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Abstract—A major challenge faced in the Internet of Things
(IoT) is discovering issues that can occur in it, such as anomalies
in the network or within the IoT devices. The nature of IoT
hinders the identification of issues because of the huge number of
devices and amounts of data generated. The aim of this paper is to
investigate machine learning for effectively identifying anomalies
in an IoT environment. We evaluated several state-of-the-art
techniques which can identify, in real-time, when anomalies have
occurred, allowing users to make alterations to the IoT network to
eliminate the anomalies. Our results offer practitioners a valuable
reference about which techniques might be more appropriate for
their usage scenarios.
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I. INTRODUCTION

The Internet of Things (IoT) is a notable technological
revolution, contributing to a drastic growth in the number of
Internet-connected devices worldwide. Also, how effectively
these devices can communicate (over potentially heavily con-
gested networks, or low power lossy networks) can have an
important impact on the quality of the services supplied, and in
their degree of success (or failure). Thus, correctly monitoring
and evaluating IoT systems is critical [1].

Monitoring the performance and overall health of an IoT
system offers many challenges [2]. This is a consequence
of the creation and transmission of vast amounts of data,
which considerably complicates the identification of anoma-
lous behaviors. Log analytic tools can be used to detect such
anomalies when they are well-defined and can be captured
by strict parameters (e.g., thresholds on values), but are not
suitable for detecting anomalies whose properties are less
well-defined, or change over time. Machine Learning (ML)
techniques have the potential to effectively detect this kind of
anomalies [3] as they can learn from past behavior, making
them more efficient at detecting anomalies when they occur,
as they are trained to observe data which does not fit with
previously observed behaviors. The contribution of this work
is a comparative analysis of ML techniques to detect anomalies
that could occur in an IoT environment. In this paper, methods
to detect anomalies in both time series and non-time series data
are evaluated with statistical metrics to properly capture their
usefulness and effectiveness at detecting anomalies.

II. RELATED WORK

ML has many uses in anomaly detection [4]. Among ML
techniques, Artificial Neural Networks (ANNs) are widely use
in the literature for classification tasks, specifically in the area
of anomaly detection [5]. The following algorithms, often used
in classification tasks and anomaly detection scenarios [6], are
used in this paper: k-Nearest Neighbor (k-NN) is an intuitive
and accurate classifier. It is a method to classify an object
based on the majority class amongst its k-NN. There are
problems of noise, time and memory with 1-NN. To avoid
this, 3 or 4-NN are used for accurate performance measure.
Logistic Regression (LR) is a method for statistically analyz-
ing a data set with one (or more) independent variables that
conclude an outcome (measured with a binary variable). Linear
Discriminant Analysis (LDA) is a technique that attempts to
find a linear combination of features that best separates two
or more classes. Unlike LR, which tries to fit a line through
data points to minimize the distance between the line and
the points, LDA tries to maximize the distance between the
data points and the line (while minimizing the distance across
the points). Decision Trees are a technique for predicting
the relationship between measurements of an item and its
class value. A decision tree is a classifier represented as a
recursive partition of an instance space. Moreover, one of the
most popular algorithms to create trees is C4.5, which uses
information gain as splitting criteria. Naive Bayes (NB) uses
a normal distribution and rules of conditional probability to
model numeric attributes. It is termed as naive because it
relies on two simplifying assumptions: no hidden attributes
influence the prediction process, and the predictive attributes
are independent given the class.

A multilayer perceptron (MLP) is a neural network model
mapping input data with a set of outputs [7], that can also
distinguish data which is not linearly separable. A recurrent
neural network (RNN) is a type of neural network where
connections between units form a directed cycle, creating an
internal state which allows it to exhibit dynamic behavior [8].
Long Short Term Memory (LSTM) is a form of RNN which
attempt to solve the problem of long term dependencies [9].
This is achieved by having three gates used to decide if
information gets passed through the network (thus protecting



the state of the cell). Finally, Gated recurrent units (GRUs) is
a popular gating mechanism in recurrent neural networks [10].

