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Abstract—Multi-arm bandit (MAB) algorithms have been used
to learn optimal beams for millimeter wave communication
systems. Here, the complexity of learning the optimal beam
linearly scales with the number of beams, leading to high
latency when there are a large number of beams. In this work,
we propose to integrate radar with communication to enhance
the MAB learning performance by searching only those beams
where the radar detects a scatterer. Further, we use radar
to distinguish the beams that show mobile targets from those
which indicate the presence of static clutter, thereby reducing the
number of beams to scan. Simulations show that our proposed
radar-enhanced MAB reduces the exploration time by searching
only the beams with distinct radar mobile targets resulting in
improved throughput.

Index Terms—multi-armed bandit, joint radar communication,
upper confidence bound, analog beamforming

I. INTRODUCTION

Millimeter wave (mmW) unlicensed spectrum has been
identified as a viable solution for realizing high data rate
communications between connected vehicles [1]–[5]. The
communication links are, however, characterized by high
atmospheric absorption and hence can be operational only
in short-range line-of-sight scenarios with highly directional
beams realized through analog or digital beamforming at
the transmitter/receiver. Digital beamforming allows for
multiple simultaneous beams but is costly and complicated
to implement since multiple phase and time-synchronized
RF/mmW chains are required [6]. Analog beamforming is less
costly since it involves a single beam at a time. But there
is considerable overhead expended by the communication
protocol and a long search/exploration time to scan the
entire field of view and select the best beams for each
mobile user (MU). This results in high latency and shorter
service/exploitation time available for communication causing
low throughput.

There have been several recent works that have applied
multi-armed bandit (MAB) algorithms for reducing the
exploration time of the best beams in order to increase
the exploitation time for subsequent mmW communications
[7]–[10]. MAB algorithms are a class of algorithms within
the reinforcement learning framework which provides a basis
for making decisions under uncertainty. MAB-based beam
selection works, such as [8], [9], have relied on a strategy
where the base station (BS) waits for the feedback (reward)
over the uplink for the beam selection in subsequent time slots.
In such time-slotted communication, the transmitter can switch
the beam only once in a slot, and the duration of each slot
depends on the time taken by the MU to process the downlink
signal and share the feedback over the uplink.

The use of radar signals for detecting the presence of
targets can potentially speed-up the beam search. However,
there are certain challenges in the integration of radar with
communication physical layer. The use of an auxiliary radar
sensor for detecting MU, cannot be considered, as it would
increase the cost and complexity of the system. Further, the

radar and communication functionalities would have to be
synchronized as well as managed for interference. Instead, we
propose that an integrated sensing and communication system
be utilized for mmW communication such as those proposed
by [11], [12]. Here, a common waveform on a common
spectrum is used for joint radar sensing and communications.
Hence, no separate hardware/spectrum/synchronization or
interference management is required to support both
functionalities. Note that joint radar communication (JRC)
systems have been explored over the last several decades
to tackle spectral congestion issues [13]. While some works
have studied how to manage mutual interference that arises
from the coexistence of both systems on a common spectrum
[14], others have exploited the communication signal as an
opportunistic illumination for passive radar receivers [15].
We identify our work to belong to the third category of
research that explores the collaborative design of JRC systems
to improve the performance of each functionality [16], [17].

In this work, we propose incorporating a radar sensing
mechanism into the MAB framework at the BS to overcome
the limitations listed above. In the proposed framework,
the radar at the BS is used to detect the presence of
MU in the candidate beams based on the strength of the
scattered signal (amplitude gated radar enhanced MAB) and
the Doppler frequency shift (Doppler gated radar enhanced
MAB) introduced to the radar signal. Only those beams that
indicate the presence of a mobile radar target will be further
scanned for the presence of a MU. Radar detection-based
decision-making will be much faster than communication
metric-based decision-making due to multiple reasons. First,
the feedback for a radar signal is nearly instantaneous since
it is based on the electromagnetic scattering of the signal by
mobile targets. Second, the exploration time is substantially
reduced by restricting the number of candidate beams that have
to be scanned. Due to these factors, the overall exploration
time will be reduced resulting in rapid beam alignment and
improved overall communication throughput.

