their designs to offshore foundries.
Furthermore, most integration companies rely on Intellectual
Property (IP) modules purchased from third parties.
Consequently, new threats have arisen such as reverse
engineering, IP theft, Integrated Circuits (ICs) overproduction,
hardware Trojan insertion, to name just a few.

Taking these trust issues into account at design time has
therefore become mandatory for protecting IPs despite this new
ecosystem. Logic locking is one of these so-called Design-for-Trust
approaches. It involves inserting extra key-gates controlled by a
secret key in a design so that the manufactured ICs behave
correctly only when the correct key value is provided, and
erroneously otherwise.

This paper introduces a novel key-gate based on tristate logic.
The primary goal here is to demonstrate its capability to provide
optimal output corruption on circuit outputs when the circuit is
not controlled by the correct key value. The paper also provides
discussion on protection against the most common attacks
developed on current logic locking solutions.

Keywords— Hardware trust, Design-for-Trust, Logic locking,
Tristate logic, Output corruption, SAT attack.

I. INTRODUCTION
Due to development costs and time-to-market reasons, the

semiconductor business has shifted over decades from a
vertical to a horizontal model, where many different entities are
now involved in the design, integration, manufacture, test,
packaging and distribution of chips. This new business model
has led to safety issues and numerous frauds have emerged,
including IP piracy/theft, potentially perpetrated by several
(untrustworthy) entities in the IP life cycle: i. a foundry, which
can cheaply overproduce ICs, ii. a system integrator, who buys
an IP for a specific design but can reuse this IP for another
design, iii. an end-user, who can use reverse engineering to gain
knowledge about design and reuse this information for another
device.

To counter these threats, multiple Design-for-Trust
approaches enabling IP/IC protection have been developed
over the past fifteen years and the logic locking approach has
emerged as a prominent solution for protecting IP against
piracy, counterfeiting and overproduction [1]. Logic locking
involves inserting extra locking circuitry into the original
design and extra key inputs to control this circuitry. In order to
fulfill its original function, the circuit must be programmed
with the correct key by the designer after production; the circuit

is said activated or unlocked. Any chip programmed with a
different key is said locked; it is rendered inoperative.

Initially proposed in 2008 to counteract IC overproduction,
logic locking similarly protects against IP overuse.
Furthermore, any attempt to reverse-engineer an IC/IP is
rendered useless since retrieving the netlist becomes useless
without knowledge of the correct key value. For the same
reasons, attempting to insert a hardware Trojan becomes all the
more complicated as the functionality of the original design is
obfuscated by the locking logic.

Logic locking has attracted considerable attention from the
research community and has been forced to continually evolve
ever since. The most effective attacks for recovering the
designer-defined secret key, and most studied and countered
ones in recent years are based on SAT solvers [1]. The
paradigm shift induced by these attacks has led to the
emergence of new locking schemes, often at the expense of
poor output corruption and enabling the development of new
attacks such as approximate attacks - taking advantage of low
output corruption of locked circuits - or removal attacks - taking
advantage of the locking scheme implementation.

The present work aims to thwart SAT attacks on logic
locking schemes while avoiding drawbacks of previous
proposals from the literature, i.e. insufficient output corruption
and possible removal of the extra locking logic.

To this end, the contribution of this paper is a new type of
key-gates providing near optimal solution in terms of output
corruption when the device is not controlled from the correct
key. Unlike solutions proposed in the literature, the associated
locking scheme counteracts approximate and removal attacks.
A discussion on resilience against SAT attacks and key-gate
design requirements is also provided.

This paper is organized as follows. Section II presents a
background on locking methods and attacks, focusing on SAT
attacks and related countermeasures. Section III describes the
proposed tristate-based logic locking technique. Resilience to
approximate/removal/SAT attacks is discussed in Section IV
and experimental results are presented in Section V. Eventually,
Section VI concludes the paper and presents future explorations
to fully validate this approach.