III. EVALUATION METRICS

This work focuses on classification tasks and standard
metrics used for evaluating the performance of the ML models.
Models are trained on a set of data which is the training set
and predictions are made on a separate set of data containing
the same features that exist in the test data. The results of
this anomaly detection classification is binary (i.e., 1 for a
detected anomaly, or 0 for a normal event). To perform an
evaluation of these models we need to know the number of
True Positives (TP), False Positives (FP), True Negatives (TN)
and False Negatives (FN) that occur when we make predictions
on the test set [11]. A TP is a predicted anomaly which was
an anomaly, a TN is a predicted normal event which was a
normal event, a FP is a predicted anomaly which was actually
a normal event and a FN is a predicted normal event which
was actually an anomaly. Given these values, the following
commonly used metrics are calculated: (1) Precision is used to
test the ability of the model to retrieve relevant items. It is the
fraction of relevant instances among the retrieved instances.
(2) Recall is used to test the probability that the model will
retrieve a relevant item. In binary classification tasks, recall is
also known as sensitivity. It is not enough to use recall alone as
if every instance was predicted as an anomaly then the recall
of the model would be 100%. This is why it is often used in
conjunction with precision. (3) F1-score is the harmonic mean
of precision and recall, meaning it takes into account how high
the two values are as well as how similar they are, making it a
good indicator of the accuracy of the model. (4) Accuracy is a
fraction of correctly classified instances over the total number
of instances. In all cases, higher values are better.

IV. COMPARATIVE ANALYSIS

The aim of these experiments is to analyze, using the
standard ML metrics previously discussed, the performance of
a set of state-of-the-art classification algorithms on different
types of data which may be found in an IoT environment.
In particular, we look at both time series and non-time series
data. This is because these two complementary data types are
commonly found in a typical IoT environment.

Non-Time Series: NSL-KDD Dataset. Non-time series
data is data which has no discernible time-element. The
ordering of the data in the dataset is not important, as it does
not relate to time steps. This makes classifying non-time series
data a fundamentally different problem from classifying time-
series data as we are not trying to predict the next step (or
several steps) in a sequence; instead, we are looking at the
features of known data and given new data we try to predict
what class it belongs to. The purpose of this experiment was
to test various classification algorithms on a non-time series
dataset. We chose 5 ML commonly-used techniques that have
been found in the literature to be suitable for classifying non-
time series data. They are k-Nearest Neighbors (kNN), Lo-
gistic Regression (LR), Linear Discriminant Analysis (LDA),

Decision Trees (CART) and Nave Bayes (NB). We also look
at using neural networks in the form of a multilayer perceptron
(MLP). Also, we chose the NSL-KDD dataset [12], a revised
version of the KDD 99 dataset with more variance of data and
no duplicate records or missing values. This dataset comprises
of rows of 41 features (independent variables) used to describe
a network connection and one dependent binary variable that
states whether the connection is a network attack or not. The
tools we are using to perform this classification do not support
categorical variables, so firstly we had to carry out one-hot
encoding on each row of the dataset. This involves splitting
a categorical feature (e.g. a feature whose value can be one
of several values) into multiple binary features which indicate
which of the values it is [13]. This task increases the number
of features from 42 (including the output variable) to 124.

After getting the data into a form that we can process, the
next step is to divide it into train and test data. The NSL-
KDD dataset provides pre-defined train and test datasets. The
training set consists of 125K records and the test set consists of
22K records. As we want to see how the algorithms we have
chosen scale in terms of performance (both in classification
and execution time), we also split the training set into multiple
training sets of different sizes. We finish with 5 different
training sets: The original training set with 100% of the values,
as well as one with 80%, one with 60%, one with 40% and one
with 20% of the original values of the training set. Finally, we
also want to see how our algorithms perform when we do not
use all of the features of the dataset, as well as seeing how
necessary all of the features of the dataset are for effective
classification. To do this, we use an extra trees classifier to
gather the importance of each feature in the dataset. Based
on the obtained importances, we can eliminate those features
which are deemed by the classifier to be effectively useless for
classification. This brings us from 124 features , after one-hot
encoding, to just 49. This should give improved execution time
for our algorithms with minimal cost to classification accuracy.

