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Abstract—The past decade has seen a lot of research on statistics-

based network protocol identification using machine learning 

techniques. Prior studies have shown promising results in terms of 

high accuracy and fast classification speed. However, most works 

have embodied an implicit assumption that all protocols are 

known in advance and presented in the training data, which is 

unrealistic since real-world networks constantly witness emerging 

traffic patterns as well as unknown protocols in the wild. In this 

paper, we revisit the problem by proposing a learning scheme with 

unknown pattern extraction for statistical protocol identification. 

The scheme is designed with a more realistic setting, where the 

training dataset contains labeled samples from a limited number 

of protocols, and the goal is to tell these known protocols apart 

from each other and from potential unknown ones. Preliminary 

results derived from real-world traffic are presented to show the 

effectiveness of the scheme.  

Keywords-network protocol; machine learning; semi-supervised 

learning; constrained clustering 

I.  INTRODUCTION 

Most advanced network management and security functions 
require the ability of identifying network protocols in real-time 
and dividing network traffic into separate queues accordingly. 
The classic techniques, such as port-based filtering and payload-
based deep packet inspection (DPI), have shown their limitations 
in the face of the rapidly growing Internet and evolving network 
applications. For example, a lot of P2P applications evade the 
detections by using dynamic port negotiation and encryption [1]. 

In response, a lot of research efforts have been dedicated to 
statistics-based protocol identification. In this approach, some of 
the discriminative flow-level and packet-level characteristics of 
traffic flows (e.g. statistics of packet size and inter-packet arrival 
time) are extracted, so that the flows are represented in the form 
of feature vectors, which can provide input to machine learning 
(ML) algorithms. Generally, the learning engines take in a set of 
labeled flow samples for training and then return a classification 
model that can predict the types of protocols for future flows. A 
number of classic ML algorithms have been investigated in this 
regard [2-10], and the empirical results suggest that accurate and 
fast protocol identification can be achieved. 

Nonetheless, some important aspects of this approach remain 
unexplored. In specific, most prior works formulate the problem 
as a supervised multi-class classification problem, which implies 
the fundamental assumption of complete a priori knowledge. In 
other words, it is assumed that all existing protocols are known 

in advance and sufficient samples of each protocol are presented 
in the training set. Obviously, this is not the case in real-world 
deployment scenarios. First of all, collecting and labeling a large 
amount of training samples for every existing network protocol 
is extremely expensive if not impossible. At the same time, new 
applications and protocols keep emerging and patterns of known 
protocols also shift over time. Facing the unknown protocols and 
patterns that are never seen during training, the classifiers trained 
with the complete a priori knowledge assumption will fail, while 
such traffic will be falsely classified to an arbitrary known class 
rather than labeled as novelty or anomaly. This problem has been 
overlooked in most previous studies, because their evaluations 
are also designed and carried out in the ideal settings where the 
training and testing data are homogeneous (i.e., unknown traffic 
is filtered out from testing set).  

In this short paper, we revisit the statistical network protocol 
identification problem with a much looser assumption on a priori 
information. Specifically, we assume that only a limited number 
of protocols are known at the time of training and there are a lot 
of unknown ones in the wild. It reflects a realistic scenario where 
the network operators are in possess of two types of data, i.e., 
labeled data and unlabeled data. Labeled data represent a number 
of known protocols, which are the targets to identify in real-time 
traffic monitoring. Unlabeled data can be easily collected in the 
operating networks and they comprise a mixture of data samples 
from both the known protocols and unknown ones. Based on this 
setting, we propose the Lunex scheme (Learning with unknown 
pattern extraction), which learns from both labeled and unlabeled 
data for the potential capability of detecting unknown protocols. 
We use real-world Internet backbone traffic data to evaluate the 
proposed scheme along with various existing learning schemes. 
The results suggest that the proposed scheme enables unknown 
protocol detection for statistical network protocol identification.  