II. BACKGROUND
The generally accepted threat model assumes that the

attacker may be: i. an untrustworthy foundry, which can
overproduce extra ICs from the GDSII provided by another
company; ii. a system integrator, who can reuse IPs from 3rd
parties in many projects; iii. an end-user, who can re-use or sell

the IP of a circuit. The attacker therefore has access to either
the netlist of the circuit, or the GDSII file, or an activated chip
from the market, which can be reverse engineered to obtain the
layout and ultimately the netlist. The attacker does not know
the correct value of the key for unlocking the circuit in its
expected behaviour because they have in their possession either
a locked circuit not yet programmed with the correct key (e.g.,
the foundry), or an activated circuit for which the value of the
key is protected in a secure memory (e.g., an end-user).
Additionally, in case the attacker has an activated chip, they can
use it as an oracle to know the value of the original device's
responses for any value of the inputs, in order to perform a so-
called oracle-based attack.

The attacker’s goal is to thwart the IP protection provided by
logic locking, either by discovering the correct key value or by
recovering the original unprotected netlist and use it without
any need of knowing the correct key value.

a) Original design

b) One logic locking solution based on XOR/XNOR key-gates

Fig. 1. Logic locking principle (added key-gates in red dotted lines)

The initial proposal EPIC in 2008 [2] consisted in inserting
XOR/XNOR key-gates into the original design at random.
Fig. 1 shows an example of an original design (Fig. 1a) and a
logic locking solution for that design (Fig. 1b) where
XOR/XNOR key-gates have been introduced in the original
design. The key value in this example is (k2, k1, k0) = (1,0,1),
so that key-gates controlled from k0 and k1 act as buffers and
key-gate controlled from k2 acts as an inverter (note that G4
NAND gate in the original design has been transformed into an
AND gate after logic locking insertion).

Early research in logic locking has explored different types
of key-gates such as MUXes or LUTs and more importantly,
different insertion algorithms for optimal output corruption and
resilience to the first attacks [3]. The insertion algorithm’s goal
is to define the interconnects on which the key-gates should be
introduced. With a random key-gate insertion strategy,
incorrect keys may lead to correct outputs for certain keys. The

fault analysis-based logic locking proposal (FLL) [4] has been
proposed for providing optimal output corruption when an
incorrect key is used.

The first corruption metric used in the literature was the
percentage Hamming distance between correct and corrupted
outputs, ideally equals to 50%. In other words, an incorrect key
value should affect half of the output bits on average [4]. It was
then proposed in [3] to add a complementary metric, as the
number of input vectors causing corruption, in order to ensure
that most input vectors created corruption. A third metric was
then proposed in [5] as the total number of outputs having been
corrupted at least once, ideally all. In the sequel of the paper,
we will use the following denomination:
Output corruptibility is the average percentage Hamming
distance between correct and erroneous outputs,
Corruption rate is the percentage of input vectors that lead to
output corruption,
Output coverage is the percentage of outputs that have been
corrupted at least once.

Fig. 2. The SAT attack framework, miter circuit employed by the attack and

flowchart [6]

In 2015, an oracle-guided attack [6] broke all previously
proposed solutions thanks to a satisfiability solver. The SAT
attack consists in pruning out wrong key values iteratively. Its
framework is detailed in Fig. 2. It is based on a miter circuit,
i.e., a circuit containing two copies of the locked netlist, whose
primary inputs are the same, but key-inputs are different. The
attack formalizes this miter circuit into a Conjunctive Normal
Form (CNF), the set of constraints is initially empty and all the
potential key values Kj are included in the list of candidates for
being the secret key (denoted K* in the following). Assuming
a combinational design of function f(X, K), X being the primary
input, K the key controlling the key-gates, and 1-bit y the
primary output (for the sake of simplicity), two keys K1 and K2
are randomly selected and the SAT solver searches for an input
X such that the two keys lead to different outputs, i.e. it solves
the Boolean satisfiability problem f(X, K1) != f(X, K2). The X
found is called a Distinguish Input Pattern (DIP). Then the
oracle is exercised with first DIP (DIP1) for discovering the
expected “golden” output y1 = f(DIP1, K*). This first iteration
allows to discard either K1 or K2 from the list of potential
locking-key candidates, either K1 because f(DIP1,
K1) != f(DIP1, K*), or K2 because f(DIP1, K2) != f(DIP1, K*).

The new constraint f(DIP1, Kj) = y1 for any j is added to the set
of constrains to be satisfied by the solver. Any Kj that does not
satisfy this new constraint is thus discarded from the list of key
candidates in the following iterations. The process iterates
while the solver can find two keys Kj, Kk , j != k, and an input
X (DIPi) such that f(X, Kj) != f(X, Kk). By the end of the
process, the list of candidates includes only the correct secret
key K*.

