NASA-CR-194151

Y

Knowledge Systems Laboratory April 1992

Report No. KSL 92-38 Revised: July 1992
G o AT

N el CrE

e -

S O
)§250F

I

Software Design by Reusing Architectures

by

Sanjay Bhansali
H. Penny Nii

(NASA-CR-194151) SOFTWARE DESIGN
8Y REUSING ARCHITECTURES (Stanford
Univ.) 11 p

N94-13443

Unclas

G3/61 0182809

KNOWLEDGE SYSTEMS LABORATORY

Department of Computer Science
Stanford University
Stanford, California 94305

This work was supported in part by NASA under grant NCC 2-749-1

Software Design by Reusing Architectures

Sanjay Bhansali
H. Penny Nii
Knowledge Systems Laboratory, Stanford University
701 Welch Road, Building C
Palo Alto, CA 94304

Abstract
* Abstraction fosters reuse by providing a class of
artifacts that can be instantiated or customized to produce
a set of artifacts meeting different specific requiremenis.
We propose that significant leverage can be obtained by
abstracting software system designs and the design
process. The result of such an abstraction is a generic
architecture and a set of knowledge-based, customization
tools that can be used to instantiate the generic
architecture. In this paper we describe an approach for
designing software systems based on the above idea. We
tllustrate the approach through an implemented example,
and discuss the advantages and limitations of the

approach.

1 Introduction

Constructing software systems by reusing previously
developed components has long been a subject of
considerable interest in software engineering. One of the
most effective principles that has emerged for reusing
software is abstraction. Abstraction consists of extracting
the inherent, essential aspects of an artifact, while hiding
its irrelevant or incidental properties. Abstraction fosters
reuse by providing a class of artifacts that can be
instantiated or customized to produce several different
artifact instances meeting different requirements.
Procedural and data abstraction, encapsulation or
information hiding, and parameterized modules are
examples of some of the most notable application of the
abstraction principle in software systems.

The goal of artificial intelligence applied to software
engineering is to provide increasing automation to the
software development process. The application of the
abstraction principle to automate the construction of
artifacts (that would normally require a creative process)
can be found in early Al work. For example, Emyc¢in (1),
an expert system shell was developed by abstracting the
control structure of Mycin; abstracting out the process of
building blackboard systems yieldled AGE (2).
Subsequent commercial expert systems shells are based

on different mixtures of design and process abstractions.
More recently, abstraction has been successfully used in
automatic programming: the KIDS system (3) contains
abstractions of several different classes of algorithms in
the form of algorithm theories which can be (semi-)
automatically instantiated to synthesize specialized
algorithms for several different problem instances.

In the KASE (Knowledge Assisted Software
Engineering) project (4, 5, 6) we are currently
investigating the utility of abstracting software system
designs and the design process. It is generally conceded
that designing software systems is a creative and ill-
understood process. Successful software designs are
created by a very small group of designers; however, the
process is rarely documented and the final design is
typically not well documented. Consequently it is very
difficult to understand and maintain the system, which in
turn leads to poor reuse. Our approach to this problem
consists of (1) identifying useful classes of software
systems, (2) abstracting the design of the system as a
generic architecture, and (3) building tools that allow
specific systems to be constructed semi-automatically by
customizing the generic architecture. Such an approach
allows us to (1) reuse the architecture for multiple
applications within the class, (2) capture the process of
software design which could be used to maintain the
system (7) or be reused for multiple designs, and (3)
ultimately learn algorithmic descriptions of the design
process (8).

As an initial test-bed we chose an experimental system,
ELINT (9), that was designed several years ago at the
Knowledge Systems laboratory. In an earlier paper (5)we
reported our initial work on KASE which provides
knowledge-based support to partially automate the
construction of the ELINT system using a generic
architecture. In this paper we describe the reuse of the
generic architecture and the design process to design
another system, HASP (10), which is similar to ELINT,
but was developed for a different domain by another leam
of designers. We discuss the advantages and limitations
of this approach, and discuss issues for further research.

