
HAL Id: hal-02387680
https://hal.science/hal-02387680v1

Submitted on 30 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Model for Verification of Business Logic Layer
in 3-Layer Architecture: CPN-ECA Model

Thanh Tuan Nguyen, Nhan Le Thanh, Thi Thanh Ha Hoang

To cite this version:
Thanh Tuan Nguyen, Nhan Le Thanh, Thi Thanh Ha Hoang. Toward a Model for Verification of
Business Logic Layer in 3-Layer Architecture: CPN-ECA Model. KSE 2019 - 11th IEEE International
Conference on Knowledge and Systems Engineering, Oct 2019, Danang, Vietnam. �hal-02387680�

https://hal.science/hal-02387680v1
https://hal.archives-ouvertes.fr


Toward a Model for Verification of Business Logic
Layer in 3-Layer Architecture: CPN-ECA Model

Nguyen Thanh Tuan
University of Science and Education
The University of Danang, Vietnam

nttuan@ued.udn.vn

Le Thanh Nhan
WIMMICS-INRIA, France

nhan.le-thanh@unice.fr

Hoanh Thi Thanh Ha
University of Economic

The University of Danang, Vietnam
ha.htt@due.edu.vn

Abstract—This paper proposes a model for building a flexible
system, which accepts and verifies the change on business logic,
including both business processes and business rules, while the
system has to cover the properties as reliability and reuse. In this
model, the business process will be designed with Colour Petri
Net and translated into a set of Event-Condition-Action rules,
this set will be combined with business rules for checking the
respect of a business process to the business rules in design and
modifying the process. Hierarchical Colour Petri Net is also used
to guarantee the reliability and to reuse properties of the system.

I. INTRODUCTION

Software engineering presents several problems that can be
resolved with many different techniques and methodologies.
The challenge for system design is not only how to build a
system, which accepts the change on business logic, consisting
of business processes and business rules, but also the correct-
ness of the system. The combination between Petri Nets and
rule-based language in description and modeling business logic
of software system is one solution for this challenge.

Our approach takes advantage of both the capacities in
modeling and verification of Coloured Petri Nets (CPN) and
Event-Condition-Action (ECA) rules. It allows designing a
business process by CPN and translating the model to a set
of ECA rules. The combination of business rules and business
process as a set of rules, will be checked the conflict of them.
Hierarchical CPN is also used to design a reusable system.
The main contributions of this paper are:

• Formalization a business logic layer using CPN and
Hierarchical CPN.

• Verification of business logic with ECA rules.
The rest of the paper is organized as follows: Section II
identifies current works and solutions related to the CPN
application and the use of ECA and ECAE languages to
describe workflow for business process. In section III, a brief
introduction of Coloured Petri Net and ECA rule and 3-layer
architecture are given. Section IV introduces, through a case
study, our solution on modeling and verification Business
Logic layer. Then, we conclude on the outcomes of this
experimentation and the ongoing works. V.

II. RELATED WORKS

The positive aspect of CPN has been recognized as a mod-
eling and verification tool for software engineering [1]. In [2],

Denaro and Pezze presented some useful application of Petri
Nets in Software engineering, as modeling and analysis of
safety critical systems, distributed systems, real time systems,
multimedia systems or software performance evaluation. Some
papers describe CPN as aN effective tool for modeling and
verification of SOA-based system [3], [4].

By the way, many authors have proposed using ECA
rules as a tool for business process modeling and execution,
e.g. [5]–[8]. In [8] ECAE (Event-Condition-Action-Event), an
ECA-like language, were introduced as a method to easily
represent the business rules found in a workflow, while the
workflow, modeled by CPN, is translated to ECAE rules. The
set of ECAE rules is used for verification of the respect of a
business process to the business rules automatically when user
upgrades the workflow. In [9], the authors propose a scheme
to generate the functions for a CPN model from the business
rules. It’s mean, business rules will be added to CPN model as
the functions and CPN tools is used to verify the model. But
this solution does not cover the checking for conflict between
business rule and business process on the system.

By contrast, our solution uses ECA rule for presenting and
checking semantic aspect of business logic, at the same time,
CPN is used for verification and validation of the constructed
model.