The remainder of the paper is organized as follows. Section 
II reviews the existing schemes and section III describes the 
proposed learning scheme. In section IV, preliminary results are 
presented and analyzed. Section V concludes the work. 

II. RELATED WORK 

The past decade has seen a large body of research focused on 
statistical network protocol identification. Moore and Zuev [2] 
explore Naive Bayes and its refined variants for categorizing IP 
traffic. Auld et al. [3] extend their work in [2] by investigating 
the classifier based on Bayesian neural networks. Williams et al. 
[4] present a comparison of five supervised learning algorithms 
with a focus on feature selection and run-time performance. Kim 
et al. [5] compare statistical traffic classifiers with classic port-
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based approach and host behaviour-based Blinc [16]. Este et al. 
[6] analyse the stability of information in statistical flow features 
with respect to time and location of observation. Lim et al. [7] 
show that port numbers, lengths of first few packets and feature 
discretization are critical sources of discriminative power for 
network protocol identification. Zander et al. [8] explore the 
issues in practical implementation and deployment through a 
runtime performance evaluation based on DIFFUSE. 

In the above studies, the potential unknown protocols (i.e., 
those absent from the training data) are overlooked, not only in 
their system design but also in the evaluation. In contrast, a few 
works propose training binary or one-class classifiers that have 
the potential to detect unseen patterns. Crotti et al. [9] propose 
statistical protocol fingerprints for HTTP, SMTP, and POP3. 
The fingerprints are one-class classifiers that determine whether 
a flow is a match by calculating its normalized anomaly score. 
Este et al. [10] use one-class SVM classifier for general protocol 
identification. For each protocol in the training data set, they first 
derive a one-class SVM model from positive samples, and then 
tune the decision boundary by using negative samples as well as 
a set of hypothetical outlier data samples derived from a uniform 
distribution. Nguyen et al. [11] develop binary classifiers for ET 
(an online game) and VoIP traffic using Naïve Bayes and C4.5 
decision tree. They focus on identifying long-lived interactive 
flows using sub-flow statistics, and their results indicate that the 
binary classifiers can obtain good precision and recall rate. Also, 
Erman et al. [12] propose a semi-supervised learning algorithm 
that performs k-means clustering on a large amount of unlabeled 
data and a small amount of labeled data. In this work, we extend 
their idea by performing constrained clustering for the unknown 
pattern extraction. The above works show that unknown traffic 
can be detected if the classification schemes are designed more 
carefully, but the effectiveness of the detection is tested in an ad-
hoc way such that the actual performance against the variety of 
unknown patterns on the Internet is unclear. 

In the case where only unlabeled traffic data is given, cluster 
analysis is a feasible technique to discover patterns within the 
data in an unsupervised manner. Some classic algorithms have 
been applied to derive traffic clusters in prior studies, including 
expectation maximization [13], DBSCAN and K-Means [14, 
15]. In [16], we propose a constrained clustering algorithm that 
improves the purity of traffic clusters to up to 98%.  

III. METHODOLOGY 

Network protocol identification is the process of associating 
network traffic flows with the application-layer protocol in use. 
A traffic flow in this context comprises the packets exchanged 
between two particular endpoints, which share the same 5-tuple 
of source IP address, source port number, destination IP address, 
destination port number, and transport layer protocol.  

The statistical approach identifies the underlying protocols 
of traffic flows based on the observations of some packet and 
flow level characteristics. That is, each flow is described by a 
feature vector comprising its values on a fixed, predefined set of 
features. In this work, we define flow features using some simple 
statistics (including maximum, minimum, mean, and standard 
deviation) of packet size and inter-packet arrival time [16]. The 
features are measured based on the first ten packets in the flows 
and they are calculated separately in each direction. 