Subsequent locking schemes therefore focused on thwarting
the SAT attack and two types of strategies have been explored
in the literature:

1. slowing down the attack, either by increasing the
required number of SAT solver iterations for correct key
retrieval, or by increasing computational time of each
iteration,

2. preventing the attack from being launched. These
alternatives are presented hereafter.

Anti-SAT [7] and SARLock [8] are based on the
implementation of point-functions for corrupting the output in
case of incorrect keys. For any wrong key Kj, only one input
vector Xi exists such that f(Xi, Kj) != f(Xi, K*), and for any two
wrong keys Kj and Kk, it exists only two inputs Xl and Xm for
which f(Xl, Kj) != f(Xl, Kk) and f(Xm, Kj) != f(Xm, Kk).
Consequently, it is not possible to discard more than one wrong
key per SAT solver iteration. The DIPi found to distinguish Kj
from Kk cannot indeed distinguish another key candidate Kx
since f(DIPi, Kx) = f(DIPi, K*) for any Kx. Thanks to the point
functions, the number of iterations of the SAT solver N is
maximal, N = 2kb, kb being the number of key bits, resuming
the SAT attack to a brute force attack. It's worth noting that for
the same reasons, the point-function does provide an
insignificant output corruption. The circuit indeed behaves
properly (correct output) whatever the incorrect key set into the
device, and whatever the input vector, except for one.

This new paradigm then paved the way for new types of
attacks:
Approximate attacks: SAT oracle-guided attacks that find an
approximate key value i.e. a key value that minimizes output
corruption [9],
Removal attacks: oracle-less attacks that take advantage of the
fact that this type of method no longer consists of key-gates
dispersed in the circuit, but of an additional block, relatively
easy to recognize and therefore remove [10].

New attacks and protections have been a real game of cat and
mouse in recent years, with many proposals for improvements
to the original SAT-resilient approaches, either in an attempt to
compensate for the lack of output corruption (often at the
expense of resistance to the SAT attack) [11] or to be resilient
to new attacks [12][13]. One type of improvement has been
particularly studied: Corrupt And Correct (CAC) schemes,
which were initially proposed to prevent removal attacks. For
those, the initial logic cone is minimally modified so that the
added logic fixes the modifications only for the correct key.
That way, removing the added logic does not result in the
original circuit and is therefore useless [14]. Following CAC
schemes have also followed the previous trend, looking for an
acceptable trade-off between resilience to attacks and output

corruption [15]. Note that in this frantic race for improvements,
the cost of the implementation in terms of area overhead has
eventually been undetermined by many of these methods.

In order to lengthen CPU time at each SAT iteration, it was
first proposed to add SAT-hard structures such as cryptographic
ciphers [16]. Not only this type of solution suffers from a large
area overhead but it may also be identified and removed. More
recently, Full-Lock proposed to insert programmable logic and
routing blocks as SAT-hard instances because they contribute
in creating an extremely large CNF [17]. This solution was
however counteracted by a neural-network-guided SAT attack,
which helps to significantly speed up the CPU iteration time [18].

In order to prevent the attack from being launched, it was
proposed to encrypt the scan chains commonly implemented in
sequential designs for post-manufacturing structural testing.
This solution [19], while expensive, prevents usage of the
oracle for differentiating two keys while the SAT-solver is
supposed to be executed on a miter circuit based on the
combinational part of the original circuit. It was also proposed
to introduce dummy wires and gates in order to create logical
loops [20], which was eventually countered by an enhanced
SAT attack [21] and even more recently enhanced to resist to
this new attack [22]. Another approach is to lock not only the
functionality of a design but also its delay properties, which are
not Boolean logical properties that cannot be model into a
satisfiability problem. So-called delay locking introduces key-
gates containing a tunable delay buffer aiming to alter setup and
hold times [23]. These non-logical properties were however
modelled and attacked by the improved SMT attack based on a
Satisfiability Module Theory solver [24].

III. LOGIC LOCKING WITH TRISTATE-BASED KEY-GATES
The new key-gate proposed in this paper is depicted in Fig. 3.

It consists of a tristate buffer and a tristate inverter connected
in parallel, whose enable signals are controlled by two distinct
key-bits. It can be declined in four different versions named
type 1 to type 4, depending on whether the tristate elements are
active at high or low levels.