III. BACKGROUNDS

A. Coloured Petri Net

Coloured Petri Net (CPN) is an established concept for
formal modeling of concurrent and distributed systems. It is
based on a functional language called Standard ML (SML)
Milner1997 CPN has the capacities of both Petri Nets and
programming language. Jensen and Kristiansen [10] have
defined CPN formally as follows:

Definition 1. A Coloured Petri Net is a nine-tuple [10],
CPN = (P ;T ;A; Σ;C;N ;E;G; I), where:

1) P is a finite set of places.
2) T is a finite set of transitions such that P ∩ T = φ.
3) A ⊆ P × T ∪ T × P is set of directed arcs.
4) Σ is a finite of non-empty color sets.
5) V is a finite set of typed variables such that Type[v] ∈ Σ

for all variables v ∈ V .



6) C : P → Σ is a colour set function that assigns a colour
set to each place.

7) G : T → EXPRV is a guard function that assigns a
guard to each transition t such that Type[G(t)] = Bool.

8) E : A → EXPRV is an arc expression function
that assigns an arc expression to each arc a such that
Type[E(a)] = C(p)MS , where p is the place connected
to the arc a.

9) I : P → EXPRφ is an initialization function that
assigns an initialization expression to each place p such
that Type[I(p)] = C(p)MS .

The graph of CPN is a bipartite directed graph. It consists
of vertices of two types: places drawn as circles or ovals and
transitions drawn as bars. An example of CPN is described in
figure 1.

Fig. 1. An example of CPN

Though there are many ways to represent a color, colors and
their associated operations are frequently expressed as SML
data types and functions.

B. Event-Condition-Action Rule

Event-Condition-Action (ECA) rule is a language that has
been usually used for specification and implementation of
business processes [11], [12]. ECA is also used to describe
rules in setting system for active databases [13] or personaliz-
ing, and publish/subscribe technology [14]–[17]. The general
syntax of an ECA rule is:

On event If condition Do actions

The event specifies a condition for triggering the rule. The
condition is a query, which determines if the information
system is in a particular state, in which case the rule fires.
The action states the actions to be performed if the rule is
fired. These actions may in turn cause further events to occur,
which may lead them to create more ECA rules to fire.

In [8], authors defined a language exhibiting both the
advantages of ECA and of Logic Programming, called ECAE
(Event-Condition-Action-Event) and the algorithm to translate
CPN to ECA rules, which has 4 steps as follows:

Algorithm 1.

Step 1: The Condition part of ECA rule is a collection
of places, color sets, guard function, input arc
expression related to a transition. The Event part
of ECA rule are transitions, the Action is a group
of the output arc expression and color sets.

Step 2: Translate each transition to an ECA rule.
Step 3: Add starting condition and ending condition.
Step 4: Connect all ECA rule transition as their triggered

sequence.

According to the algorithm 1, the BP which is modeled by
CPN, and BR are both translated to ECA rules and merged
together into a set (set of ECA rule). The rule set will be
verified to carry out conflicts between BP against BR by a
Reasoner tool.

C. Business logic layer in 3-layer model

At the highest and most abstract level, the logical architec-
ture view of any system can be considered as a set of cooper-
ating components grouped into layers [18]. An application can
consist of a number of basic layers. The common three-layer
design consists of the following layers:

• Presentation layer: The presentation layer provides the
user interface (UI) of the application. Typically, this is
an application form or an interface, as well as the HTML
document created from the web server to the client.

• Business Logic (BL) layer: The business logic layer
applies the logic of the application using the Business
Processes (BP) and the Business Rules (BR) of the
request.

• Data layer: The data layer provides ability to access
databases.

In this paper, we only focus on modeling and verification of
the BL layer.

IV. MODELING AND VERIFICATION BL LAYER

A. CPN-ECA Model

In this section, we describe the CPN-ECA model, a solution
for modeling and verification BL layer. It consists of two parts:

• Business Logic Part: In this part, BP are modeled by a
CPN (Sub-part 1.1). Besides that, BR are described by
ECA rules (Sub-part 1.2). After that, the BP, modeled
by CPN, can be translated to a set of ECA rules with
algorithm 1, in II. In order to ensure the correctness of
BP, users need to provide rules (called business rule -
BR ) to control the correctness. The BR is also written
by ECA. the BR rules and the BP rules are in integrated
into a set (Sub-part 1.3).

• Verification Part: Here, BP, modeled by CPN, will
be verified as: deadlock, infinity cycle or missing syn-
chronization (Sub-part 2.1). In addition, BR and BP
were described by ECA rules, they can be verified by
a Reasoner tool [19] to detect the conflict (Sub-part 2.2).

The CPN-ECA model is presented in Figure 2. CPN Tools
[20], [21]) is used for editing CPN models.



