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Abstract—In this letter we derive novel expressions for the
joint outage probability at two time slots of a wireless network
under correlated interferer locations, channel gains, and traffic.
The result is given as a function of the lag between the two
slots, the channel coherence time, and the traffic burst length.
Furthermore, we analyze the success probability of a transmission
following a single outage, an important metric when, e.g.,
analyzing retransmission or cooperative relaying protocols.

Index Terms—Joint outage probability, interference dynamics,
stochastic geometry, wireless networks.

I. INTRODUCTION

When evaluating the performance of a wireless network, an
important performance metric is the outage probability [1].
It is often used when assessing the network’s performance
by mathematical expressions rather than by simulations or
experiments.

Outage probabilities are mostly derived using tools from
stochastic geometry [1]. A particular strength of this ap-
proach is that it can capture spatiotemporal correlations of
interference [2], thus drawing a comprehensive picture of the
performance of a network. In such an approach, the node
locations are often modeled by Poisson point processes (PPPs),
which is a good compromise between the accuracy of the
model and mathematical simplicity and thus has given rise
to a high number of publications, including results on assess-
ing the performance of cellular networks [3], [4], mmWave
communications [5], wireless ad hoc networks [6], and the
Internet-of-Things (IoT) [7], [8]. Many of these works take
into account the interference correlation that is caused by
the fixed interferers’ locations or, in case of mobility, the
correlation of the interferers’ locations at different times.

However, as we have shown in the past, interference can
have additional sources of correlation besides interferer lo-
cations, namely correlated channel gains (e.g., when fading
has a coherence time that spans several slots) and correlated
traffic [2], [9] (e.g., when it is especially likely that a given
node transmits again after a transmission occurred due to
bursty transmissions or the use of a retransmission protocol).
These correlation sources lead to rather diverse interference
dynamics. For example, when nodes are immobile, the cor-
relation of interference levels at two different time slots that
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is caused by the fixed interferer locations is independent of
the time lag between the two slots. In contrast, the correlation
caused by correlated channel gains and traffic depends on the
time lag [2] between the slots; this has different implications
for protocol design and network parametrization.

Our particular contributions are as follows:
• We derive closed-form expressions for the joint outage

probability in two time slots separated by an arbitrary lag
τ . These expressions, for the first time, quantify jointly
the effects of correlations in the locations, the channel
gains, and the transmission activities of the interferers.

• We also derive closed-form expressions for the joint
and the conditional success (following a lost packet)
probabilities under the same conditions.

• Having these closed-form expressions available, for the
first time we quantify the manner in which the outage,
joint success, and conditional success probabilities across
two slots depend on the time separation of these slots,
when there is no node mobility. Previous models did not
capture this dependence.

• We present several numerical results that quantify the
impact of the aforementioned correlations on outage.

• We provide guidelines for designing and configuring net-
working protocols, such as retransmission and scheduling
schemes, cooperative relaying protocols, etc.

• We illustrate similarities between interference correlation
and joint outage probabilities, which validates using the
correlation as an indicator of network performance.

II. SYSTEM MODEL

We consider a wireless network with nodes distributed
according to a PPP Φ ⊆ R2 with intensity λ. By applying
Slivnyak’s theorem, we assume, with no loss of generality,
that the receiver under consideration r, the so-called typical
receiver, is located at the origin o. An illustration of the setup
is provided in Fig. 1.

