
1

Convergence Analysis and Optimization of
SWIPT-Based Over-the-Air Federated Learning

Shaoshuai Fan, Shilin Tao, Wanli Ni, and Hui Tian

Abstract—Federated learning (FL) are challenging for low-end
Internet of Things (IoT) devices with limited energy storage.
In this letter, to solve this difficulty, Base Station (BS) uses
simultaneous wireless information and power transfer (SWIPT)
to spread the global model and charge every device during each
FL round. The convergence gap of SWIPT-based FL is derived
to capture the effect of wireless communications on the learning
performance. To speed FL convergence, a non-convex problem is
formulated by jointly optimizing the transceiver beamforming
and power-splitting ratio. Then, an alternating optimization
algorithm is designed to obtain a sub-optimal solution. Simulation
results show that our proposed scheme outperforms benchmarks
in terms of prediction accuracy and convergence.

Index Terms—Beamforming design, convergence analysis, fed-
erated learning, over-the-air computation, SWIPT.

I. INTRODUCTION

Federated learning (FL), a distributed learning architecture,
is based on the principle of model sharing rather than raw
data uploading, which dramatically decreases communication
overhead and latency while also protecting user privacy [1].
With the aforementioned benefits, FL may be used to various
IoT situations (e.g. smart factories and smart cities), where a
large number of low-end IoT devices with sufficient computing
capability but limited energy are placed [2]. Nevertheless,
there are certain difficulties in integrating FL in IoT networks.
First off, low-end IoT devices’ small battery packs are unable
to supply the energy required for prolonged model training.
Second, there is a shortage of communication capacity as a
result of the quick increase in IoT devices.

Recently, to conquer the energy shortage in FL, the authors
of [3]–[5] considered a simultaneous wireless information and
power transfer (SWIPT)-based FL system to charge local
devices while broadcasting the global model. Specifically,
the authors of [3] have offered potential IoT and unmanned
aerial network applications of the SWIPT-based FL model.
Meanwhile, research is done on the difficulties and related
solutions with applying SWIPT to FL. The authors of [4]
researched the SWIPT-based FL model in IoT and proposed
an enhanced block coordinate descent algorithm to lower FL’s
overall latency. Similarly, the authors of [5] proposed a dy-
namic optimization of device scheduling, transmit power, and
power-splitting ratio, to reduce the long-term energy usage.
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Fig. 1. An illustration of the considered SWIPT-based AirFL network.

To increase the communication efficiency in FL, the authors
of [5], [6] used non-orthogonal multiple access (NOMA) to
transmit local models to the base station (BS). Nevertheless,
utilizing the restricted bandwidth to support massive IoT de-
vices is challenging due to the intricacy of NOMA’s decoding.
Alternatively, with the waveform superposition property of
multiple access channels, over-the-air computation (AirComp)
integrates the data transmission and computation, which is
ideal for FL’s model aggregation requirements. For instance,
the authors of [7] optimized the local learning rates to reduce
aggregation distortion in over-the-air FL (AirFL). The authors
of [8] proposed a hierarchical AirFL scheme to mitigate the
negative effects of these IoT devices that are far away from
the BS.

Although the authors of [9], [10] have researched SWIPT-
based AirFL, they focus on improving the long-term energy
efficiency of the system whose rationality is worth considering.
It still remains an open question about how to properly design
the transceiver beamforming and power-splitting ratio such
that an optimal learning performance can be reached under the
latency and energy constraints. The following is a summary of
this letter’s primary contributions: 1) We propose a SWIPT-
based AirFL scheme to enable FL on low-end IoT devices. We
construct a non-convex problem to reduce the convergence gap
by jointly optimizing the transceiver beamforming and power-
splitting ratio. 2) By decoupling closely-coupled variables
and splitting the difficult subproblems into multiple convex
problems, we design an alternating optimization algorithm
to achieve a high-performance sub-optimal solution. 3) Nu-
merical results demonstrate the effectiveness of the proposed
scheme.