2 Generic Architectures

We first explain the notions of a generic architecture
and the process of customizing the architecture more
precisely.

Definition. A module is a packaging of objects,
relations, types, and procedures in a logical unit.

In KASE, a module itself is represented as an object
with a set of autributes. Figure 1 shows the minimal set of
attributes for each module. Attributes that are preceded
by an * are derived attributes whose values are computed
from the primitive attributes (¢.g., the input to a module is
simply the set of data-types that form arguments to
procedures provided by the module and the results of
procedures required by the module). A module interface
is defined in terms of the services (operations, procedures)
that it provides to other modules, and the services it
requires from other modules. The other attributes
constrain the way a system is structured and the way
modules communicate with each other. For example, a
module may only use services provided by its submodules

or a module that it has access to.
MODULE
supermodule module that contains this module
submodules modules contained within this module
provides services provided by this module
requires services required by this module
has-locally local data types and procedures
has-access-t0 modules which can provide services to
this module
*inputs data flow into the module
*outputs data flow out of the module
*calls modules called by procedures within
this module
*called-by modules that call procedures provided
by this module

Figure 1. Minimal internal representation of a module.

Definition. A parameterized module is a module in
which some of the attributes are abstracted as parameters,

A parameterized module is represented by two
additional attributes: parameter-list and customization.
The parameter-list contains a list of attributes that need 10
be instantiated. We allow any of the primitive attributes
(except supermodule) to be a parameter. Customization
contains a set of customization commands thas 1 be
used to customize (instantiate) a parameterized m: .

Definition. A customization command is a . . <P,
M, F, R, [E]> where

P is the name of a parameter,

M is a method for instantiating the value of the
parameter,

F is the input domain for M, i.e., the set of factors that
affect the outcome of the method.

R is the output domain of M, and

(optional) E is an explanation or rationale for the
customization method.

Depending upon the parameter the customization
method, M, may consist of selecting a value from a pre-
computed list of alternatives, transforming an abstract
program schema using a set of transformational rules, or
inferring a value using a set of heuristic design rules
and/or algorithms. Likewise the input and output domain
could range from a library of reusable instances to a set of
rules to a set of domain-specific assumptions. The
optional argument E is a canned text string or a text
template (which is instantiated based on the context) that
can provide an explanation for the values computed using
the customization method.

Definition. A generic architecture is defined as a
topological organization of a set of parameterized
modules, together with the inter-modular relationships.

Designing a software system using a generic
architecture consists of instantiating the parameters of
each parameterized module by a concrete value while
maintaining the inter-modular constraints.

Figure 2 shows an overview of the design process
based on generic architectures in KASE. The boxes
outlined with double lines represent knowledge
components that are part of KASE. A designer initiates
the design process by first selecting a generic architecture
from a library based on the problem class for his
particular prot':m and the desired solution features
(section 3.1). A wiciated with the generic architecture is a
meta-model which may be thought of as a representation
scheme for a problem class (section 3.2). A particular
application problem is described by instantiating this
meta-model (section 4). The final knowledge component
called customization knowledge contains the knowledge
necessary to customize the generic architecture and is the
basis of KASE's intelligent support (section 5).

3 Architectural commitments

In any generic architecture, the modules and inter-
modular relationships exist within a semantic context
consisting of (1) goals and subgoals of a task and a
strategy for achieving the goals, and (1) classes of objects
manipulated within the architecture. Thus, when a
designer selects and commits to a generic architecture for
customization, he is also making two additional
commitments: task commitment and ontological
commitment.

3.1 Task commitment

The first commitment inherent in an architecture is the
classes of problems being addressed and the overall
solution strategy. Architectures are designed to solve a
particular class of problems. For example, systems that
perform batch transformation on a single set of inputs
would have a different architecture from one that
performs continuous transformations; these two
architectures would be radically different from, say, a
real-time interactive system that is governed by strict
timing constraints and user interactions.