Time is slotted and in each slot any idle node starts a new
traffic burst of length d slots with probability p̄. Therefore, in
each slot on average a fraction p of all nodes starts a new
transmission and overall a fraction pd ≤ 1 of the nodes is
transmitting, while a fraction 1−pd is idle, where p and p̄ are
connected by the equation p̄ = p

1−p(d−1) with 0 ≤ p ≤ 1/d.
All nodes transmit with unit power. The wireless channel is

subject to distance-dependent path loss and Rayleigh fading.
Hence, the reception power at time t from a node x ∈ Φ is
proportional to `x hx(t), where `x = ‖x‖−α and α > 2 is the
path gain; the fading gain hx(t) is exponentially distributed
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Fig. 1. Illustration of the network setup: The receiver r located at the center is
aiming to receive data from a sender s. This reception is disturbed by several
orange interferers x ∈ Φ. The gray nodes are idle.

with mean E [hx(t)] = 1. We assume block fading, in which
the channel state stays constant over c slots and then changes
to an independent value. All concurrent transmissions except
the desired one cause interference. The interference power at
time t is the sum of all powers of interfering transmissions
arriving at r, i.e.,

∑
x∈Φ `xhx(t)γx(t). Here, γx(t) = 1 if x

transmits at time t, and γx(t) = 0 otherwise. Thus, γx(t) is a
Bernoulli random variable with mean E [γx(t)] = pd, which is
the probability that x transmits at time t. The typical receiver
r is aiming to receive transmissions from a sender s 6∈ Φ at
distance ‖s‖. For simpler notation, r, s, and any x ∈ Φ denote
both the node and its location. The reception is successful
if the signal-to-interference ratio SIRt at time t is above a
threshold θ, i.e.,

SIRt =
`shs(t)∑

x∈Φ `xhx(t)γx(t)
> θ ; (1)

otherwise r is in outage. We define the events Si =
{SIRti > θ} and Oi = {SIRti ≤ θ}. Finally, we de-
fine δ = 2

α , θs = θ
`s

, p11 = E [γx(t1)γx(t2)], p10 =
E [γx(t1)(1− γx(t2))], p01 = E [(1− γx(t1))γx(t2)], and
p00 = E [(1− γx(t1))(1− γx(t2))].

III. JOINT OUTAGE PROBABILITIES

A. Sending probabilities

We start by deriving expressions for the probability that a
given interferer is transmitting in the considered slots.

Lemma 1: The probability that an interferer x transmits in
both slots t1 and t2 with t2−t1 = τ > 0 is (see [2], Lemma 1)

E [γx(t1)γx(t2)] = max
(
0, p(d− τ)

)
+ (2)

p

min(τ−1,d−1)∑
i=0

min(τ−i,d)∑
j=1

b gd c∑
k=0

(
g − kd+ k

k

)
p̄k+1(1− p̄)g−kd ,

where g = τ − i− j.
Proof: An interferer x transmits in both t1 and t2 in

two different events: Either a single message spans both
slots, or two separate messages overlap with the slots. Let
P
[
γI
x(t1, t2)

]
denote the probability of the first event. This

probability vanishes for τ ≥ d. For τ < d, we have
P
[
γI
x(t1, t2)

]
= p(d− τ), since there are d− τ slots before t1

in which a message can start that lasts at least until t2, each
with probability p.

Next, let P
[
γII
x (t1, t2)

]
denote the probability of the second

event. The message overlapping with t1 can start the earliest

at d−1 slots before t1 and the latest at t1 or d slots before t2,
whichever comes first, as otherwise it would overlap with t2.
Let i denote the number of slots this message extends after t1.
Then, the message overlapping with t2 can start the earliest at
t1+i+1, but not before t2−d+1. Let j−1 denote the number
of slots that this message extends before t2. Then, we have
i = 0, . . . ,min(τ − 1, d− 1) and j = 1, . . . ,min(τ − i, d).

The number of slots between the two messages in t1 and
t2 is g = τ − i− j. If g < d, these slots are idle. Otherwise,
there could be k ≤ b gdc messages in-between, where b·c is the
floor operator. The number of idle slots is then e = g − dk.
The probability for given i, j, k is

(
g−kd+k

k

)
p̄k+1(1− p̄)g−kd.