Notation: In our paper, scalar variables, vectors, and
matrices are denoted with regular, and boldface lower and
upper case characters respectively. Vector superscript T and
symbol ⊗ denote transpose and convolution operations.

II. RAD-COM SIGNAL MODEL

We first present the signal models for the JRC transmitter
and receiver based on the IEEE 802.11ad protocol where the
Golay sequences in the communication frame are exploited
for radar sensing [11], [12], [17]. The digital waveform
xq[m] corresponds to the Golay sequence in the qth packet
transmitted at a pulse repetition interval of TP with m =
1, 2, . . . ,M samples. These digital packets are then converted
into analog signals xq(t) at the BS as follows:

xq(t) =

M∑
m=0

xq[mTs]δ (t−mTs − (q − 1)TP ) , (1)
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where Ts is the sampling time. The signal is then amplified
with energy Es, convolved with a transmit shaping filter, gT ,
and then passed through analog upconversion to the mmW
carrier frequency fc as

xquc(t) =
√
Es (xq(t)⊗ gT (t)) e

+j2πfct. (2)

The upconverted signal is then transmitted via analog
beamforming through a uniform linear array (ULA) of PBS

elements after applying complex antenna weight vector at BS
transmitter (BS-TX), wBSθ

∈ CPBS×1 for a given angle θ,
resulting in

Xquc(t) = wBSθxquc

T (t). (3)

Here, wBSθ
= [1 e−jkcdBS sin θ · · · e−jkcdBS(PBS−1) sin θ]

where kc is the propagation constant and dBS is the uniform
element spacing. It is important to note that the problem of
searching for a new beam only arises for a MU that has
changed its position and not a static user.
Radar received signal: Along a pre-determined beam angle θ,
we assume that there are B radar targets present in the channel
including MU and other discrete clutter scatterers. Then the
received signal at the PBS-element ULA at the BS receiver
(BS-RX) after being reflected from the targets, is

ˆ̂xq(t) =

B∑
b=1

σbwBSθuθHr
2uT

θ [Xquc(t− 2τb)] + ρ(t), (4)

where τb denotes the time delay caused by one-way
propagation and σb is the strength of the reflection from each
bth point target obtained from Frii’s radar range equation.
Hr

2 is the PBS × PBS channel matrix that includes the
direct path and multipath due to static clutter scatterers
(SCS) present in the environment modeled in a manner
described in [18] but for two-way propagation. The steering
vector from the ULA corresponding to θ is given by uT

θ =
[1 ejkcdBS sin θ · · · ejkcdBS(PBS−1) sin θ] while ρ is the additive
circular symmetric white Gaussian noise at the BS-RX. We
assume that each radar target is moving with a constant radial
velocity vb, such that the Doppler shift is fb = 2vb/λ where
λ is the wavelength. After down-conversion and digitization,
the received radar signal is

ˆ̂xq[m] =

B∑
b=1

σbwBSuθu
T
θ Xquc [m−mb] e

−j2πfbqTP + ρ, (5)

where, mb is the sample index corresponding to τb.
Radar signal processing: The radar received signal at
BS-RX gathered over Q packets is first converted to a
radar rectangle of dimension [M × Q] which then goes to
the radar signal processing block to obtain the range and
Doppler of the corresponding target. The range estimation
output, χq, is obtained through the matched filtering for
each qth packet, χq = ˆ̂xq ⊗xq . The output is processed
through the ordered-statistics constant false alarm (OS-CFAR)
to estimate each ath peak with amplitude, σ̂a, at the
range r̂a. This σ̂a information is used subsequently for the
amplitude gated radar-enhanced MAB algorithm discussed
in the next section. Next, Doppler estimation is carried
out through one-dimensional multiple signal classification
(MUSIC) for each ath peak across the Q packets to estimate
the corresponding f̂a. This f̂a information is used for the
Doppler gated radar-enhanced MAB algorithm discussed in
the next section.
Communication received signal and processing: The
one-way propagated communication signal, x̂(t), is received

at the PMU element ULA at the MU receiver (MU-RX) as
shown in

x̂(t) = wMUϕuϕHcu
T
θ [Xquc(t− τb)] + δ(t). (6)