A major difference compared to conventional XOR/XNOR
key-gates is that the proposed key-gate is controlled by two
key-bits and has therefore four operating modes:

- The output is equal to the input when the buffer is active
and the inverter is in the high-impedance state,

- The output is equal to the complement of the input when
the inverter is active and the buffer is in the high-
impedance state,

- The output is in high-impedance state (denoted Hi-Z)
when both the buffer and the inverter are inactive, i.e.
the output is blocked and retains the same value than in
the preceding state,

- The output is in an unknown state (denoted UNK) when
both the buffer and the inverter are active. In this case
the value present on the output is an intermediate
voltage comprised between GND and VDD, whose
value depends on the relative sizing of the
PMOS/NMOS transistors of the buffer and the inverter.

The logic interpretation of this voltage by subsequent
gates depends on their threshold voltage.

a) Type 1 b) Type 2

c) Type 3 d) Type 4

Fig. 3. Tristate-based key-gates

These four operating modes are summarized in Table I for
the type 1 key-gate, where both the buffer and the inverter are
active at high levels.

TABLE I. TRUTH TABLE OF THE TRISTATE-BASED KEY-GATE (TYPE 1)

k1 k0 o
0 0 Hi-Z
0 1 i
1 0 not i
1 1 UNK

The difference between the four types of tristate-based key-

gates resides in the combination applied on the two key-bits that
activates a given operating mode. For instance, the type 1 key-
gate operates as a buffer with the combination (k1, k0) = (0,1),
whereas combination (k1, k0) = (1,1) is required for type 2,
combination (k1, k0) = (0,0) for type 3, and combination
(k1, k0) = (1,0) for type 4.

The principle of the proposed solution is to incorporate the
various types of tristate-based key-gates into the original design
of a circuit. It is also assumed that the physical implementation
of the key-gate is performed using layout camouflaging
techniques so that all four types present a look-alike layout.
INV/BUF camouflaged gates were investigated in [25],
providing also protection against untrusted foundries since the
function - INV or BUF - is programmed by the designer. In the
present work, note that the proposed tristate-based key-gates
provide not only two functions INV and BUF as in previous
works (camouflaged INV/BUF or classical XOR/XNOR key-
gates), but two other functions as well, Hi-Z and UNK.
Camouflaging will be implemented on our 4 types of key-gates
so that correlation between the combination applied on the two
key-bits and the gate operating mode cannot be established.

As in the classic method with XOR/NXOR key-gates, some
of the inserted key-gates will have to operate as buffers, while
others will have to operate as inverters to ensure correct
functionality, as illustrated by the simple example of Fig. 1. An
attacker unaware of the original netlist has no way of knowing
what the key-gate’s expected behavior is. Furthermore,

depending on the type of inserted gate, any combination of key-
bits can be a valid one. However, the combination may also
yield to the UNK or the Hi-Z state, which are obviously
forbidden states for the correct operation of the circuit. By
implementing in a design all four gate types in a camouflaged
way, we therefore expect to increase confusion while ensuring
high corruption as long as the circuit is locked.

Finally, the transistor-level description of the key-gate
(type 1) is described in Fig. 4. It comprises 14 transistors, the
same number as the classical implementation of a XOR gate,
which can be reduced to 6 transistors for the most compact
design. In first approximation, the area overhead induced by the
tristate-based key-gate is therefore equivalent to that of a
classical XOR key-gate.

Fig. 4. Transistor-level description of the tristate-based key-gate (type 1)

IV. RESILIENCE TO ATTACKS
Like pre-SAT approaches, the proposed solution is based on the
insertion of key-gates and not on the addition of 1-point
functions or CAC-like schemes. Therefore, it targets high
corruption of the outputs in case of incorrect keys, whatever the
input pattern and the output bit, and it is immune to removal
attacks while maintaining a non-prohibitive area overhead. Its
ability to generate good corruption will be shown in Section V,
a characteristic that makes it immune to approximate attacks.

In order to thwart SAT attacks, the proposed solution must
be complemented with camouflaging measures. Despite the
insertion of different types of tristate-based key-gates in the
design, reverse engineering or knowledge of the GDSII file
indeed provides information on the exact implementation of the
key-gates and thus on “forbidden” combinations for the 2-bit
key, i.e. (k1, k0) = (0,0) or (k1, k0) = (1,1) for the type 1 key-gate
for instance. With this knowledge, the attacker can add extra
constraints to the SAT solver such as k0 != k1 for type 1 key-
gate again, or similar appropriate constraints for other types.
These constraints allow to avoid wrong key combinations in the
initial list of key candidates to be explored by the SAT solver.