TABLE I.  CONFUSION MATRIX OF A 6-CLASS CLASSIFICATION MODEL 

% classified as → bt bttp http ssh https smtp other 

bt 97.3 0.5 1.1 - 0.8 0.3 0 

bttp 1.1 97.5 1.1 - 0.3 - 0 

http 0.2 1.9 96 - 1.8 0.1 0 

ssh 0.1 - - 99.6 0.2 0.2 0 

https 0.6 0.2 3.3 - 95.4 0.5 0 

smtp 0.1 0.1 0.2 - 0.6 99.1 0 

ftp 0.6 - 0.4 - 3.5 95.6 0 

pop3 0.2 - 26.1 - 1.2 72.4 0 

razor - - - - - 100 0 

imaps 7.4 0.4 11.9 15.7 62.2 2.4 0 

dns 17.6 - 32.2 2.2 43.1 4.9 0 

pop3s 0.1 - 29.1 1.9 45.7 23.2 0 

x224 9 0.4 9.7 4.1 75 1.8 0 

aim 1.6 0.2 0.3 20.5 0.7 76.7 0 

policy - - 47.4 16.3 - 36.3 0 

mysql 16.9 0.2 70.8 - 1.6 10.6 0 

rtmp 1 - 59.3 - 39.7 - 0 

imap 14.6 - 11.1 4.9 54.2 15.3 0 

ymsg 34.7 - 1.3 1.3 61.3 1.3 0 

rsp 100 - - - - - 0 

unidentified 5.8 0.3 1.2 91.9 0.6 0.2 0 
 
Suppose we are given a set of labeled data consisting of 𝑛 

flows from 𝐾  protocols: 𝐷 = {(𝒙1, 𝑦1), … , (𝒙𝑛, 𝑦𝑛)}, in which 
each 𝒙𝑖 ∈ ℝ, (𝑖 = 1,… , 𝑛) is the feature vector of a flow, and 
𝑦𝑖 ∈ {𝜔1, … , 𝜔𝐾}, (𝑖 = 1,… , 𝑛) is its corresponding class label. 
Based on 𝐷, we can train a multi-class classification model that 
maps any input feature vector to one of the output classes, i.e., 
𝐹(𝒙): ℝ → {𝜔1, … , 𝜔𝐾}. Alternatively, we can train a series of 
binary classifiers, i.e., 𝐹𝑐(𝒙): ℝ → {𝜔𝑐 , 𝜔𝑐̅̅̅̅ }, (𝑐 = 1,… , 𝐾), each 
of which predicts whether a given flow belongs to 𝜔𝑐 or not.  

In real-world deployment, the classification models will face 
unknown protocols and novel patterns that they have never seen 
during the training phase. That is, the testing data set consists of 
𝑙 flows from 𝑈 unknown protocols in addition to the 𝐾 known 
protocols: 𝑇 = {(𝒙1, 𝑦1), … , (𝒙𝑙 , 𝑦𝑙)}, in which the class labels 
are 𝑦𝑖 ∈ {𝜔1, … , 𝜔𝐾 , 𝜑1, … , 𝜑𝑈}, (𝑖 = 1,… , 𝑙) . However, most 
existing schemes overlook the unknown protocols such that their 
traffic will be falsely classified into an arbitrary known protocol. 
As an example, Table I shows the confusion matrix for a random 
forest classifier trained with labeled data of six protocols in our 
data set (see section IV). We can see that the classifier accurately 
identifies flows of the known protocols, but it fails to tell apart 
the patterns from unknown protocols.  

In this work, we propose the Lunex scheme that learns from 
both a labeled training data set 𝐷 = {(𝒙1, 𝑦1), … , (𝒙𝑛, 𝑦𝑛)} and 
an unlabeled data set 𝐷′ = {(𝒙1, ? ), … , (𝒙𝑚, ? )}. 𝐷

′ is expected 
to consist of data from the known classes 𝜔1, … , 𝜔𝐾  as well as 
unknown ones 𝜑1, … , 𝜑𝑈. It then returns a classification model 
𝐹(𝒙): ℝ → {𝜔1, … , 𝜔𝐾 , �̅�}, which is able to identify the known 
patterns and put the unknown ones into a novelty class �̅�.  