II. SYSTEM MODEL

We consider a SWIPT-based AirFL network, as shown in
Fig. 1, which contains one BS with M antennas and K wire-
less devices (WDs) with N antennas each. Let Dk = {Xk,yk}
and Dk represent the local dataset and the number of samples
collected by WD k ∈ K ≜ {1, 2, . . . ,K}, respectively, where
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Xk = [xk,1,xk,2, . . . ,xk,Dk
] and yk = [yk,1, yk,2, . . . , yk,Dk

]

denote the input and output. Let D =
∑K

k=1 Dk be the total
number of samples of all WDs, and wt ∈ RΨ be the parameter
vector of global model with dimension Ψ in round t. One FL
round in SWIPT-based AirFL network is divided into three
phases. In phase I, the BS charges all WDs and send the global
model to them via SWIPT. In phase II, the gradient descent
method is used to update the local model as

wk,t+1 = wt − η
Dk

∑Dk

i=1 ∇f(wt,xk,i, yk,i) (1)
where η is the learning rate and ∇f(wt,xk,i, yk,i) is the
gradient of loss function f(wt,xk,i, yk,i) with respect to wt.
In phase III, all WDs concurrently send local models to BS
by AirComp and the desired aggregated model is calculated
by wt+1 = 1

D

∑K
k=1 Dkwk,t+1. Through multiple iterations,

FL aims to minimize the global loss function
F (w) = 1

D

∑K
k=1

∑Dk

i=1 f(w,xk,i, yk,i) (2)
with dataset from all WDs, and the desired global model
satisfies w∗ = argminF (w).

A. SWIPT Model
In phase I, BS broadcasts updated global model to all WDs

and charges them concurrently. Without loss of generality, the
global model wt is normalized to sk,t with zero mean and
unit variance. Note that we use various sk,t to customize a
unique energy beam for every WD, which can enhance energy
efficiency and allocation flexibility. The receiving signal of
WD k in round t is

yk,t = HH
k,t

∑K
i=1 Wi,tsi,t + n0 (3)

where Hk,t ∈ CM×N is the channel matrix from WD k
to BS which is composed of both path loss and small-scale
fading, Wi,t ∈ CM×Ψ is the transmit beamforming, and
n0 ∈ CN is the additive white Gaussian noise with distribution
CN

(
0, σ2IN

)
. Then, the power splitting is used to allocate

RF energy for information decoding and energy harvesting.
Let ρk,t ∈ (0, 1) denotes the power-splitting ratio, namely√
ρk,tyk,t + n1 for information decoding where n1 ∈ CN×1

is the decoding noise which is modelled as an additive white
Gaussian noise with zero mean and variance σ2

1 , and the power
of energy harvesting of WD k in round t is

Qk,t = (1− ρk,t)ξk(
∑K

i=1 ∥HH
k,tWi,t∥2F + σ2) (4)

where ξk is the energy conversion efficiency, and the signal-
to-interference-plus-noise ratio (SINR) is

SINRk,t =
ρk,t∥HH

k,tWk,t∥2F
ρk,t(

∑K
i=1,i̸=k ∥HH

k,tWi,t∥2F + σ2) + σ2
1

. (5)

Suppose that the channel bandwidth is Bc and one FL model
requires b bits to be transmitted successfully, the global model
transmission rate is given by rdk,t = Bc log2 (1 + SINRk,t).
Then, the latency is T d

t = maxk∈K{b/rdk,t} to ensure that the
global model can be successfully received by all WDs, and
the harvesting energy is given by

Ek,t = (1− ρk,t)ξkT d
t (

∑K
i=1 ∥HH

k,tWi,t∥2F + σ2). (6)

B. AirFL Model
In phase III, AirComp is used to aggregate local models of

all WDs. Without loss of generality, local model wk,t+1,∀k ∈

K is normalized as sk,t+1,i = (wk,t+1,i − w̄t+1)/δt+1,∀i =
1, 2, . . . ,Ψ, where w̄t+1 = 1

KΨ

∑K
k=1

∑Ψ
i=1wk,t+1,i and

δ2t+1 = 1
KΨ

∑K
k=1

∑Ψ
i=1(wk,t+1,i − 1

Ψ

∑Ψ
i=1 wk,t+1,i)

2 are the
estimate of mean and variance of model parameters, respec-
tively. sk,t+1,i is i-th entry of sk,t+1 with zero mean and unit
variance, namely E{sk,t+1s

H
k,t+1} = I. Let Fk,t ∈ CN×Ψ

denote the transmit beamforming of WD k in round t, and the
superposition signal received at BS is

ŝt+1 = ZH
t

∑K
i=1 Hi,tFi,tsi,t+1 + ZH

t n2 (7)
where Zt ∈ CM×Ψ is the receive beamforming of BS and
n2 ∈ CM×1 is the additive white Gaussian noise.