Architectures also embody a set of high-level, strategic
decisions on how to decompose and solve the problem.
Examples of such strategic decisions are whether to use
concurrency or not, whether o use symbolic processing or
a statistical analysis of data, whether the system
functionality should be decomposed into a set of
horizontal layers or whether to use weakly coupled
vertical partitions. In general , these solution strategies are
governed by the problem classes.

For the generic architecture currently represented in
KASE, the task is to interpret continuously received
signals from one or more sources and infer the activities
of the moving objects. The solution strategy is to solve
the problem by symbolic interpretation of the data using a
blackboard problem-solving model (Nii, 1982) on a uni-
processor machine.

3.2 Ontological commitment

An ontology is a vocabulary of representational terms for
describing a domain. Having associated a generic
architecture with a problem class, we can create an
ontology of generic terms that are relevant for describing
problems belonging to that class. The ontology of generic
terms are based on the conceptual primitives available in a
model representation language. The modeling primitives
that we have is based on an object-oriented scheme that
creates a model from three different perspectives - a static
or object model, a behavior model, and a functional model
(11). The modeling primitives currently available in
KASE are objects, relations, operations, states, events,
Iransitions, and (data) types.

We call the ontology of generic terms associated with a
generic architecture a8 meta-model, which refers to the
classes of objects and tasks that are intrinsic to the
architecture. Figure 3 shows fragments of the meta-model
associated with a generic architecture for tracking mobile
platforms based on a symbolic interpretation of signals
emitted by the platforms.

We assume that the ontological commitments in a
particular generic architecture are shared by domain
modelers and designers reusing the architecture. The use
of textual annotations, mnemonic names, and explicitly
represented constraints are used to facilitate the sharing to
some extent. The issue of how to communicate
ontological commitments in general is an important

ustomization|
Knowledge §

Figure 2. Overview of software design based on generic architectures in KASE.

User

Specific
Architecture

objects-to-be-tracked
tracking-agents
signals

relation ——relation-to-be-tracked

object-model

(a) Object model

(b) Behavior model: state transition diagram for
pbjects-to-be-tracked. The labels on arcs represent events.

Figure 3. Fragments of the object(static) and behavior
meta-model associated with a generic architecture for
tracking objects.

research topic that is beyond the scope of our work (12).
4. Domain Modeling

The meta-model associated with a generic architecture
can be used to drive the acquisition of a specific domain
model. KASE provides visualization tools and editors

(built on top of the KEE environment) to aid a domain
analyst in instantiating the meta-model with terms and
concepts of a particular domain. Figure 4 shows the
instantdation of two meta-model objects in two different
domains — ELINT (tracking aircrafts based on processed
radar signals) (9) and HASP (tracking ships based on
processed sonar data) (10).

A domain model contains the objects and relations,
their attributes, and operations that need to be defined by
the analyst. The attributes of a typical domain object and
the operations associated with the object are shown in
Figure 5. An operation is specified formally using pre-
and post-conditions on the inputs and outputs of the
operation. The generic state transition diagrams
associated with the objects-to-be-tracked object is used to
provide a starting point to a domain analyst in specifying
the operations. Typically, the domain analyst would copy
the generic state transition diagram associated with an
object and then modify it using the graphical and text
editors provided by KASE. Once the state transition
diagram is customized, the designer would fill in the
definitions of each operation. Figure 6 shows the
customization of a state-transition diagram for the source
object and the definition of an operation on it.

One of the implications of providing intelligent
assistance is that the system be able to deal with
incomplete and inconsistent information (13, 14). In
KASE the user is not prescribed to follow a particular
sequence of steps nor is it necessary to provide complete
and consistent requirements at all times. For example, the
following possibilities can occur in KASE:

objects-to-be-tracked
(meta-model object)

S

emitter fieet
cluster platform
aircraft Source
harmonic
(objects in Domain 1) line

{objects in Domain 2)

Fi 4. Instantiation of meta-model objects to object instances in two different domains.

signals
(meta-model object)

N\

observations line-segments
feedback intelfigence-rpt

(objects in Domain 1) (objects in Domain 2)