The Lunex scheme works in two stages (see Fig. 1). The first 
stage is unknown pattern extraction. It takes both data sets as 
input, and searches in the unlabeled data for novel patterns that 
are absent from the labeled data. In specific, the mixed data set 
are firstly partitioned into clusters using a constrained clustering 
algorithm [16], and then the clusters are labeled according to the 
majority of labeled data inside them. The unlabeled clusters (i.e., 
those having no labeled data assigned to them) are then extracted 
and the data within them are considered as novel patterns.  
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In the second stage, Lunex takes in the labelled data set and 
the extracted unlabelled clusters, and it returns a series of binary 
classifiers. In particular, for each of the known protocols 𝜔𝑐, a 
binary classification model, i.e., 𝐹𝑐(𝒙): ℝ → {𝜔𝑐 , 𝜔𝑐̅̅̅̅ }, is trained 
by using its labelled data as positive samples and the rest data 
(including the labelled data from other known protocols and also 
the extracted data) as negative samples. The classifier acts like a 
protocol signature during testing, as it matches whether a traffic 
flow belongs to the corresponding protocol 𝜔𝑐 or not. Therefore, 
to classify a testing flow, each model 𝐹𝑐(𝒙), 𝑐 = 1,… , 𝐾 gives 
a prediction. If there is one and only one match, the flow will be 
classified to the matched protocol. If there is no match at all, it 
will be considered as a novel pattern belonging to an unknown 
protocol (i.e., class �̅�). If there are more than one match, we will 
resort to an additional multi-class model for the final decision. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The evaluation of the proposed scheme is conducted based 
on a real-world Internet traffic data set, i.e., the wide traces [16], 
collected on 30th and 31st of March in 2012. We use a customized 
DPI tool to build the ground truth manually, and use Wireshark 
protocol analyzer for validation. For the purpose of evaluation, 
we focus exclusively on TCP traffic, in which we identify about 
20 protocols. In particular, there are 6 dominating protocols that 
constitute over 50 thousand flows in the data set, i.e., BitTorrent 
(bt), BitTorrent Tracker (bttp), HTTP, HTTPs, SSH, SMTP. 
Other protocols include POP3, FTP, RAZOR, DNS over TCP, 
IMAPs, X224, POP3s, AIM, Macromedia Policy (policy), 
MySQL, RTMP, IMAP, Yahoo Messenger (ymsg), and RSP. 
Besides, about 17% of the traffic cannot be identified by our DPI 
tools. Traffic in the first and the second day is used to form the 
training and testing data set respectively.  Each set consists of up 
to 20,000 random flows for each identified protocol and 50,000 
random flows for the unidentified traffic. In the experiments, we 
consider 6 dominating protocols as the target (known) protocols 
to identify, while the other protocols and unidentified traffic are 
unknown. To form the labeled data set, we randomly select and 
label 2,000 flows for each target protocol from the first day. 

We use overall flow accuracy and three per-class metrics (i.e., 
f-measure, precision and recall) to measure the performance. 
Overall accuracy is the percentage of correctly classified flows 
over the total number of flows. For each particular protocol 𝜔𝑐, 
true positives (TP) is the number of its flows that are correctly 
recognized (i.e., 𝜔𝑐 → 𝜔𝑐), false negative (FN) is the number of 
its flows that are incorrectly rejected  (i.e., 𝜔𝑐 → 𝜔𝑐̅̅̅̅ ), and false 
positive (FP) is the number of flows of other protocols that are 
mistakenly accepted  (i.e., 𝜔𝑐̅̅̅̅ → 𝜔𝑐). Accordingly, precision for 
𝜔𝑐 is calculated as TP/(TP+FP) and recall is TP/(TP+FN), and 
then f-measure equals (2×precision×recall)/(precision +recall). 