Note that the power k + 1 is because of the probability that
k messages start in-between, times the probability that the
message of t2 starts. Summing over these indices gives

P
[
γII
x (t1, t2)

]
= p

min(τ−1,d−1)∑
i=0

min(τ−i,d)∑
j=1

b gd c∑
k=0

(
g − kd+ k

k

)
· p̄k+1(1− p̄)g−kd . (3)

The binomial coefficient in the previous expression accounts
for the number of sequences of messages and idle slots be-
tween the two messages in t1 and t2. Adding P

[
γI
x(t1, t2)

]
+

P
[
γII
x (t1, t2)

]
yields the result.

Lemma 2: The probability that an interferer x transmits in
exactly one of the slots t1 and t2 with t2 − t1 = τ is

E [γx(t1)(1− γx(t2))] = E [(1− γx(t1))γx(t2)] = (4)

p

min(τ−1,d−1)∑
i=0

b gd c∑
k=0

(
g − kd+ k

k

)
p̄k (1− p̄)g−kd+1 ,

where g = τ − i− 1.
Proof: The proof is similar to the one of Lemma 1, except

that x must not send in t2.
The probability that an interferer x is not transmitting in

any of the two slots is then E [(1− γx(t1))(1− γx(t2))] =
1− 2E [γx(t1)(1− γx(t2))]− E [γx(t1)γx(t2)].

B. Success probabilities

The well known success probability in a single slot is [1]:

P [S1] = exp
(
−λpdδπ2θδs csc(πδ)

)
. (5)

Due to block fading, for the sender and each of the interfer-
ers there are two options: either the channel states hx(t1) and
hx(t2) are equal, or they are independent. These cases lead to
different joint success probabilities.

1) Channel of sender is independent: We assume that the
channel of the sender, i.e., hs(t1), hs(t2) are independent and
identically distributed (i.i.d.).

Lemma 3 (Success for hx(t1) = hx(t2)): The joint success
probability if hx(t1) = hx(t2) for all x, but the coefficients
hs(t1), hs(t2) of the sender are i.i.d., is

P [S1S2] = exp
(
−λδπ2θδs csc(πδ)

(
2 p10 + 2δ p11

))
. (6)

Proof: The joint success probability is

P [S1S2] = (7)
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P
[

`shs(t1)∑
x∈Φ `xhx(t1)γx(t1)

> θ,
`shs(t2)∑

x∈Φ `xhx(t2)γx(t2)
> θ

]
(a)
= EΦ,hx,γx

[
exp

(
−θs

∑
x∈Φ

`xhx
(
γx(t1) + γx(t2)

))]

= EΦ

[∏
x∈Φ

Ehx,γx

[
exp

(
−θs`xhx

(
γx(t1) + γx(t2)

))]]

= EΦ

[∏
x∈Φ

(
p00 +

2p10

1 + u
+

p11

1 + 2u

)]
(b)
= exp

(
−λ
∫
R2

1−
(
p00 +

2p10

1 + u
+

p11

1 + 2u

)
dx
)
,

where u = θs`x. In (a) we define hx = hx(t1) = hx(t2)
and apply the complementary cumulative distribution function
of the exponentially distributed hs(·). In (b) we apply the
probability generating functional of Φ. Substituting p00 = 1−
2 p10 + p11 and solving the integral yields the result.

Lemma 4 (Success for independent hx(t1), hx(t2)): The
joint outage probability if hx(t1), hx(t2) are i.i.d. for all x is

P [S1S2] = exp
(
−λδπ2θδs csc(πδ)

(
2 p10 + (1 + δ) p11

))
.
(8)

Proof: Along the lines of the proof to Lemma 3, we have

P [S1S2] = (9)

= exp

(
−λ
∫
R2

1−
(
p00 +

2p10

1 + u
+

p11

(1 + u)2

)
dx
)
,

where u = θs`x. The difference to Lemma 3 is in the
denominator of the last fraction. Solving yields the result.