Here, wMUϕ
represents the weights applied at the MU-RX

and uϕ = [1 ejkcdMU sinϕ · · · ] is the steering vector for the
BS at ϕ for dMU antenna element spacing. Hc is the one-way
propagation channel matrix PBS × PMU model [18] and δ
is the additive circular-symmetric white Gaussian noise at
MU-RX. The signal x̂(t) is received by MU and gets processed
and the corresponding signal-to-noise ratio (SNR) is sent back
to the BS as uplink feedback. Note that the processing time
for the MU results in a greater delay for the uplink signal
to return to the BS compared to the nearly instantaneous
radar-scattered signal. Second, the uplink x̂ is distinguished
from ˆ̂x at the BS-RX through cross-correlation with x. Due
to the nature of the Golay sequence, the peak-to-sidelobe ratio
after cross-correlation for ˆ̂x is very high compared to the x̂.

III. PROPOSED MAB FRAMEWORK FOR JRC
In this section, we set up the beam-selection problem

between BS and MU as MAB and develop the algorithms that
speed up the beam selection. The standard stochastic MAB
consists of a set of K arms (predetermined beams) and a single
player (the BS-TX/RX) as shown in Fig.1a. In each time slot,
the BS-TX/RX, selects a single kth beam and receives the
reward - the SNR of the communication link, Sk, obtained
from uplink feedback along the beam. For each arm, the
reward is assumed to be drawn independently across time from
distributions that are stationary and independent across arms.
The performance metric is equal to the difference between the
SNR of the optimal beam and the SNR over the selected beam.
We define this as regret which is given as

R = TSk′ − E

[∑
k∈K

SkNk

]
(7)

where T is the total number of time slots, Nk is the number
of times the beam k is selected by BS and k′ =argmax

k∈K
Sk.

The expectation here is with respect to the random number of
pulls of the arms (Nk). Thus, the regret can be minimized
by selecting the optimal beam, k′, i.e., the beam with the
highest SNR as many times as possible in a given horizon
of size T . In this paper, we limit our discussion to the
upper confidence bound-based (UCB) MAB algorithm [19]
and provide regret bounds. The proposed idea can be easily
extended to other MAB algorithms such as UCB variants and
Thompson Sampling.

A. SNR Based Beam Selection using UCB
We first present the conventional approach for beam

selection using the UCB algorithm given in Algorithm 1:
UCBSNR. The communication is assumed to be time-slotted.
At each tth time slot, the BS-TX transmits over the beam
selected by the UCB algorithm. The algorithm selects each of
the K beams once at the beginning (lines 4-6), and thereafter,
the beam selection is based on the UCB index (lines 7-8).
Here, TRSP denotes the time slots required for RSP and it is
set to 0 for UCBSNR. We denote the index of the selected
beam and corresponding reward, i.e., instantaneous normalized
SNR, as It and Wt, respectively. At the end of each time
slot, the parameters are updated (line 12). The UCB index is
calculated for each beam separately and it is given as

UCBk(t) =
Ŝk

Nk
+

√
2 log(t)

Nk
, (8)
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Fig. 1: System model showing (a) Standard non-radar based MAB beam selection, (b) Amplitude Gated Radar-Enhanced MAB, (c) Doppler Gated
Radar-Enhanced MAB. Beams with red and green boxes indicate zero and non-zero Doppler targets respectively.

where Ŝk denotes the empirical mean of kth arm using
samples obtained till time t. The expected regret of UCBSNR

scales as O(
∑

k∈K\k′
log T
∆k

) [20] where ∆k = Sk′ − Sk for
all k ̸= k′. Furthermore, it suffers from high exploration time
especially when K is large. Both these drawbacks limit the
usefulness of UCBSNR for mmW communication with a
large number of narrow directional beams.