First, we will look at the 5 classification algorithms men-
tioned above. Figure 1 shows the classification accuracy for
the 5 algorithms, using 100% of the training set for training

Fig. 1. Classification accuracy



Fig. 2. Algorithm scaling using various percentages of the training set

Fig. 3. 20% training set vs 100% training set

and classifying on the test set, with all features included. Apart
from the NB algorithm, the other four algorithms perform well,
all hitting at least 70% accuracy. The decision trees show an
impressive 80% classification accuracy, with little difference
between the KNN and LDA algorithms. Moreover, the low
accuracy exhibited by NB was the result of over-fitting the
model with multiple dependent variables. Next, we look at
what the trade-off is in execution time to get these scores in
Figure 2. We observe that, while there is little difference in
accuracy between KNN and LDA, it takes considerably longer
to train KNN. We also see that the decision tree algorithm
(CART), which consistently outperform the other algorithms
in terms of classification accuracy, also scales very well in
terms of time taken to train.

We also find that using smaller amount of values for
training the dataset has little effect on the accuracy, which
is believed to be due to the large volume of data contained
in the initial dataset. Figure 3 shows the accuracy scores
for the 5 algorithms with the 20% training set versus the
full training set. From Figure 4, we also do not see a huge
difference between the classification accuracy when using
reduced features and all features. This would appear to be
due to the number of features left, after feature reduction, still
being quite large (49). Next, we look at the neural network

Fig. 4. Classification accuracy with and without feature reduction

Fig. 5. MLP classification accuracy

approach, using MLP to train a more complicated network
with our various training sets, then feeding data from our test
set to the trained model for classification. For this experiment,
we run the training process for different numbers of epochs
(1, 10, 20, 50, 100) and gather the same metrics mentioned
above. Figure 5 shows the accuracy when using 100% of the
training set with all features. What we see from that figure is
that the classification accuracy is greatly increased when we
train for larger numbers of epoch (i.e., ≥ 10). This was due
to the high complexity of the KDD dataset, which required
more epochs to get a satisfactory accuracy. From the results
for 10, 20, 50 and 100 epochs we also see variance but no
real improvement in the accuracy. This is likely due to the
network finding a local minimum when reducing the error rate
during training and deviating either away (or back) towards
that minimum during further epochs. To verify this, we can
look at results for the other training sets, for instance Figure 6
which depicts the results of the 80% training set. From this
figure, we can see a more predictable trend for the 1, 10, 20
and 50 epochs with the classification accuracy increasing by
a reasonable margin for each value of epochs. However, for
the 100 epochs the accuracy drops a bit, again likely due to
finding a local minimum for the error rate during training, this
time after 50 epochs. When looking at the 10 sets of results



Fig. 6. MLP classification accuracy (80% train set)

Fig. 7. MLP execution time over range of epochs

(for the 5 different number of epochs and with and without
feature reduction), we find that 8 (out of 10) times 50 epochs
gives a higher classification accuracy than 100 epochs.

We also find that the neural networks approach is compu-
tationally expensive, as shown by Figure 7, which depicts the
results for training with 100% of the data with no feature
reduction. To perform a single epoch of training takes about 5
seconds, but this time increases greatly for more epochs, taking
roughly 70 seconds for 100 epochs. The highest accuracy we
see from the MLP is 79%, which means it is consistently
worse than the decision tree CART algorithm which regularly
managed 80% (or higher) accuracy, and which takes a fraction
of the time to train (approximately 10 times quicker).