Clustor Source
id
posiion son
heading ggm
Attribuses | activity avolution
0 create-source
create-cluster suspend-source
spiit-cluster dissoive-source
merge-cluster refine-source-type
Operations | delete-cluster compute-position
Domain 1 Domain 2
Figure 5. Auributes and operations of two typical
objects in two different tracking domains.

e A state transition diagram is inconsistent with the
operation definition: the preconditions mentioned in the
operation definition does not include an event specified in
the state transition diagram, or includes an event not

specified in the state transition diagram. KASE detects
such inconsistencies and reports them to the user.

s The state transition diagram and the operation
contain redundant information. KASE checks to see that
the pre- and postconditions in the state transition diagram
and the operation definition are consistent.

We created the domain model for ELINT and HASP
by instantiating and extending the generic tracking meta-
model. The HASP domain model consists of 6 objects to
be tracked, 7 relationship between these and other objects
in the domain, and 29 operation definitions, and we found
that even for this small domain the constraint checking
provided by KASE was very useful.

§. Customization of Architecture

Once an initial model of an application domain is in
place, a designer can begin designing the system by
instantiating the module parameters comprising the
generic architecture. In order to illustrate the
customization process we give below a description of a
session involving a hypothetical designer who is using
KASE to customize the generic architecture for the HASP
domain. Instead of giving a detailed description of the

‘body 0

(a) Instantiation of a generic state transition diagram (see figure 2)

(DEF-OPERATION dissolve-source
:comment "If a source is suspended for more than N time-units
then remove it from further consideration.”

:input ((?s source) (7t time))
:precondition (AND (= ?s.state SUSPENDED)

(> (- (suspension-time ?s.evcode) 7t)

N)
(= 7s.evcode EVCODE)))

:postcondition (AND (= 7s.state dissolved)
(= 7s.evcode (EVCODE Il (dissolved-at t])))

(b) Definition of the dissolve-source operation appearing in the above diagram

Figure 6. Specifying a domain model by instantiating a meta-model

entire customization process, we will concentrate on
highlighting some of the interesting features of KASE
including the following:
+ Context-sensitive customization
+ Integration of different customization methods
« Suggest-and-instantiate design paradigm
* Propagation of design decisions
« Opportunistic design support
+ Rationale/explanation of design process

In order o aid readability, the design session is divided
into the customization of the 4 main modules: m-Signal-
Interpreter, m-Control, m-BBPanel (a subcomponent of m-
Situation-Board), and m-Tracking-Component (se¢ below).
Knowledge of blackboard architectures is helpful in
understanding the process, but the objective is to elucidate
the variety of knowledge-based assistance being provided
to the designer.

5.1 in-Signal-Interpketef

The designer begins by using one of the visualization
commands to show the module decomposition and data
flow diagram for the generic architecture (Figure 7). The
designer decides to begin the customization process by
starting from the top-level module, m-Signal-interpreter. To
customize the module the designer moves the mouse over
the module and clicks. KASE presents a customization

menu that is context-sensitive and contains a list of all
known customization options available for this module,
along with an explanation of what each command does on
the bottom panel of the screen.

For this module there is just one parameter that
represents the overall solution strategy for the problem. In
general, there are three main strategies for solving
problems in this architecture: event-driven (or data-driven
or bottom-up), expectation-driven (or model-driven or top-
down) and hybrid (i.e., both event- and expectation-
driven). KASE presents a list of these three alternatives
and asks the designer to select one. The designer decides
to initially build a purely event-driven system. KASE
incorporates this choice and marks the module as being
customized. At the same time it propagates the effect of
this decision to the other two affected modules, m-
Situation-Board and m-Tracking-Component. The overall
solution strategy results in the instantiation of a few
procedures in these two modules (for recording and
manipulating events) and are used to customize the values
of some other parameters. However, the designer need
not be concerned with al! the ramification of this decision
at this point and continues on.