Algorithm 1 UCBSNR: SNR Based Beam Selection

1: Input: K, T, TRSP

2: Initialize: Nk ← 0 and Sk ← 0 for all k
3: for t = TRSP + 1, 2 . . . T, do
4: if t ≤ K then
5: Select beam, It = t.
6: else
7: ∀k ∈ [K] : compute UCBk(t) as given in Eq. (8)
8: Select beam, It = argmax

k∈[K]
UCBk(t)

9: end if
10: BS-TX transmits a data frame over It
11: MU observes instantaneous normalized SNR, Wt and

communicate to BS-RX over the uplink.
12: NIt ← NIt + 1 and SIt ← SIt +Wt.
13: end for

B. UCBSNR AG: Amplitude Gated Radar-Enhanced MAB
In this section, we augment the UCBSNR with the

proposed radar-based target detection as shown in Fig. 1b
and described in Algorithm 2: UCBSNR AG. Here, a radar
target is detected in a beam when the amplitude/strength of
the scattered signal in any one or more of the range bins within
the beam is above a pre-set threshold determined by CFAR.
The number of beams where potential targets are detected is K̃
(dark-colored beams in the figure) where K ≥ K̃. Compared
to Algorithm 1, the number of available beams is updated
based on radar target detection during the first time slot (line
3 of Algorithm.2). Compared to UCBSNR, UCBSNR AG

potentially offers lower regret due to the following reasons:
1) Faster target detection: The identification of the presence
of targets using radar is significantly faster since returns of
the scattered signals from the short-range targets are nearly
instantaneous with a short round-trip delay of the order of a
few ns. For 5G, one slot is at least 4 ms assuming downlink
sub-frame (1 ms), uplink sub-frame for reward feedback (1
ms), downlink (1 ms) and uplink data processing (1 ms). On
average, RSP time, TRSP for 10 radar packets is 36 ms, i.e., 9
slots are sufficient to find K̃ [21]; 2) The proposed algorithm
focuses on a subset of the total beams in which a mobile target
may be present which in turn reduces the exploration time. To
quantify this gain, let us fix a bandit instance. The set of beams
is detected by the radar, K̃, is a random variable depending
on the distribution of scatterers. We can assume K̃ includes
the optimal arm in each realization as it has the maximum

Algorithm 2(or)3 UCBSNR AG (or) UCBSNR DG

1: Input: K, T, TRSP

2: Initialize: Nk ← 0 and Sk ← 0 for all k
3: Find K̃ using target detection (Subroutine 1)

▷ UCBSNR AG

Find ˜̃K using Doppler detection (Subroutine 2)
▷ UCBSNR DG

4: Run UCBSNR with K̃ arms for rest of the time horizon.
▷ UCBSNR AG

Run UCBSNR with ˜̃K arms for rest of the time horizon.
▷ UCBSNR DG

Subroutine 1 AG : K̃ Beams Selection Using Radar Target
Detection

1: Input: K
2: Output: K̃
3: for θ = 1, 2 . . .K, do
4: χθ: Matched filtering across fast time samples
5: CFAR detection:
6: if χθ ≥ γ then
7: Include beam, θ in subset K̃
8: end if
9: end for

signal strength and radar is unlikely to miss the MU. Hence
the optimal arm is the same in any realized set K̃. Expected
regret over the set K̃ is O(

∑
k∈K̃\k′

log T
∆k

). Clearly this bound
is smaller than O(

∑
k∈K\k′

log T
∆k

) obtained for the previous
case. Taking expectation over the random realizations K̃, we
get expect regret of UCBSNR AG as E

[
O(

∑
k∈K̃\k′

log T
∆k

)
]
≤

O(
∑

k∈K\k′
log T
∆k

). Thus UCBSNR AG is better than that of
UCBSNR resulting in an improvement in the performance.

C. UCBSNR DG: Doppler Gated Radar-Enhanced MAB
In the UCBSNR AG algorithm, all the beams where radar

targets are present are selected. However, some of the
beams correspond to SCS as shown in Fig.1c. The SCS is
distinguished to be of two types: some give rise to direct
scattering at the radar (termed SCS1) with zero Doppler
while others give rise to Doppler-shifted returns at the radar
through multipath with respect to the MU (termed SCS2).
The proposed Doppler-enhanced MAB algorithm is described
in Algorithm 3: UCBSNR DG. Since direct path returns from
SCS do not give any type of information regarding the MU,
they can be excluded from the list of candidate beams based
on the Doppler shift estimated from the radar signal processing
described earlier. Hence the total number of beams where
potential MU are detected is ˜̃K and K ≥ K̃ ≥ ˜̃K. Thus,
fewer candidate beams (dark-colored beams in the figure)
result in lower exploration time. The theoretical explanation
for the reduction in beams follows the same logic provided for
the previous algorithm and hence is not repeated here. Note
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that static communication targets are not likely to have first
triggered the necessity for the selection of a new beam by the
BS and hence, static targets can be interpreted safely as SCS.