Given the ideal summation st+1 = 1
D

∑K
k=1 Dksk,t+1, the

aggregation distortion between ŝt+1 and st+1 is measured
by MSEt = E[tr((ŝt+1 − st+1)(ŝt+1 − st+1)

H)], which is
expanded as
MSEt =

∑K
k=1 ∥ZH

t Hk,tFk,t −Dk/DI∥2F + σ2∥Zt∥2F . (8)
Then, the transmission rate of WD k is given by

ruk,t = Bc log2 (1 + ∥Hk,tFk,t∥2F /σ2) (9)
and the latency is T u

t = maxk∈K{b/ruk,t} due to the synchro-
nization requirements in AirComp. Note that the reason for (9)
is that the transmitted signals of other WDs will not interfere
with WD k in AirComp. The transmission energy consumption
of WD k is Eu

k,t = T u
t ∥Fk,t∥2F . After aggregation, the BS de-

normalizes ŝt+1 to obtain the global model ŵt+1 as
ŵt+1,i = δt+1ŝt+1,i + w̄t+1,∀i = 1, 2, . . . ,Ψ. (10)

C. Latency and Energy Consumption
Let Ck and fk,t denote the number of CPU cycles to

process one data sample and CPU frequency of WD k,
respectively. Considering that only one iteration is run locally,
the computation latency of WD k is T c

k,t = CkDk/fk,t.
The energy consumption for processing one CPU cycle is
calculated as γf2

k,t, where γ is a constant determined by the
switched capacitance, and the energy consumption of WD
k for computation is Ec

k,t = CkDkγf
2
k,t. Overall, the total

latency of one round consists of the latency for transmitting
global model, computation and uploading local model, given
by

T r
t = T d

t + T c
t + T u

t (11)

where T c
t = maxk∈K{T c

k,t} is the computation latency. The
total energy consumption for WD k consisting of one part for
training local model and the other part for uploading local
model is given by

Er
k,t = Ec

k,t + Eu
k,t. (12)

III. ANALYSIS AND PROBLEM FORMULATION

Assumption 1 (L-smooth). For any model parameters w and
v, there always exists a non-negative constant L, we have

F (w)− F (v) ≤ ∇F (v)T (w − v) + L/2∥w − v∥22. (13)

Assumption 2 (PL Inequality). For any global loss function
F (w), there always exists a non-negative constant µ, we have

∥∇F (w)∥22 ≥ 2µ(F (w)− F (w∗)). (14)

Based on the above assumptions, the convergence upper
bound of SWIPT-based AirFL is provided in Theorem 1.
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Theorem 1 (Convergence upper bound of SWIPT-based
AirFL). When Assumptions 1 and 2 are satisfied and the
learning rate is η = 1/L, the convergence upper bound of
SWIPT-based AirFL after T rounds is given by

E[F (wT+1)− F (w∗)] ≤ E[F (w1)− F (w∗)](1− µ/L)T

+
∑T

t=1(1− µ/L)T−t · Lδ2t+1/2 ·MSEt. (15)

Proof: Please refer to Appendix A. □

The first term on the right-hand-side of (15) shows that as
T increases, the effect of initial optimality gap disappears.
The second term characterizes the effect of communication-
related factors, such as transmit beamforming Fk,t and receive
beamforming Zt. To accelerate the convergence of SWIPT-
based AirFL, we minimize the convergence upper bound
by jointly optimizing these factors, while guaranteeing the
communication latency and energy requirements, and τ ≜
{1, 2, . . . , T}. The minimization problem is given by

minimize
Wk,t,ρk,t,Fk,t,Zt

∑T
t=1(1− µ/L)T−t · Lδ2t+1/2 ·MSEt (16a)

s.t. T r
t ≤ Tmax, ∀t ∈ τ (16b)