52 m-Control

The designer next decides to work on the m-Conirol

-

Figure 7. Module decomposition and data flow diagram of the generic architecture for signal interpretation.
For simplicity only 1 level of decomposition is shown although KASE allows upto 3 levels to be shown.

module. Thus, KASE does not prescribe a predetermined
sequence of design actions, and lets the designer control
the design process as much as possible. The m-Control
module contains the top-level driver routine for the
architecture. The algorithm essentially consists of a loop
where in each iteration, the algorithm picks a pair of
tracking agent from m-tracking-component and some object
(or a set of objects) from m-Situation-Board, and executes
the operations associated with the tracking agent on the
objects. Depending on what algorithm is used to select
the tracking agent and object(s), and how many operations
and objects are to be processed in each iteration, a wide
variety of control algorithms are possible. Most of the
functionality of m-Control is divided into two submodules:
m-Selectfocus and m-Scheduler. m-Control itself has a code
template associated with it which (when completely
instantiated) contains calls to the procedure provided by
the two submodaules.

For the m-control module KASE displays two
customization commands relating to the following
parameters:
¢ Processing-priority: How to resolve conflicts in a hybrid

processing strategy (Since the designer chose a pure

event-driven processing strategy, this parameter is
irrelevant).

¢ Focusing-strategy: How to determine the next focus of
attention, i.e., should it based on the tracking agents or
on the nodes in the situation board.

The designer chooses a tracking-agent based focusing
strategy. This triggers a set of transformations that refine
the code template associated with the m-control module

and instantiates a few additional procedures provided by

the submodules of m-control. Continuing with his top-

down design paradigm the designer now begins
customizing the submodules of m-controi:

o m-salectfocus which contains procedures for determining
the next focus of attention (in this case the next
tracking agent to invoke).

o m-scheduler which contains procedures for scheduling
the next processing action (a pair of knowledge source
in m-tracking-component and an object in m-situation-
board to act on).

In the process of customizing m-selectiocus the designer
chooses a dynamic focus selection strategy. KASE does
not possess enough knowledge to completely synthesize a
dynamic focus selection algorithm. So, it simply records
this decision and informs the user that he needs to provide
an algorithm that takes as input a set of available tracking
agents and returns the most promising one. KASE also
maintains a record of modules that have not been fully
customized.

At this point, the designer decides to shift his attention
to m-tracking-component module (realizing,
opportunistically, that he first needs to determine the set
of knowledge sources in the m-tracking-component module
before beginning to design the dynamic focus selection
algorithm). Recent studies (15) have provided empirical
evidence that this kind of opportunistic shift occurs
frequenty during design and a guiding theme in our
project has been to provide a design environment that
permits a designer the flexibility to

Customization commands

SUGGEST-KB-OPERATIONE ‘
LA - & A & ,

] E, E -,
SUGGEST-KSOURCES-HEURISTIC-1
SUGGEST-KSOURCES-HEURIITIC2
INBTANTIATE-KSOURCER

@

Click onthe desired processing strategy

Customization commands

BRUGGEST-RR-LEVEIR |
INBTANTIATE-BB-LEVELS

©

Select desired BBievels (Press HELP Tor rabionale)

SELECTALL
DESELECTALL

L
DONE
ABORT

PLATFORM
HARMONIC

HARMONICLINE-ASSOC
PLATFORM-SOURCE-AS SOC
SOURCE-HARMONIC-ASSOC

LINE-UNESEG-ASSOC
STATION-HARMONIC-BEARNG

STATION-LINE-BEARING
STATION-LNE SEG-BEARING

Figure 8. Customizing modules in the generic architecture

@

navigate among different components of the design (6).
5.3 m-Tracking-Component

The m-Tracking-Component module contains as
parameters a set of submodules called tracking agents
(also called ksources) where each tracking agent has a set
of operations (called ks-operations) associated with it.
Each operation in a tracking agent takes as input some
information from m-Situation-Board and updates the
information on it as a result of the operation. The tracking
agents are selected by m-Scheduler based on their potential
for contributing to the solution. The customization
commands available for m-tracking-component is shown in
Figure 8(a). The designer begins by selecting suggest-ks-
operations and KASE responds with the following
message:

“You need to first instantiate the BBlevels parameter of

m-BBPanel module!”