For any attacker who does not know the correspondence
between the key value and the operating mode (buffer/inverter/
UNK/Hi-Z), the proposed solution is valid. Finding this

correspondence is indeed impossible with the envisaged threat
model: recovering f(X, K, I), X being the data in, K the key, I
the function (buffer/inverter/UNK/Hi-Z) would indeed require
several trials on a real circuit varying both X and K in order to
discover I. This could be achieved using a modified version of
the SAT attack as introduced in [26]. This solution nevertheless
requires the ability to apply vectors [X, K] on an oracle and
observe corresponding outputs. In other words, it requires to
stimulate an oracle with a free control on K, which is not part
of the threat model considered in this paper.

V. EXPERIMENTAL RESULTS
In order to assess the quality of the proposed solution, we

locked several ISCAS benchmarks [27], inserting 5% extra
key-gates and using either the conventional XOR/XNOR key-
gates or the new tristate-based key-gates. Two insertion
algorithms were considered, namely the FLL algorithm [4] and
an improved version of the FpLL algorithm [5] for better output
corruption and faster execution time.

Output corruption is evaluated according to the three metrics
defined in Section II: output corruptibility, corruption rate and
output coverage. Computation of these metrics is based on
simulation results, using 1,000 random test vectors each applied
for 100 random incorrect keys (i.e. 100,000 test vectors in total).

Results are summarized in Table II, which reports the mean
value of the three metrics computed over 8 benchmark circuits,
for the conventional XOR/XNOR and the proposed tristate-
based key-gates. It can be observed that, whatever the metric
considered and the insertion algorithm used, the two types of
key-gates yield to similar results. More specifically, the
difference between XOR/XNOR and tristate-based key-gates is
below 0.3% in terms of output corruptibility and corruption rate.
A slight improvement of 2.5 to 3.5 % is observed in output
coverage when using tristate-based key-gates. Regarding the
insertion algorithm, the improved version of the FpLL
algorithm yields to slightly better results than the FLL
algorithm for output corruptibility and output coverage, and a
minor degradation of corruption rate that still remains higher
than 98.5%.
TABLE II. COMPARISON OF CORRUPTION METRICS BETWEEN CONVENTIONAL

XOR/XNOR AND TRISTATE-BASED KEY-GATES: MEAN VALUES OVER
THE 8 BENCHMARK CIRCUITS USING TWO INSERTION ALGORITHMS

Insertion Corruption
Metric

Mean Value
Algorithm XOR/XNOR Tristate-based

FLL

Output corruptibility
Corruption rate
Output coverage

41.9%
99.7%
66.6%

42.0%
99.6%
70.1%

FpLL

Output corruptibility
Corruption rate
Output coverage

43.5%
98.5%
68.9%

43.4%
98.8%
71.4%

Fig.5 gives a more detailed comparison for the 8 benchmark

circuits, when using the FLL algorithm. Regarding output
corruptibility, a slight improvement is observed for 4 of the
circuits when using tristate-based key-gates, and a slight
degradation for the other 4. The maximum degradation is
observed on the i8 circuit with output corruptibility reducing
from 47.3% to 45.1%, which still corresponds to satisfactory
corruption. Regarding corruption rate, equivalent results are

obtained for both types of key-gates, with a corruption rate of
100% for all circuits except the smallest one. Finally, regarding
output coverage, tristate-based key-gates lead to a slight
improvement for all circuits, expect the i8 one for which there
is a minor reduction of -0.3%. Overall, these results validate the
ability of the proposed solution to generate good corruption
since it achieves the same levels than classical XOR/XNOR
key-gates.