Er
k,t ≤ Ek,t, ∀t ∈ τ,∀k ∈ K (16c)

0 < ρk,t ≤ 1, ∀t ∈ τ,∀k ∈ K (16d)∑K
k=1 ∥Wk,t∥2F ≤ PBS

max, ∀t ∈ τ (16e)

∥Fk,t∥2F ≤ Pmax
k , ∀t ∈ τ,∀k ∈ K (16f)

where Tmax is the latency upper bound for one round. PBS
max

and Pmax
k are the transmission power upper bound of BS and

WD k, respectively. (16c) indicates that each WD should con-
sume less energy than its harvesting energy. Since the objective
function is the weighted sum of MSE and wireless-related
factors are independent of each other between T rounds,
problem (16) is decomposed into following T subproblems
each for one specific outer iteration t ∈ τ .

minimize
Wk,t,ρk,t,Fk,t,Zt

MSEt (17a)

s.t. (16b)− (16f). (17b)
Due to the strong coupling of Fk,t and Zt in objective function
and constraints, Problem (17) is non-convex and can be solved
via alternating optimization (AO). By continuously iterating
and gradually decreasing the degree of coupling between
variables, AO can achieve global or approximate optimal
solutions [7].

IV. PROPOSED SOLUTION
A. Joint Transmit and Receive Beamforming for AirComp

Given Wk,t, ρk,t and Fk,t, minimum mean square error
(MMSE) receivers is used to balance system performance and
design complexity, which is given by
Zt=(σ2I+

∑
kHk,tFk,tF

H
k,tH

H
k,t)

−1
∑

k
Dk

D Hk,tFk,t. (18)
Given Wk,t, ρk,t and Zt, to simplify expression, we intro-

duce an auxiliary variable vt = T u
t = maxk∈K{b/ruk,t} > 0.

Then, problem (17) is reduced to
minimize

Fk,t,vt

∑K
k=1 ∥ZH

t Hk,tFk,t −Dk/DI∥2F (19a)

s.t. vt + T c
t + T d

t ≤ Tmax, and (16f) (19b)

∥Fk,t∥2F − (Ek,t − Ec
k,t)1/vt ≤ 0,∀k ∈ K (19c)

(2b/(Bcvt) − 1)σ2 − ∥Hk,tFk,t∥2F ≤ 0,∀k ∈ K. (19d)

Algorithm 1 SCA-based WD transmit beamforming
1: Initialize Fk,t[0], vt[0], the value obj1[0] of objective

function (21), minimum threshold ϵ and maximum iter-
ation number N1, and set i = 0.

2: repeat
3: Given Fk,t[i] and vt[i], we can obtain F∗

k,t[i],v
∗
t [i] and

obj∗1 [i] by solving problem (21);
4: Update Fk,t[i+ 1] = F∗

k,t[i],obj1[i+ 1] = obj∗1 [i];
5: Update vt[i+ 1] = v∗t [i], i = i+ 1;
6: until i ≥ N1 or |obj1[i]− obj1[i− 1]| ≤ ϵ.

Problem (19) is non-convex due to the difference of convex
(DC) function in constraints which can be solved by the Suc-
cessive Convex Approximation (SCA). Through continuous
iteration, SCA can achieve global or approximate optimal
solutions and is widely used in engineering [11]. Meanwhile,
to ensure that the solution of approximate problem is within
the definition domain of the original problem, we get the
convex upper bounds of (19c) and (19d) by the first-order
Taylor expansion of only the second term of DC function at a
point (Fk,t [i] , vt [i]) obtained in the i-th iteration. The Taylor
expansion is given by
1/vt ≥ Ṽ(vt) = 1/vt[i]− 1/v2t [i](vt − vt[i]), (20a)

∥Hk,tFk,t∥2F ≥ Φ̃k(Fk,t) = ∥Hk,tFk,t[i]∥2F
+ 2tr[(Fk,t − Fk,t[i])