In KASE, the dependencies between the various
parameter values of a generic architecture must be
explicitly stated (see definition of customization
commands in Section 2). These are used in two ways:
First, during customization, if the value of a particular
parameter depends on the values of some other
parameters, KASE uses these dependencies to guide the
design process (as in the above case). Second, KASE
maintains a history of design actions and uses the
dependencies to restructure the history into a lattice; this
enables KASE to localize effects of changes in the design
and provide an efficient replay mechanism (7).

5.4 m-BBPanel

Guided by KASE the designer proceeds directly to the
m-BBPanel module (a submodule of m-SituationBoard). The
customization commands available for this module are
shown in Figure 8(c), and illustrate another feature of
KASE: suggest-and-instantiate. Until now most of
KASE's customization methods were fairly
straightforward — selection of an option from a set of pre-
computed alternatives, or application of a set of
transformations to a code template. This customization
command is an example of the use of heuristic design
rules. For parameter values generated by using heuristic
design rules, KASE creates a suggestions-workspace and
initially puts suggested values of the parameters in this
workspace. These are meant to be default values for the
parameters. The designer can examine the suggested
values, ask for rationales for the suggestions, and edit
them without actually committing the changes to the
architecture. When satisfied, the designer can instantiate

the architecture parameter with the suggested values
(alternatively he may reject these values). The intention is
to make the design process comprehensible to, as well as
controllable by, the designer, while still retaining the
ability to provide useful default solutions.

On clicking the suggest-bb-levels command from the
customization menu of m-BBPanel KASE presents the list
of objects and relations that should be a part of this
module (Figure 8(d)). The designer can ask KASE to
explain its suggestions and KASE uses annotated text
templates associated with the rules to provide
explanations, for example,

"Because LINE is an instance of OBJECTS-TO-BE-
TRACKED and all OBJECTS-TO-BE-TRACKED must be
represented on M-BBPANEL...”

The designer can use this rationale to modify his
requirements and/or refine a KASE design heuristic.

5.5 m-Tracking-Component Revisited

Having instantiated the BBievel parameter the designer
returns to the m-Tracking-Component module and re-selects
the suggest-ks-operations command (Figure 8 (a)). The ks-
operations consist of all operations required to compute
and monitor the various properties of the objects and
relations to be tracked — for example, position attribute in
source shown in Figure 5. The structure of the ks-
operations depends on the overall solution strategy
selected. Since it was decided to design the system as a
pure event-driven system, the structure of a knowledge
source operation consists of three components - (i) an
operation that takes as input some information from the m-
BBPanei module and updates m-BBPanel as a result, (ii) a
set of events called triggers that signal that the knowledge
source operation might contribute some information on
the m-SituationBoard module, and (iii) a set of events called
posted-events that represent the changes on the m-BBpanel
as a result of the operation. (This is described in more
detail in (5)).

KASE first determines the set of all operations that can
affect any of the objects or relations stored in m-BBPanel.
It then determines the set of events for each of the
operations, using a set of heuristic rules (a paraphrase of
some of the heuristics are shown in Figure 9). For the
HASP example, this results in the creation of 46 events
and 26 knowledge source operations. A designer can ask
KASE for a rationale regarding what operations an event
triggers and why, which operations post an event and
why, and why a particular operation was selected to be a
ks-operation.

There are other customization commands provided by
KASE that automate some of the more frequently

Heuristic 1 (Determining types of events).

Heuristic 2 (Determining preconditions)

operation Opt.-

If an objeaureplwenwdond\eBBlevel then create events fa'enchambuwofﬂ\eobjectthatcanbemod:ﬁed. (The
event represents the fact that the value of the object attribute has been updated).