Time-Series: Yahoo Anomaly Detection Dataset. Time-
series data consists of data points which are indexed in order
of time, meaning every piece of data has an associated time-
step. When performing classification on time-series data, we
first look at a sequence of data points up to a given time and
then try to predict the next value (or sequence of values) for a
time period. This dataset, provided by Yahoo for academic
purposes [14], was created with the aim of benchmarking
anomaly-detection algorithms. The dataset consists of real and
synthetic time-series data, where each data point is tagged as
either an anomaly or normal data. The real data consists of
metrics of various Yahoo services, though it is not defined

what these services are, as the data is user sensitive. Five
files were chosen from the dataset (4x real, 1x synthetic)
to give a spread of anomaly occurrence and distribution in
the data. Four time-series algorithms are used to test for
anomalies. These algorithms are Long Short Term Memory
(LSTM), Gated Reccurent Unit (GRU), Recurrent Neural Net-
work (SimpleRNN) and an Autoregressive Integrated Moving
Average (ARIMA) model. The data is then split into train/test
splits at a ratio of 0.5, 0.6, 0.7, 0.8 and 0.9. For ARIMA, we
add every observation from the test data to our history of seen
observations after we predict the next value and then retrain
the model. This is why in the results the time increases for
a shorter train set, as the model is retrained as many times
as there are values in the test set. Each of the neural network
algorithms (LSTM, GRU and SimpleRNN) are trained for 100
epochs before making predictions, and all use the same seeded
random values throughout the tests. The data is normalized to
small values (between 0 and 10) and an error threshold of 1
(i.e., 10% of the range) is used to predict anomalies (as this
threshold is typically used to delimit the behaviour of a steady-
state process [15]). For instance, if the predicted value is 0.5
and the actual value is -0.3, it is not considered an anomaly.
Alternatively, if the prediction is 0.4 and the actual value is 2.2,
it is considered an anomaly. Also, we compare our predicted
binary classification results with the actual anomaly values to
calculate the evaluation metrics discussed in Section III.

To illustrate the obtained results, we present the results of
File 17, as it had the most anomalies spread out over time,
and it is also representative of the overall results obtained
(as the other files exhibited similar trends). Figure 8 shows
the results of the TP/TN/FP/FN values for this file for the
different algorithms and train/test splits. It can be noticed that,
in general, all the executed algorithms consistently performed
well, as they produced considerably more TP and TN values
than FP and FN values. To complement this analysis, we
present Figure 9 which shows how the train/test splits affect
the test metrics by looking at the values, as a percentage of the
total number of records in the set. There, it can be seen that the
algorithms generally follow a similar pattern, mostly finding
true negatives, which is explained by the fact that most of the
data points are not anomalies. Meanwhile, Figure 10 shows the
standard classification metrics for File 17. In general terms, the
bigger the training set, the better the precision, with LSTM
and GRU being the most accurate algorithms. Nevertheless,
the accuracy does not improve with the training set size and
is mostly similar for all the algorithms. Finally, ARIMA is a
bit better at recall compared to the others.

Time-Series: IoT Testbed Dataset. As a second time-series
dataset, we used our IoT testbed data generated by the process
discussed in [16]. The testbed outputs room temperature values
and those that are too low/high are flagged as anomalies.
We used LSTM, GRU, SimpleRNN and ARIMA: for each
algorithm, the test/train split was tried with 0.5/0.6/0.7/0.8/0.9
ratio as for the Yahoo dataset. To exemplify the obtained
results, Figure 11 shows the precision, recall, F1-score and
accuracy for one file from the testbed results. We can see



Fig. 8. Positivity values for File 17 for each algorithm and split

(a) LSTM (b) GRU

(c) SimpleRNN (d) ARIMA

Fig. 9. Positivity values as a % of records for each algorithm and split

that the neural network algorithms do not perform very well
in regards to precision and recall when the train/test split
is skewed towards the training. The recall at times is very
good but can be inconsistent (partly because there are not that
many anomalies in the data, so when one is missed it has a
substantial effect on the scores). The accuracy is generally high
across the board. Also, ARIMA is clearly the most consistent
performer as its results do not vary greatly depending on the
split (consequence of retraining the model at every step).