Corollary 1: We assume a block fading channel with block
length c for all interferers, and t2 − t1 = τ . Furthermore, we
assume that the channel states of the sender hs(t1), hs(t2) are
i.i.d. In the case τ < c, we have

P [S1S2] = exp

(
− λδπ2θδs csc(πδ) (10)(

c− τ
c

(
2 p10 + 2δ p11

)
+
τ

c

(
2 p10 + (1 + δ) p11

)))
.

For τ ≥ c the channels of all interferers become independent
and the result of Lemma 4 applies.

Proof: We consider slots t1 and t2 with t2 − t1 = τ . For
block fading with length c, the expected fraction of interferers
having an independent channel in the two slots is τ

c for τ < c
and 1 otherwise. The other interferers keep the same channel.
Hence, the set of interferers having a dependent / independent
channel form two independent PPPs [10]. We combine them
using a weighted sum of the expressions within the exponential
function in Lemmata 3 and 4 yielding the result.

2) Channel of sender is constant:
Lemma 5 (Success for hx(t1) = hx(t2)): The joint success

probability if hx(t1) = hx(t2) for all x and hs(t1) = hs(t2)
is lower bounded by

P [S1S2] ≥ exp
(
−λδπ2θδs csc(πδ)

(
2 p10 + p11

))
. (11)

Proof: Along the lines of the proof to Lemma 3, we have

P [S1S2] = (12)

P
[

`shs(t1)∑
x∈Φ `xhx(t1)γx(t1)

> θ,
`shs(t2)∑

x∈Φ `xhx(t2)γx(t2)
> θ

]
= E

[
exp

(
−θs max

(∑
x∈Φ

`xhxγx(t1),
∑
x∈Φ

`xhxγx(t2)

))]

≥ E

[
exp

(
−θs

∑
x∈Φ

`xhx max
(
γx(t1), γx(t2)

))]

= exp

(
−λ
∫
R2

1−
(
p00 +

2p10 + p11

1 + u

)
dx
)
,

where u = θs`x. Solving the integral yields the result.
Lemma 6 (Success for independent h1, h2): The joint

success probability in time slots t1 and t2 if hx(t1), hx(t2)
independently exponentially distributed for all interferers and
hs(t1) = hs(t2) is lower bounded by

P [S1S2] ≥ exp
(
−λδπ2θδs csc(πδ)

(
2 p10 + (2− 2−δ) p11

))
.

(13)
Proof: Along the lines of the proof to Lemma 5, we have

P [S1S2] ≥ (14)

≥ E

[
exp

(
−θs

∑
x∈Φ

`x max
(
hx(t1)γx(t1), hx(t2)γx(t2)

))]

= exp

(
−λ
∫
R2

1−
(
p00 +

2p10

1 + u
+

2p11

2 + 3u+ u2

)
dx
)
,

where u = θs`x. Solving the integral yields the result.
Corollary 2: We assume a block fading channel with block

length c for all interferers, and t2 − t1 = τ . Furthermore,
we assume that the channel of the sender is constant, i.e.,
hs(t1) = hs(t2). In the case τ < c, we have the lower bound

P [S1S2] ≥ Pbound [S1S2] = exp

(
− πλ δπθδs csc(πδ) (15)(

c− τ
c

(
2 p10 + p11

)
+
τ

c

(
2 p10 + (2− 2−δ) p11

)))
.

For τ ≥ c the channels of all interferers become independent
and the result of Lemma 6 applies.

Proof: The proof goes along the lines of the proof of
Corollary 1, but applying Lemmata 5 and 6.

C. Conditional and outage probabilities

The outage probability for both slots t1 and t2 is

P [O1O2] = 1− P [S1]− P [S2] + P [S1S2] . (16)

The probability that the packet is successfully received at
t2 given that it is lost at t1, is

P [S2 | O1] =
P [O1S2]

1− P [S1]
, (17)

where P [S1] is given in (5). The numerator is calculated by

P [O1S2] = P [S2]− P [S1S2] , (18)

where P [S1S2] is given in Corollary 1 in case of independent
channels hs(t1), hs(t2) of the sender s.