Subroutine 2 DG: ˜̃K Beams Selection Based on Doppler
Estimation

1: Input: K
2: Output: ˜̃K
3: for θ = 1, 2 . . .K, do
4: 1D-MUSIC for r̂a across Q packets
5: if f̂a ̸= 0 then
6: Include beam, θ, in subset ˜̃K
7: end if
8: end for

IV. PERFORMANCE ANALYSIS

We consider a three-dimensional (3D) Cartesian coordinate
space with the ground plane defined by the x and y axes
and the height axis along z. The BS is located at [0, 0, 0] m
with a y-aligned uniform linear array (ULA) of 32 antennas
with an antenna spacing of λ/2 where λ is the wavelength
corresponding to the center frequency fc of 60 GHz. We adopt
a 16QAM modulation and coding scheme with 512 OFDM
subcarriers with a signal bandwidth of 1.76 GHz. We assume
that the channel consists of a single MU and multiple SCS as
shown in Fig. 1. The radar scattered returns of each of these
are confined to a single beam. We assume that the MU is also
with a 32-element ULA and is initially located at [50, 20, 0]m
and subsequently moves with a constant velocity of v m/s
along the x axis. Both MU and SCS are modeled as isotropic
point scatterers and the SCS are distributed randomly across
the 3D Cartesian space.

The throughput, Υ, is calculated as
(
1−

∑Nt
i=1 BERi

Nt

)
D
Td

where, BERi corresponds to the bit error rate of ith time
slot, D and Td correspond to the total number of bits and
the time duration for each slot respectively. We benchmark
the Υ performance of the proposed algorithms, UCBSNR AG

and UCBSNR DG with conventional UCBSNR, lower
upper confidence bound (LUCB) described in [22], digital
beamforming and trivial random beam selection approach.
We present the effects of the number of targets, number of
beams, the Doppler velocity resolution, and radar receiver
SNR on Υ. Each result presented in this section is obtained
after averaging over 15 independent experiments and each
experiment’s duration/horizon is 2000 time slots.
Effect of Number of Radar Scatterers: In Fig. 2(a), we
compare Υ of all the algorithms at different instants of the
time horizon. Here, we assume one MU and vary the number
of SCS. The Doppler velocity of the MU is fixed to 3 m/s
and the angular resolution is 4o resulting in a total of 41
candidate beams spanning from −80o to 80o and the Doppler
velocity resolution is 1 m/s. It can be observed in the figure that
the proposed algorithms offer higher Υ than the benchmarked
approaches - except for DBF - due to faster identification of
the optimal beam. DBF provides the best-case results since all
the beams are tested simultaneously. However, this approach is
not pursued since the implementation of multiple synchronized
receiver chains is costly and complex. In Fig. 2(b), we compare
Υ of all algorithms at the end of the horizon as the number
of SCS increases. We observe that the performance of all
MAB-based approaches is significantly better than the random
selection approach validating the need for a learning algorithm.
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Fig. 2: (a) Throughput at different time slots for two targets, and (b)
Throughput at the end of the horizon for different numbers of targets.
As expected, the difference between UCBSNR (non-radar
based beam selection) and UCBSNR AG or UCBSNR DG

(radar-based beam selection) reduces as the number of targets
increases. This is because when there are a large number
of SCS, there is a proportionate increase in the number of
candidate beams. Further, we can observe that there is a slight
improvement in Υ for UCBSNR DG than UCBSNR AG as
beams with zero Doppler get eliminated.
Effect of Angular Resolution Next, we fix the number of
targets to three, which includes one MU and two SCS, and
compare the performance for different angular resolutions or
the number of candidate beams. The rest of the parameters
are the same as Fig. 2. In Fig. 3(a), we compare the Υ
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Fig. 3: (a) Throughput at different time slots for angular resolution of
2o, and (b) Throughput at the end of the horizon for different angular
resolutions/number of candidate beams.