B. Results and Analysis 

In the experiments, we compare the Lunex scheme with three 
existing works, including one-class SVM [10], Semi-supervised 
learning [12], and traditional multi-class supervised classifier as 
adopted in [2-8]. For the latter, we test a number of popular ML 
algorithms and present the best candidate (i.e., Random Forest). 
Random Forest is also used as the base classifier in the proposed 
Lunex scheme. 

 

Figure 1.  Framework of the Lunex Scheme  

 
Figure 2.  Classification Accuracy Results 

 
Figure 3.   Per-class F-Measure Results 

The flow accuracy results are presented in Fig. 2. It can be 
noticed that only 56% of the testing flows are correctly identified 
by Random Forest, which is the best multi-class classifier trained 
with labeled data solely. The accuracies of one-class SVM and 
semi-supervised learning are 52% and 72% respectively, and the 
proposed Lunex scheme outperforms the others by successfully 
identifying 94% of the flows.  

Fig.2 also presents classification results for known protocols 
and unknown protocols separately. First of all, Random Forest 
identifies 97.5% flows of known protocols but it misclassifies all 
unknown flows due to the lack of novelty detection mechanism. 
Second, the decision boundary learned by one-class SVM is too 
biased towards the positive class, such that it rejects all unknown 
patterns but accepts only 17% of flows from known protocols. 
Third, semi-supervised learning recovers 90% of flows for the 
known protocols and 35.6% of flows from the unknown ones. In 
comparison, Lunex identifies 96% of flows of known protocols 
and detects 92.6% of unknown flows. 
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Figure 4.  Unknown Extraction Result 

Fig. 3 details the per-class f-measure results for known 
protocols and the general unknown class, in which we can see 
that Lunex achieves best per-class performance in general. In 
particular, it derives over 0.95 f-measure for all classes except 
for smtp (0.84). Take a closer look at smtp, we find that its 
recall rate is 0.99, but the precision rate is only 0.76 due to 
relatively high FPs, which are caused by the poor predictions 
on some pop3 (an unknown protocol) flows. We believe this 
is because smtp and pop3 are both mailing protocols and they 
do share some similarity in traffic pattern. Further information 
and extra features can be extracted in order to distinguish the 
two more accurately, which is out of the scope of this work.  

The above results show that the proposed unknown pattern 
extraction scheme is able to effectively improve the accuracy 
of protocol identification by mining the unlabeled data for the 
missing a priori knowledge for unknown protocols. Next we 
examine the behavior and performance in the unknown pattern 
extraction stage. The unlabeled data in our evaluation consist 
of 6 known protocols and 15 unknown ones, and Fig. 4 reveals 
the extraction rate for each of these protocols.  

First, Lunex successfully extracts over 80% of flows from 13 
unknown protocols, while for the rest 2 unknown protocols, i.e., 
mysql and rsp, the extraction rates are between 40% and 60%. 
Second, it can be seen that very few unlabeled flows from the 6 
known protocols are falsely extracted as novel patterns (which 
will become noise). In specific, 3% of http flows and 1.9% of 
https flows are extracted, while the figures for the other known 
protocols are negligible. In general, Lunex extracts 38.5% of 
unlabeled flows with a 98.4% true positive rate (note that here 
true positive means that an extracted flow is indeed unknown). 

We also find that by increasing the size of labeled data set 
we can extract more information about unknown protocols from 
unlabeled data, and thus the classification accuracy of Lunex can 
be further improved. The related result is not presented here due 
to the page limits, but it can be found at http://anss.org.au/nsclab.  

V. CONCLUSION 

In this short paper, we report the preliminary results of the 
proposed unknown pattern extraction scheme for statistical 
network protocol identification. The proposed scheme extends 
the statistics-based traffic classifiers with the ability to detect 
novel patterns that are unknown to them, which makes them 
useful in real-world application scenarios. Experimental result 
shows that the scheme achieves 94% flow accuracy that breaks 
down to 96% for known protocols and 92.6% for the unknown. 
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