In the case of hs(t1) = hs(t2), we can bound the condi-
tional probability by applying Corollary 2, yielding

P [O1S2] ≤ P [S2]− Pbound [S1S2] . (19)
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Fig. 2. The joint outage probability of slots t1, t2 (16) for different d is
shown versus the sending probability pd. The upper group of lines is a lower
bound for equal channel of the sender (hs(t1) = hs(t2)) as in Corollary 2,
while the lower group of lines is the exact probability for i.i.d. channel of the
sender as in Corollary 1. Parameters are τ = 10, λ = 0.01, c = 10, α = 3,
and θs = 1.

IV. NUMERICAL RESULTS

Fig. 2 shows P [O1O2] using (16). The sending probability
is normalized to pd, which is proportional to the expected
interference power as on average a fraction pd of the nodes
are transmitting. As expected, a higher pd implies a higher
outage probability. In the domain d ≤ τ (the blue curves
d = 1, 8, 10), we have a decrease of the outage probability
with increasing d, while in the domain d > τ this trend is
inverted, such that the lowest outage probability occurs for
d = τ + 1. Moreover, the blue traces (d ≤ τ ) are below the
black traces (d > τ ) for small pd, while for pd→ 1 the blue
traces increase and partly cross the black traces. At pd = 1,
the trace d = 1 reaches a higher outage probability than all
d > τ . This effect can be explained by a qualitative transition
of interference correlation on p when d exceeds τ [2]. Overall,
d = τ shows the smallest outage probability over the whole
plot. Furthermore, we compare the cases of independent and
identically distributed (i.i.d.) and equal (hx(t1) = hx(t2))
channel states of the sender. The outage probability is lower for
i.i.d. channel states since when assuming there was an outage
at t1, with an independent channel there is a higher chance that
at t2 there is success. Note that the traces of hx(t1) = hx(t2)
are closer together than in the i.i.d. case due to the log-scale.

Fig. 3 further investigates the relationship between the lag τ ,
the interference correlation ρ(τ) (from [2], Case (2, 2, 2)) and
the outage probability P [O1O2]. This figure reveals several
interesting insights: Firstly, the observation from Fig. 2 that
outage is minimized for τ = d is confirmed. Secondly, the
overall trend of the outage probability reflects the trend of the
interference correlation. In particular, the correlation also has
a minimum at τ = d. Furthermore, the bend of the correlation
at τ = c is also seen in the outage traces. This emphasizes the
importance of the knowledge about interference correlation,
such as results in [2], [9], [11], [12]. Thirdly, from a system
design perspective, it is optimal when τ is chosen to be
larger than the (expected) traffic burst length. In that way, the
probability that both transmissions are in outage is improved.

In Fig. 4 we compare the joint success probability P [S1S2]
for constant and i.i.d. sender channel gains. The traces of the
constant channel (blue curves) are lower bounds, while the
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Fig. 3. P [O1O2] (Corollary 1) for different interferer densities λ, and the
corresponding interference correlation [2] are shown versus τ . Parameters are
p = 0.001, c = 4, d = 15, α = 3, and θs = 1.
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Fig. 4. P [S1S2] (Corollaries 1 and 2) for constant (blue lines) and i.i.d.
(black lines) channel of the sender and τ = 1, 5 versus different sending
probabilities p. The red line indicates the baseline scenario of independent
interference. Parameters are λ = 1, c = 5, d = 10, α = 3, and θs = 1.

i.i.d. traces (black curves) are exact. There is a significant
difference between the two cases for a given τ , where the
constant channel gives a higher success probability. The real
gap might be even higher as we apply a lower bound for the
constant channel. The difference reduces for higher τ , which
seems natural. For analyzing a real network, it makes sense
to apply the result of a constant channel for τ ≤ c, and the
result of an i.i.d. channel for τ > c, based on the assumption
that the channel of the sender and of the interferers c have
the same coherence time. Considering these results from a
network performance perspective, we can expect a jump of
the success probability around τ = c. Hence, it is better to
time transmissions of a given sender within a delay below c
slots after a successful transmission to exploit the favorable
conditions before they change to independent values.