HHH
k,tHk,tFk,t[i]],∀k ∈ K. (20b)

After substituting (20a) and (20b) into problem (19), the
problem is transformed as

minimize
Fk,t,vt

∑K
k=1 ∥ZH

t Hk,tFk,t −Dk/DI∥2F (21a)

s.t. (16f), and (19b) (21b)

∥Fk,t∥2F − (Ek,t − Ec
k,t)Ṽ(vt) ≤ 0,∀k ∈ K (21c)

(2b/(Bcvt) − 1)σ2 − Φ̃k(Fk,t) ≤ 0,∀k ∈ K. (21d)
Since problem (21) is convex, the standard optimization

toolbox such as CVX can be used to solve it efficiently. The
proposed SCA-based algorithm for solving problem (19) is
given in Algorithm 1.

B. SWIPT Transmit Beamforming and Power Splitting
Given Fk,t and Zt, problem (17) is simplified as a

feasibility-check problem w.r.t. Wk,t and ρk,t as
Find {Wk,t, ρk,t} (22a)
s.t. (16b)− (16e). (22b)

To obtain additional performance on energy consumption,
we search the feasible solution space of problem (22) to
optimize total energy consumption in single round instead
of arbitrary solutions on Wk,t and ρk,t. The minimization
problem is given by
minimize
Wk,t,ρk,t

T d
t

∑K
k=1 ∥Wk,t∥2F (23a)

s.t. (16d), (16e), (23b)

T d
t + T c

t + T u
t ≤ Tmax, (23c)

Ec
k,t + Eu

k,t ≤ (1− ρk,t)ξkT d
t (

∑K
i=1

∥∥∥HH
k,tWi,t

∥∥∥2
F
+ σ2),

∀k ∈ K. (23d)
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ft = max{max
k∈K

{
Ec

k,t + Eu
k,t

(1− ρk,t)ξk(
∑K

i=1 ∥HH
k,tWi,t∥2F + σ2)

},max
k∈K

{ b

Bc log2 (
∥HH

k,tWk,t∥2
F∑K

i=1,i̸=k ∥HH
k,tWi,t∥2F + σ2 +

σ2
1

ρk,t

+ 1)
}} (29)

Since the complex expansion of T d
t , we introduce an auxiliary

variable ft = T d
t = maxk∈K{b/rdk,t} > 0. Then, problem (23)

is transformed as
minimize
Wk,t,ρk,t,ft

ft
∑K

k=1 ∥Wk,t∥2F (24a)

s.t. (16d), and (16e), (24b)
ft + T c

t + T u
t ≤ Tmax, (24c)

(Ec
k,t + Eu

k,t)1/((1− ρk,t)ξkft)−
∑K

i=1 ∥HH
k,tWi,t∥2F

− σ2 ≤ 0,∀k ∈ K, (24d)∑K
i=1,i̸=k ∥HH

k,tWi,t∥2F − ∥HH
k,tWk,t∥2F 1/(2b/(Bcft) − 1)

+ σ2 + σ2
1/ρk,t ≤ 0,∀k ∈ K. (24e)

Problem (24) is non-convex due to the coupling of Wk,t, ρk,t
and ft in objective function and constraints. We adopt the
alternating optimization (AO) technique to divide the problem
into two sub-problems. The first sub-problem is given by

minimize
Wk,t,ρk,t

∑K
k=1 ∥Wk,t∥2F (25a)

s.t. (16d), (16e), (24d), and (24e). (25b)
Problem (25) is non-convex due to the DC function in con-
straint (24d) and (24e). We adopt the same method as problem
(19) to transform it into a convex problem, and the Taylor
expansion of the second term of DC function at a point
(Wk,t[j], ρk,t[j]) obtained in j-th iteration is given by

∥HH
k,tWi,t∥2F ≥ Θ̃k,i(Wi,t) = ∥HH

k,tWi,t[j]∥2F
+ 2tr[(Wi,t −Wi,t[j])

HHk,tH
H
k,tWi,t[j]],∀k, i ∈ K. (26)