Fig. 2. CPN-ECA model

Fig. 3. Flowchart of Order Business in the Online Shopping System

B. Experimentation of the model

The Online Shopping System is a typical e-commerce
system, designed to help customers can find and buy items
faster and more convenient. The Order Business process is the
core business of this system. To demonstrate the CPN-ECA
model, we take the Order Business process as an example of
this paper, the flowchart of Order Business is shown in figure
3. The goal of this process is to take orders from customers and
confirm orders after payment is done. This module is modeled
by CPN and presented in example 1.

Example 1. In figure 4, we design a CPN graph to represent
the Order Business process of an Online Shopping System.
This provides a simple example, there are three main transi-
tions in this CPN graph. The first transition, SelectProduct,
allows users to choose the product they want to buy, while
the second transition, Payment, allows the user to pay for his
order, and the last transition, ConfirmOrder, allows the user

Fig. 4. CPN model of Order Business in an Online Shopping System

colset STRING = string;
colset PNO = INT;
colset PNAME = STRING;
colset PPRICE = REAL;
colset PNOxPRICE = product PNO * PPRICE;
colset PNOxNAMExPRICE = product PNO * PNAME * PPRICE;
var n: PNO;
var name: PNAME;
var price: PPRICE;
var success: BOOL;
fun confirmOrder(success);

Fig. 5. Declarations of CPN model of Order Business

to confirm his order. Declarations of model are presented in
figure 5.

The CPN graph in figure 4 can be translated to a set of
ECA rules:

BP1-R1: If BaseOfProducts
&PNOxNAMExPRICE(n,name,price)
Do SelectProduct&PNAME(name)
&PNOxPRICE(n,price)

BP1-R2: On SelectProduct&PNAME(name)
&PNOxPRICE(n,price) If Done
Do Products&PNAME(name)
&PriceOfProducts&PNOxPRICE(n,price)

BP1-R3: If Products&PNAME(name)&ConfirmPayment
&BOOL(success) Do ConfirmOrder



colset PTYPE = STRING;
colset PPRICExPTYPE = product PPRICE * PTYPE;
var sum: PPRICE;
var paytype: PTYPE;
var info: STRING;
fun payCOD(sum,paytype)
fun payCard(sum,paytype)

Fig. 6. Declarations of Payment Business sub-model

&confirmOrder(success)
BP1-R4: If PriceOfProducts&PNOxPRICE(n,price)

Do Payment&BOOL(success)
BP1-R5: On Payment&PNOxPRICE(n,price) If Done

Do ConfirmPayment&BOOL(success)
BP1-R6: On ConfirmOrder&confirmOrder(success) If Done

Do CompleteOrder
When a business process is executed, it must respect a set of
business rules. We add a set of business rules, for example 1:

BR1-R1: If (n ≤ 0) do not SelectProduct
&PNO(n)&PNAME(name)&PPRICE(price)

BR1-R2: If (name = ””) do not
ConfirmOrder&confirmOrder(success)

We merge two sets of ECA rules into a single knowledge base.
Therefore, we can easily check the compliance of BP with a
set of BR by detecting the conflict between the rules in one
knowledge base using a reasoner.

C. Using Hierarchical CPN for reusing of model

Hierarchy is a powerful concept in CPN, with that, a CPN
can be organized as a set of sub-model, in a way similar to
that in which programs are organized into modules. In this
way, a model can be defined one and used repeatedly.

In example 2 we extend example 1 to build the new Order
Business model by adding Payment Business sub-model.

Example 2. Using Hierarchical CPN, Order Business model
is added an sub-model Payment Business. Declarations of the
sub-model are presented in figure 6.

The communication between the model and the sub-model
takes place at input port, output port or input/output port that
must to be defined and labelled at some places in sub-model.
In Payment Business sub-model (see figure 8), the input port
(labelled In) and output port (labelled Out) are defined at
PriceOfProduct place and ConfirmPayment. In this exam-
ple, two transitions valideCODInfo and valideCardInfo in
the sub-model get control from the transition SelectProduct
(in the main model) through the input port PriceOfProduct
and send the control to transition ConfirmOrder (in the main
model) through the output port at ConfirmPayment.

About BP modeled by a Hierarchy CPN, each sub-model
will have a set of BP rules by ECA. Each set can be verified
in-dependency with others.

The CPN graph of Payment Business sub-model in example
2 will be translated to a set of ECA rules:

Fig. 7. Hierarchical CPN model of Order Business

Fig. 8. Sub-model of Payment Business on Order Business.