In Fig. 5 we plot the conditional probability P [S2 | O1]
versus p and τ . The conditional probability is always below
the unconditional probability P [S2], which indicates a positive
correlation between the two slots. This correlation, and in
turn the gap to the red line, varies with both p and τ . The
correlation increases with p, which is a well known result [1],
[9]. However, the correlation has a more intricate relation with
τ : for τ < d, the correlation decreases with increasing τ ,
leading to an increase in the conditional success probabilities
with τ . However, once reaching τ = d, the contribution of
the traffic to interference correlation almost vanishes, and
the main cause of the correlation becomes the interferer
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Fig. 5. The conditional success probability of slot t2 given an outage in slot
t1 of (17) for i.i.d. channel of the sender and different values of the lag τ
versus the sending probability p. Black lines are for τ < d, while the blue
lines are for τ ≥ d. The red line indicates the unconditional probability P [S2]
for reference. Parameters are λ = 0.01, c = 1, d = 9, α = 3, and θs = 1.
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Fig. 6. The conditional success probability of slots t1, t2 (17) for different
time lags τ is shown versus the traffic burst length d. Parameters are λ = 0.01,
pd = 0.1, α = 3, and θs = 1.

locations. Hence, there is an almost linear relationship between
P [S2 | O1] and τ for τ > d. Further increasing τ leads to
decreasing P [S2 | O1]. From a systems perspective we can
conclude that after an outage it is best to send the next packet
after τ = d. Furthermore, it can be observed that for rather
high p the impact of τ decreases and vanishes close to pd = 1,
where all nodes send all the time. This is also the point of the
highest interference correlation.

In Fig. 6, we plot the conditional success probability
P [S2 | O1] versus d and τ . The success probability is almost
constant at a high value for d ≤ τ . For higher d the probability
sharply drops to unfavorable values. This can be explained by
interference correlation: From Fig. 3 we see that for τ < d the
correlation is much higher than for τ > d, where the traffic no
longer contributes much. Hence, if d > τ , the high correlation
makes a success following an outage less likely. For increasing
τ , the dropping point is at higher d, which renders a higher
τ better in terms of outage. However, it has to be considered
that the higher τ increases the delay for message delivery and
reduces throughput due to the longer gaps between consecutive
transmissions, which forms a tradeoff. In practical applica-
tions, these gaps could still be used to transmit packets to
different receivers, ideally located far away from the current
destination. Again the success probability is maximized for
the case d = τ .

V. CONCLUSIONS AND FUTURE WORK

In this letter, we derived closed-form expressions of the joint
success, conditional success, and outage probabilities of two
transmissions separated by a given time lag. We considered,
for the first time, all three sources of interference correlation,
i.e., interferer locations, correlated interferer channels, and
correlated interferer traffic. We provided expressions for both
correlated and uncorrelated channels of the intended sender.
Furthermore, we presented numerical studies of the equations
to highlight the difference with respect to the uncorrelated
case as well as to the case when only interferer locations are
a source of correlation. Finally, we drew conclusions that allow
network designers to configure the network in a manner that
takes into account the underlying conditions, such as how long
is the optimal time lag between two consecutive transmissions.

Future work should explore two directions: Firstly, our
results should be extended to an n-dimensional outage proba-
bility. Such a result is required, e.g., to analyze a scenario in
which bursty traffic occurs, or where many retransmissions are
required for a successful data delivery. Secondly, the results
in this letter should be exploited to analyze and improve
various protocols such as cooperative relaying. Thirdly, we
could investigate how the senders can exploit channel state
information (CSI) or an interference predictor to reduce outage
by adjusting the timing / scheduling of their transmissions.
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