After substituting the (26) into problem (25), the problem is
transformed as

minimize
Wk,t,ρk,t

∑K
k=1 ∥Wk,t∥2F (27a)

s.t. (16d), and (16e), (27b)

(Ec
k,t + Eu

k,t)1/((1− ρk,t)ξkft)−
∑K

i=1 Θ̃k,i(Wi,t)

− σ2 ≤ 0,∀k ∈ K, (27c)∑K
i=1,i̸=k ∥HH

k,tWi,t∥2F − Θ̃k,k(Wk,t)1/(2
b/(Bcft) − 1)

+ σ2 + σ2
1/ρk,t ≤ 0,∀k ∈ K. (27d)

Problem (27) is also convex. The SCA-Based algorithm to
solve problem (25) is similar to Algorithm 1 and thus is
omitted here. The second sub-problem is given by

minimizeft ft (28a)
s.t. (24c), (24d), and (24e). (28b)

Problem (28) is convex, and we can obtain its solution as
(29). Now, after the above alternative analysis, the algorithm to
solve problem (17) is given in algorithm (2). Although the AO
and SCA algorithms become more sophisticated as systems
get larger, the threshold can be adjusted to balance latency
and model accuracy. Meanwhile, latency can be reduced to the

Algorithm 2 AO-based algorithm for solving problem (17)

1: Initialize W
(0)
k,t , ρ

(0)
k,t , F

(0)
k,t , Z

(0)
t , f

(0)
t , obj

(0)
m of (17),

obj
(0)
a of (23), ϵ1, ϵ2, N1, N2, i = j = 0.

2: repeat
3: update j = j + 1;
4: Given W

(0)
k,t , ρ(0)k,t and F

(j−1)
k,t , obtain Z

∗(j)
t by using the

MMSE receiver (18);
5: With Z

∗(j)
t , obtain F

∗(j)
k,t by solving problem (21);

6: Update F
(j)
k,t = F

∗(j)
k,t , Z

(j)
t = Z

∗(j)
t ,obj(j)m ;

7: until j ≥ N1 or |obj(j)m − obj
(j−1)
m | ≤ ϵ1;

8: repeat
9: update i = i+ 1;

10: With F∗
k,t, Z∗

t and f
(i−1)
t , obtain W

∗(i)
k,t , ρ

∗(i)
k,t by

solving problem (27);
11: With W

∗(i)
k,t , ρ∗(i)k,t , obtain f

∗(i)
t by using (29).

12: Update W
(i)
k,t = W

∗(i)
k,t ,ρ(i)k,t = ρ

∗(i)
k,t ;

13: Update f
(i)
t = f

∗(i)
t , obj

(i)
a ;

14: until i ≥ N2 or |obj(i)a − obj
(i−1)
a | ≤ ϵ2;

15: Output F∗
k,t, Z

∗
t ,W∗

k,t and ρ∗k,t.

TABLE I
SIMULATION PARAMETERS

Name Value Name Value Name Value
Dk 200 Bc 20 MHz PBS

max 50 W
Ψ 159010 Ck 10000∼30000 Pmax

k 0.05 W
η 0.05 γ 1e−28 Tmax 1 s
σ2 -80 dBm µ 0.8 T 80
σ2
1 -80 dBm L 1 fk,t 100 MHz

ξk 0.7 b 159010 × 32 M 2
N 8

lowest feasible level due to server-side execution of algorithm.
V. NUMERICAL RESULTS

We consider an SWIPT-based AirFL network with K = 10
WDs which collaboratively train a shared multi-layer percep-
tron (MLP) network with one hidden layer of 200 neurons
based on the MNIST dataset or FashionMNIST dataset, and
the settings of simulation parameters are listed in Table I.
For comparison, we consider three benchmarks: 1) Noise-
free AirFL 2) Fixed beamforming, and 3) Conventional AirFL
[12](WDs have limited energy and cannot replenish energy
during federated learning processes).