a) Output corruptibility

b) Corruption rate

c) Output coverage

Fig. 5. Output corruption comparison, with FLL insertion algorithm

It is important to point out that these experiments were
performed with an equivalent number of inserted key-gates, i.e.
similar gate-equivalent (GE) area overhead. However, because
tristate-based key-gates are supplied with two key-bits instead
of one for XOR/XNOR key-gates, key size is doubled. A
further experiment was carried out, dividing by two the number
of inserted tristate-based key-gates, in order to retain the same
key size. Results are reported in Table III, which gives the mean
values of the three metrics obtained with the two insertion
algorithms considered. In case of tristate-based key-gates, the

mean value was calculated either on all 8 benchmark circuits or
only on the 4 largest (more than 2,000 gates). These results
show that reducing the number of key-gates inserted leads to a
degradation of corruption metrics when all the circuits are taken
into account, in particular output corruptibility, but almost no
degradation when only the 4 largest circuits are taken into
account. This can be explained by the fact that a minimum
number of key-gates have actually to be inserted to achieve
satisfactory output corruptibility, condition which is not met
when only 2.5% of key-gates are inserted in small circuits (less
than 50 key-gates inserted). Overall, these results reveal that the
proposed solution has the potential to achieve the same level of
corruption as that obtained with conventional XOR/XNOR
key-gates, but with a GE area overhead reduced by a factor of
two, for circuits of sufficient size.

TABLE IIII. CORRUPTION METRICS ACHIEVED BY USING HALF AS MANY
TRISTATE-BASED KEY-GATES: MEAN VALUES OVER ALL 8 BENCHMARK

CIRCUITS OR ONLY THE 4 LARGEST

 Corruption
Metric

Mean Value
 XOR/XNOR

(5% key-gates)
Tristate-based (2.5% key-gates)

 8 benchmarks 4 largest

FLL
Output corruptibility
Corruption rate
Output coverage

41.9%
99.7%
66.6%

37.2%
97.8%
67.0%

40.8%
99.7%
69.8%

FpLL

Output corruptibility
Corruption rate
Output coverage

43.5%
98.5%
68.9%

35.3%
98.6%
66.8%

42.2%
100%
70.8%

VI. CONCLUSION
This paper introduced a new type of key-gates based on

tristate logic. The goal of these key-gates is to provide near
optimal output corruption as expected on locked circuits. This
first property is attested by experimental results presented in
this paper and thus prevents approximate attacks. In addition,
dissemination of key-gates in the original design as proposed in
pre-SAT logic locking approaches prevents the locking
circuitry to be simply removed by an attacker. Last but not least,
key-gates’ functionality being mandatory for execution of a
SAT attack, the proposed tristate-based key-gates (4 types
randomly distributed in the design) strengthen resistance to
SAT attacks compared to XOR/XNOR key-gates, as long as
tristate-based key-gates’ functionality remains hidden. UNK
and Hi-Z states prevent direct CNF modelling, and stimulation
of an oracle with chosen keys for identification of these states
remains difficult and generally not covered by the classic threat
model. Future work will target the practical implementation of
layout camouflaging techniques for undifferentiation of types
1-4 tristate-based key-gates in order to prevent function
identification. Oracle-less attacks based on deep learning will
also be investigated, knowing that they currently rely on the
properties of XOR-based locking.

ACKNOWLEDGMENT
This work was partly funded by the French National

Research Agency (ANR) under the project MOOSIC ANR-18-
CE39-0005. The authors would like to thank G. Gouvine
(gabriel.gouvine_moosic@m4x.org) for valuable discussions
on SAT solvers.

REFERENCES
[1] M. Yasin, J. Rajendran, O. Sinanoglu. “Trustworthy Hardware Design:

Combinational Logic Locking Techniques”. Springer, 2020.
[2] J. A. Roy, F. Koushanfar and I. L. Markov. “EPIC: Ending Piracy of Integrated

Circuits”. In Design, Automation and Test in Europe (DATE), pp. 1069–1074, 2008.
[3] S. Dupuis and M.-L. Flottes. “Logic Locking: A Survey of Proposed Methods and

Evaluation Metrics”, In Journal of Electronic Testing: Theory and Applications
(JETTA), 35, pp. 273-291, 2019.

[4] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu and R. Karri,
“Fault Analysis-Based Logic Encryption”, In IEEE Transactions on Computers,
64(2), pp. 410-424, 2015.

[5] Q.-L. Nguyen, S. Dupuis, M.-L. Flottes, B. Rouzeyre. “SKG-Lock+: A Provably
Secure Logic Locking Scheme Creating Significant Output Corruption”. In
Electronics, 11(23):3906, 2022.

[6] P. Subramanyan, S. Ray and S. Malik, “Evaluating the Security of Logic Encryption
Algorithms”, In IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 137-143, 2015.

[7] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT Attack on Logic Locking”, In
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(2), pp. 199-207, 2019.