BP21-R1: If PriceOfProduct&PNOxPRICE(n,price)
&PaymenType&PTYPE(paytype)
Do ChoicePaymentType
&PPRICExPTYPE(sum,paytype)

BP21-R2: On ChoicePaymentType
&PPRICExPTYPE(sum,price) If Done
Do PayByCOD&payCOD(sum,info)
&payByCard&payCard(sum,info)

BP21-R3: If PayByCOD
&payCOD(sum,info)&(paytype = ”COD”)
Do valideCODInfo&BOOL(success)

BP21-R4: If PayByCard
&payCard(sum,info)&(paytype = ”Card”)
Do valideCardInfo&BOOL(success)

BP21-R5: On valideCODInfo
&BOOL(success) If Done
Do ConfirmPayment

BP21-R6: On valideCardInfo
&BOOL(success) If Done
Do ConfirmPayment

Integration between this set of rules with the set of rules of
main model, in figure 7, will create a set of ECA rules which
will describe our Business Logic.

BP2-R1: If BaseOfProducts
&PNOxNAMExPRICE(n,name,price)
Do SelectProduct
&PNAME(name)&PNOxPRICE(n,price)

BP2-R2: On SelectProduct&PNAME(name)
&PNOxPRICE(n,price) If Done
Do Products&PNAME(name)
&PriceOfProducts&PNOxPRICE(n,price)

BP2-R3: If Products&PNAME(name)&ConfirmPayment
&BOOL(success) Do
ConfirmOrder&confirmOrder(success)

BP2-R4: On ConfirmOrder&confirmOrder(success)
If Done Do CompleteOrder

BP2-R5: If PriceOfProduct
&PNOxPRICE(n,price)&PaymenType
&PTYPE(paytype) Do ChoicePaymentType
&PPRICExPTYPE(sum,paytype)

BR2-R1: If (n ≤ 0) do not
SelectProduct&PNO(n)
&PNAME(name)&PPRICE(price)

BR2-R2: If (name””) do not
ConfirmOrder
&confirmOrder(success)

BP21-R1: If PriceOfProduct&PNOxPRICE(n,price)
&PaymenType&PTYPE(paytype)
Do ChoicePaymentType
&PPRICExPTYPE(sum,paytype)

BP21-R2: On ChoicePaymentType
&PPRICExPTYPE(sum,price) If Done
Do PayByCOD&payCOD(sum,info)
&payByCard&payCard(sum,info)

BP21-R3: If PayByCOD

&payCOD(sum,info)&(paytype = ”COD”)
Do valideCODInfo&BOOL(success)

BP21-R4: If PayByCard
&payCard(sum,info)&(paytype = ”Card”)
Do valideCardInfo&BOOL(success)

BP21-R5: On valideCODInfo
&BOOL(success) If Done
Do ConfirmPayment

BP21-R6: On valideCardInfo
&BOOL(success) If Done
Do ConfirmPayment

V. CONCLUSIONS

CPN and ECA rule play an important role in designing
and modeling a software system. Coloured Petri Net, inher-
ited from the traditional Petri Net, have a better ability on
expressiveness because of their color sets and guard functions.
In this paper, we proposed the CPN-ECA model that exhibits
the advantages of both ECA and CPN, for the problem of
modeling and verification the business logic in the Business
Logic layer of a software system. Our CPN-ECA model
contains two parts: (1) The BL part lets user define the BP
by CPN, the BP are converted to ECA rules. User defines
also the BR by ECA rules. (2) The verification part takes care
of checking the consistency of the rules written by ECA that
are produced in the BL part. We experimented the model on
Shoping Online case study.

In future work, we will focus on enhancing the integration
between CPN and ECA rule, which will make our method
more suitable for designing and developing software. We
will also consider the problem, how to implement and verify
automatically the software based on CPN and ECA rule.

REFERENCES

[1] R. Gold. “Petri nets in software engineering”. In: Petri
Nets: Applications and Relationships to Other Models
of Concurrency (2004), pp. 62–96. URL: http://www.
springerlink.com/index/P50746R643246142.pdf.

[2] Giovanni Denaro and Mauro Pezze. Petri Nets and
Software Engineering. 2004. DOI: 10.1007/978-3-540-
27755-2 12.

[3] Gero Decker, Alexander Lüders, Hagen Overdick, et al.
RESTful petri net execution. 2009. DOI: 10.1007/978-
3-642-01364-5 10.

[4] Pawan Kumar and Ratneshwer Gupta. “Dependency
Modeling of a SOA Based System Through Colored
Petri Nets”. In: CIT 24 (2016), pp. 253–269.