Figure 12 shows the TP/TN/FP/FN values of these models
to provide a more granual insight of the results. The algorithms
should maximize the number of TP/TN values, while minimiz-
ing the number of FP and FN values. This graph clearly depicts
that ARIMA is the best performing model on average. An
interesting result is that the SimpleRNN model, which was the
weakest of the neural network algorithms in the Yahoo tests, is
now the best in these tests. We believe this is due to the random
nature of the temperature values. This indicates that there is
no pattern, suggesting that the memory capabilities of GRU
and LSTM actually hinder their performance, as they look
further back to infer patterns which do not really exist. Again,

(a) Precision (b) Recall

(c) F1 (d) Accuracy

Fig. 10. Metric scores for Yahoo data

(a) Precision (b) Recall

(c) F1 (d) Accuracy

Fig. 11. Metric scores for the IoT testbed

we look at these metrics as a percentage of the number of
samples tested from the test data to assess how the prediction
accuracy deviates with regards to the different splits. A good
algorithm should have a high number of TP and TN values
and a low number of FP and FN values, but it is less useful if
this only occurs with certain splits. We can see from Figure 13
that ARIMA consistently performs well across all the tested
scenarios.

V. CONCLUSIONS AND FUTURE WORK

IoT presents many challenges, including maintaining vast
and complex networks. Having many small devices sending
traffic at frequent intervals makes it difficult to identify when
and where problems occur in a network, compared to more
traditional networks. Thus, techniques need to be evaluated to
help identify when and where these issues occur. To address
this issue, this paper provides a comprehensive analysis of ML
techniques for anomaly detection. To ensure that the analysis
was comprehensive, both non-time series and time series data
were examined, as they both have their own challenges and



Fig. 12. Positivity values of testbed data across all splits

(a) LSTM (b) GRU

(c) SimpleRNN (d) ARIMA

Fig. 13. Positivity values as a % of records for each test split

methods for anomaly detection. This analysis was carried out
with three data sets, one for non-time series and two for time
series, with different variations of splits for training and test
data, as well as identifying anomalies in the data before and
after feature reduction. For the non-time series data, it was
observed that the Linear Discriminant Analysis and Decision
Tree algorithms provided the most consistent results, achieving
roughly 80% accuracy (across all tested scenarios). Using
neural networks for the non-time series data does not appear to
be a viable option, as the experiments showed that, even with
many epochs, neural networks do not outperform the other
classification algorithms, despite taking longer to run. For the
time series data, it was observed that when analyzing data with
underlying trends (such as in the Yahoo data set), the neural
networks with memory gates (LSTM and GRU) outperformed
the others. However, with data without underlying trends
(such as the IoT testbed data) the opposite was true, as the
algorithms tried to infer patterns that did not exist. Also, it
was observed that ARIMA generally performs well across both
types of data and appears to be the most suitable for real-
time prediction of anomalies, as the network can be retrained

after every observation and make a new prediction even when
observations are being made every second.

Finally, the algorithms used were chosen from those that
are most frequently cited in the literature and which were
deemed suitable for anomaly detection. Future work will focus
on extending the set of evaluated algorithms to generalize the
obtained knowledge of when each algorithm is best suited for.
Likewise, further work will focus on diversifying more the
parameters’ configurations of the evaluated algorithms, with
the aim of generating usability guidelines for practitioners.
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“Recurrent neural network based language model.” in Interspeech, vol. 2,
2010, p. 3.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014.

[11] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[12] “NSL-KDD dataset,” Last accessed: 2018-05-11. [Online]. Available:
http://www.unb.ca/cic/datasets/nsl.html

[13] A. Coates and A. Y. Ng, “The importance of encoding versus training
with sparse coding and vector quantization,” in International Conference
on Machine Learning, 2011.

[14] “Yahoo dataset,” Last accessed: 2018-05-11. [Online]. Available:
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s

[15] A. O. Portillo-Dominguez, P. Perry, D. Magoni, and J. Murphy,
“PHOEBE: an automation framework for the effective usage of diagnosis
tools in the performance testing of clustered systems,” Softw. Pract. Exp.,
2017.

[16] S. Brady, A. Hava, P. Perry, J. Murphy, D. Magoni, and A. O. Portillo-
Dominguez, “Towards an emulated IoT test environment for anomaly
detection using NEMU,” in Global Internet of Things Summit, 2017.