for angular resolution of 2o and it can be observed that
the proposed approaches offer higher Υ than UCBSNR

and random approaches at all time slots. In Fig. 3(b), we
compare the Υ at the end of the horizon for different
numbers of candidate beams. As expected, Υ increases as
the number of beams reduces due to lower exploration
time. However, proposed UCBSNR AG or UCBSNR DG

algorithms significantly outperform UCBSNR and random
approaches in all cases. The UCBSNR DG offers higher Υ
than UCBSNR AG for smaller angular resolution (i.e., large
K) due to more opportunities of beam elimination. However,
the impact of Doppler processing reduces with the increase in
angular resolution due to the occurrence of fewer beams.
Effect of Velocity Resolution: Next, we study the effect of
Doppler velocity resolution on Υ. The simulation is carried
out for Doppler velocity resolution of 1 m/s, 2 m/s, 3 m/s, 4
m/s and 5 m/s. We assume the MU with a Doppler velocity of
3 m/s and three targets (one MU and two SCS). In Fig. 4(a),
we consider the velocity resolution of 5 m/s, which is not
sufficient to detect the MU and hence, the performance of
UCBSNR DG is poorer than that of UCBSNR AG. As shown
in Fig. 4(b), the velocity resolution of radar signal processing
should be carefully chosen. Thus, UCBSNR DG may not
offer better performance than UCBSNR AG even though it
incurs higher computational cost due to Doppler estimation.
As expected, Υ of UCBSNR and random approaches are
independent of the velocity resolution since they do not use
this information for beam selection.
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Fig. 4: (a) Throughput at different time slots for velocity resolution of 15m/s,
and (b) Throughput at the end of the horizon for different velocity resolutions.

Effect of Radar Receiver SNR: Further, we analyze all the
algorithms for four different SNRs at the radar receiver ranging
from -10 dB to 10 dB. Here, also we simulate three targets
(one MU and two SCS), and the velocity resolution is set as
1 m/s. Fig. 5(a) represents the viewgraph of Υ with respect to
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Fig. 5: (a) Throughput at different time slots for 10dB SNR, and (b)
Throughput at the end of the horizon for different SNRs.

time slots for a high SNR (10 dB). We observe in Fig. 5(b) that
the regret improves for the UCBSNR AG and UCBSNR DG

with increase in SNR. At lower SNR, the poor prediction of the
target presence amidst noise results in higher regret. Note that
since we consider the SNR with respect to the radar receiver,
change in SNR does not have any impact on the random beam
selection as well as UCBSNR algorithms.
Impact of Doppler Processing: Further, we discuss the
scenario where the number of SCS1 is greater than
SCS2 such that the candidate beams selected by the
UCBSNR DG are significantly lesser than those selected by
the UCBSNR AG. In Fig. 6(a), we consider one MU, one
SCS2 and two SCS1. The angular resolution is 4o and
the velocity resolution is 1 m/s. Since SCS2 gives rise to
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Fig. 6: (a) Throughput at different time slots for four targets (including two
SCS1, one SCS2 and one MU, and (b) Throughput at the end of the horizon
for different number of SCS1.

Doppler shift at the BS through multipath from the MU, the
corresponding beam is retained for further scanning while
the beams corresponding to the two SCS1 that give rise
to zero-Doppler shift are excluded in UCBSNR DG. This
results in better performance of the algorithm compared to
UCBSNR AG. Further, the improvement is greater as the

number of SCS1 increases for a fixed number of SCS2 as
seen in Fig. 6(b).

V. CONCLUSION

In this work, we demonstrate how radar-enhanced MAB
within a JRC BS can substantially reduce the exploration
time by selecting only those candidate beams that detect the
presence of radar targets of which the MU may be one. Further
reduction in the exploration time is realized by distinguishing
SCS from MU through radar-based Doppler estimation.
Simulation results demonstrate an overall improvement in
the communication link metrics with the reduction in
the exploration time through radar-enhanced MAB when
compared with conventional MAB algorithms.
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