[5] Joonsoo Bae, Hyerim Bae, Suk Ho Kang, et al. “Auto-
matic control of workflow processes using ECA rules”.
In: IEEE Transactions on Knowledge and Data Engi-
neering 16.8 (2004), pp. 1010–1023. ISSN: 10414347.
DOI: 10.1109/TKDE.2004.20.



[6] J. J. Alferes, F Banti, and A Brogi. “An Event-
Condition-Action Logic Programming Language”. In:
Logics in Artificial Intelligence. 2006, pp. 29–42. DOI:
10.1007/11853886 5. URL: http: / /www.springerlink.
com / index / b27213007lg32723 . pdf % 7B % 5C %
%7D5Cnhttp://link.springer.com/10.1007/11853886%
7B%5C %7D5.

[7] Zhou Guo-xiang Zhou Guo-xiang and Gao De-ping Gao
De-ping. “ECA Rule and Colored Petri Nets Based
Workflow Modeling Research”. In: Management and
Service Science (MASS), 2010 International Conference
on 60633060 (2010), pp. 1–4. DOI: 10.1109/ICMSS.
2010.5575732.

[8] Tuan Anh Pham and Nhan Le Thanh. “A Rule-Based
Language for Integrating Business Processes and Busi-
ness Rules”. In: 14178.1 (2015). URL: https://hal.inria.
fr/hal-01184256.

[9] Jatuporn Deesukying and Wiwat Vatanawood. “Generat-
ing of business rules for Coloured Petri Nets”. In: 2016
IEEE/ACIS 15th International Conference on Computer
and Information Science (ICIS) (2016). DOI: 10.1109/
ICIS.2016.7550824.

[10] Kurt Jensen and Lars M Kristensen. Coloured Petri Nets
Modelling and Validation of Concurrent Systems. Vol. 9.
3-4. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009. DOI: 10.1007/b95112.

[11] Serge Abiteboul, Victor Vianu, Brad Fordham, et al.
“Relational transducers for electronic commerce”. In:
(2003), pp. 179–187. DOI: 10.1145/275487.275507.

[12] Stefano Ceri. Designing database applications with
objects and rules: the IDEA Methodology. 1997.

[13] Norman W. Paton and Oscar Dı́az. Active database
systems. Vol. 31. 1. Morgan-Kaufmann, San Mateo,
California., 1999, pp. 63–103. DOI: 10.1145/311531.
311623.

[14] Asaf Adi, David Botzer, Opher Etzion, et al. “Push
technology personalization through event correlation”.
In: Vldb (2000), pp. 643–645. URL: ftp : / / ftp10 . us .
freebsd . org / users / azhang / disc / disc01 / cd1 / out /
papers / vldb / pushtechnologypasdao . pdf % 7B % 5C %
%7D5Cnpapers2://publication/uuid/AAA5F251-CB50-
4F68-875C-3AA590735810.

[15] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi.
“Active rules for {XML}: {A} new paradigm for {E}-
services”. In: The {VLDB} {J}ournal 10.1 (2001),
pp. 39–47. ISSN: 1066-8888.

[16] Angela Bonifati, Stefano Ceri, and Stefano Paraboschi.
“Pushing reactive services to XML repositories us-
ing active rules”. In: Computer Networks 39.5 (2002),
pp. 645–660. ISSN: 13891286. DOI: 10 .1016/S1389-
1286(02)00226-8.

[17] João Pereira, Françoise Fabret, François Llirbat, et al.
“Efficient Matching for Web-Based Publish/Subscribe
Systems”. In: (2006), pp. 162–173. DOI: 10 . 1007 /
10722620 17.

[18] Microsoft Patterns Practices Team. Microsoftfffdfffd Ap-
plication Architecture Guide, 2nd Edition (Patterns
Practices). 2nd ed. Microsoft Press, 2008. ISBN:
073562710X,9780735627109.

[19] Erik Behrends, Oliver Fritzen, Wolfgang May, et al.
“An ECA Engine for Deploying Heterogeneous Com-
ponent Languages in the Semantic Web”. In: (2006),
pp. 887–898. DOI: 10.1007/11896548 67.

[20] CPNTools. CPN Tools A tool for editing, simulating,
and analyzing Colored Petri nets. URL: http://cpntools.
org/.

[21] Anne Vinter Ratzer, Lisa Wells, Henry Michael
Lassen, et al. “CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets”. In: 29.4 (2003),
pp. 450–462. DOI: 10.1007/3-540-44919-1 28. URL:
http://cpntools.org/.