[8] M. Yasin, B. Mazumdar, J. Rajendran and O. Sinanoglu, “SARLock: SAT Attack
Resistant Logic Locking”, In IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 236-241, 2016.

[9] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan and Y. Jin, “AppSAT: Approximately
Deobfuscating Integrated Circuits”, In IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp .95-100, 2017.

[10] M. Yasin, B. Mazumdar, O. Sinanoglu and J. Rajendran, “Security Analysis of Anti-
SAT”, In Asia and South Pacific Design Automation Conference, pp. 342-347, 2017.

[11] B. Shakya, X. Xu, M. Tehranipoor and D. Forte, “CAS-Lock: A Security-
Corruptibility Trade-off Resilient Logic Locking Scheme”, In IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(1), pp. 175-202, 2019.

[12] A. Rezaei and A. Mahani, “Noise‐based logic locking scheme against signal
probability skew analysis”, In IET Computers & Digital Techniques, 15(4), pp. 279-
295, 2021.

[13] J. Zhou and X. Zhang, “Generalized SAT-attack-resistant logic locking”, In IEEE
Transactions on Information Forensics and Security, 16, pp. 2581-2592, 2021.

[14] M. Yasin, B. Mazumdar, J. Rajendran and O. Sinanoglu “TTLock: Tenacious and
traceless logic locking”, In IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 166-166, 2017.

[15] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran and O. Sinanoglu,
“Provably-Secure Logic Locking: From Theory To Practice”, In ACM SIGSAC
Conference on Computer & Communications Security (CCS), pp. 1601-1618, 2017.

[16] M. Yasin, J. Rajendran, O. Sinanoglu and R. Karri, “On Improving the Security of
Logic Locking”, In IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 35(9), pp. 1411-1424, 2016.

[17] H. M. Kamali, K. Z. Azar, H. Homayoun and A. Sasan, “Full-Lock: Hard
Distributions of SAT instances for Obfuscating Circuits using Fully Configurable
Logic and Routing Blocks”, In Design Automation Conference (DAC), pp. 1-6, 2019.

[18] K. Z. Azar, H. M. Kamali, H. Homayoun and A. Sasan, “NNgSAT: Neural Network
guided SAT Attack on Logic Locked Complex Structures”, In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1-9, 2020.

[19] Q.-L. Nguyen, E. Valea, M.-L. Flottes, S. Dupuis and B. Rouzeyre, “A Secure Scan
Controller for Protecting Logic Locking”, In IEEE International Symposium on On-
Line Testing and Robust System Design (IOLTS), pp. 1-6, 2020.

[20] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan and Y. Jin. “Cyclic Obfuscation for
Creating SAT_Unresolvable Circuits”, In Great Lakes Symposium on VLSI
(GLSVLSI), pp. 173-178, 2017.

[21] H. Zhou, R. Jiang and S. Kong, “CycSAT: SAT-Based Attack on Cyclic Logic
Encryptions”, In International Conference on Computer-Aided Design (ICCAD),
pp. 49-56, 2017.

[22] X.-M. Yang, P.-P. Chen, H.-Y. Chiang, C.-C. Lin, Y.-C. Chen and C.-Y. Wang,
“LOOPLock 2.0: An Enhanced Cyclic Logic Locking Approach”, In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(1),
pp. 29-34,2022.

[23] Y. Xie and A. Srivastava, “Delay Locking: Security Enhancement of Logic Locking
against IC Counterfeiting and Overproduction”, In ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1-6, 2017.

[24] K. Z. Azar, H. M. Kamali, H. Homayoun and A. Sasan, “SMT Attack: Next
Generation Attack on Obfuscated Circuits with Capabilities and Performances
Beyond the SAT Attacks”, In IACR Transactions on Cryptographic Hardware
Embedded Systems (CHES), Vol. 2019, Iss. 1, 2019.

[25] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “CamoPerturb: Secure IC
camouflaging for minterm protection,” In Proc. IEEE/ACM International Conference
on Computer-Aided-Design, pp. 29:1-28:8, 2016.

[26] C. Yu, X. Zhang, D. Liu, M. Ciesielski and D. Holcomb, "Incremental SAT-Based
Reverse Engineering of Camouflaged Logic Circuits," in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 10, pp. 1647-
1659, Oct. 2017.

[27] ISCAS benchmark open source: https://pld.ttu.ee/~maksim/benchmark