Fig. 2 plots the accuracy on MNIST(M) dataset and Fash-
ionMNIST(FM) dataset with the increasing number of rounds,
respectively. We observe that the Proposed AirFL outperforms
Fixed beamforming and Conventional AirFL schemes in ac-
curacy and convergence. Compared to Fixed beamforming,
the Proposed AirFL optimizes the transceiver beamforming
to greatly reduce the MSE, thereby reducing the impact of
environmental noise on the aggregation model. Compared to
Conventional AirFL, the Proposed AirFL adopts SWIPT to
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Fig. 2. Accuracy versus the number of rounds.

Fig. 3. MSE versus the number of WDs.

replenish energy for IoT devices, increasing the number of
devices participating in FL. Note that the Proposed AirFL
approaches Noise-free AirFL in accuracy.

Fig. 3 shows that the MSE decreases with the number of
WDs. As the total number of WDs increases, the amount of
samples trained in FL also increases, which leads to a reduced
MSE value. Meanwhile, compared to Fixed beamforming and
Conventional AirFL schemes, the Proposed AirFL has a lower
MSE value, resulting in smaller convergence gap and better
accuracy.

VI. CONCLUSION

In this letter, a SWIPT-based AirFL scheme was proposed
to support FL in energy constrained scenarios. We considered
that BS adopted SWIPT to simultaneously send global model
and energy to all WDs in each round. After local training, WDs
participating in FL adopted AirComp to send local models to
BS, and utilized the superposition property of multiple access
channels to integrate the communication and calculation of
model parameters. A SCA-based algorithm was designed
to obtain a sub-optimal solution of the formulated non-
convex problem. Simulation results validated that the proposed
SWIPT-based AirFL achieved improvements in accuracy and
convergence compared to conventional FL.

APPENDIX A: PROOF OF THEOREM 1

Let w̃t+1 denote the ideal aggregated model in round t,
satisfying w̃t+1 = 1

D

∑K
k=1 Dkwk,t+1. According to (1), we

have w̃t+1 = wt − η∇F (wt). Then, we denote wt+1 as the
estimate of aggregated model in round t, and εt+1 = wt+1 −
w̃t+1, we have

wt+1 = wt − η∇F (wt) + εt+1. (30)
Through the second-order Taylor expansion, F (wt+1) is
rewrote as

F (wt+1) = F (wt) + (wt+1 −wt)
T∇F (wt)

+ 1/2(wt+1 −wt)
T∇2F (wt)(wt+1 −wt)

≤ F (wt)+(wt+1−wt)
T∇F (wt)+L/2∥wt+1−wt∥2, (31)

where the inequality stems from the Assumption 1. Given the
learning rate η = 1/L and based on (30), we have

F (wt+1) ≤ F (wt) + (εt+1 − η∇F (wt))
T∇F (wt)

+ L/2∥εt+1 − η∇F (wt)∥2

= F (wt)− 1/(2L)∥∇F (wt)∥2 + L/2∥εt+1∥2. (32)

Then taking the expectation of both sides of this inequality,
and based on (14), we have

E[F (wt+1)] ≤ E[F (wt)]− µ/LE[F (wt)− F (w∗)]

+ L/2E∥εt+1∥2. (33)

Subtracting E [F (w∗)] from both sides of the above inequality,
we have one-round convergence as

E[F (wt+1)− F (w∗)] ≤ (1− µ/L)E[F (wt)− F (w∗)]

+ L/2E∥εt+1∥2. (34)

According to (10), we can rewrite w̃t+1 =
δt+1/D

∑K
k=1 Dksk,t+1 + w̄t+1eΨ and wt+1 =

δt+1

∑K
k=1 Z

H
t Hk,tFk,tsk,t+1+ δt+1Z

H
t n2+ w̄t+1eΨ, where

eΨ = (1, 1, . . . , 1)T is a vector with dimension Ψ. Based on
two above expressions, we can expand E∥εt+1∥2 as

E∥εt+1∥2 = E∥wt+1 − w̃t+1∥2

=δ2t+1E∥
∑K

k=1(Z
H
t Hk,tFk,t−Dk

D I)sk,t+1+ZH
t n2∥2. (35)

Substituting (35) into (34) and applying (34) recursively for
T times, we finally reach (15).
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