If an operation, Op1, updates the value of a derived attribute, A1, and the value of the derived attribute functionally
depends on the value of some other attribute, A2, then any event that signals an update in the value of A2 must trigger

Figure 9. Examples of some heuristics used to determine the set of events triggering ks-operations.

occurring design activities for such architectures, for
example, design optimizations. One such optimizing
command, shown in Figure 8(a), is to merge events. It
may be the case that whenever a particular event occurs it
is usually accompanied by another event. For example,
the change in a particular attribute, say heading, of a
tracked object may usually be accompanied by changes in
its velocity as well as a frequency shift in the signal
associated with that object. Thus, it might be more
efficient to group all operations that depend on either of
these three events and perform them together.

This example illustrates another guiding theme of our
approach that is well-known in knowledge-based software
engineering research (e.g. (3, 16): Divide the design task
between a human and KASE in a way that exploits the
unique skills of each. In general, the human is better
equipped to decide when to apply an optimization
technique and what optimization techniques to use,
whereas the machine is better equipped to carry out the
optimization task, propagate the effects of those changes
to other parts of the program (in the above example
" revising the trigger and posted-event component of each
ks-operation), remember the optimization task, and if
necessary, undo the effects of the optimization operation
later. The use of generic architectures provides a context
whereby useful and common optimization tasks can be
identified and mechanized.

There are several other customization commands
provided by KASE, the details of which are not important
for the purposes of this paper. We have successfully used
the same set of customization commands to synthesize
different variants of a genmeric architecture for two
different domains, demonstrating the reuse of both the
architecture structure as well as the design process.

6. Related Work

" Work on supporting the synthesis of domain-specific
software systems is recently receiving widespread

attention (17). The nction of using generic architectures as
a basis for providing this support is the subject of a major
DARPA sponsored research initiative (the DSSA project).
Our work contributes to the DSSA effort by providing a
framework for building domain and architecture specific
design environments.

The LEAP project (18) represents an approach that is
closely related to ours: an architecture is represented as a
set of reusable components which are specialized in an
interactive environment using design rules. However, the
domain model for an application is not explicitly
represented and the design rules (corresponding to our
customization knowledge) are acquired interactively from
an end-user during design development,

Two other related works include the ARIES project
(13)which is concemed with acquiring specifications in a
formal language which could then be converted into an
efficient implementation using transformation rules and
the work on Composite System Design (19), which
attempts to design composite systems from formal
statements of requirements.

The general approach of creating software artifacts by
knowledge-based refinement of an abstract artifact is
being investigated by numerous researchers (e.g. (20, 21,
22))

7. Conclusions and Future Work

Our description of a generic software architecture
embodies concepts and information from many
knowledge domains. From one perspective a generic
architecture is an object of the software domain in which
the artifact is described using concepts such as data flow,
control flow, and data type. From another perspective, it
is a high-level description of a task and its solution. From
yet another perspective, a generic architecture is an
ontological framework within which the application
domain can be modeled; that is, a generic architecture can
be viewed as a meta-model.

Such a generic architecture when used as a basis for
reuse provides reuse at the level of entire systems instead
of at the level of algorithms or subroutines. The meta-
model associated with the architecture can be used to
facilitate domain modeling which currently constitutes a
significant bottleneck in creating domain specific systems.
Generic architectures also enable formalization of the
design process which in turn leads to design with fewer
errors as well as efficient maintenance and redesign.
Unlike application generators where the customization
knowledge is embedded in the macros and interpreters of
the application generator, the design process knowledge is
represented explicitly which, we believe, increases the
generality and flexibility of the design environment.

Some of the current limitations in our approach include
the assumption that the application shares the ontology
and design of the solution assumed in the architecture.
Communicating and enforcing these commitments are
critical issues. In addition, acquiring architectural
abstractions and the associated customization knowledge
may not be easy for some classes of applications.
However, abstraction needs to be done once, and for a
class of application that have many potential instances we
feel the advantages outweigh the disadvantages. In
principle, it is also possible for a designer to modify the
customization knowledge by modifying the design rules
implemented in KASE. However, in practice we do not
expect a designer to do that, and would like to provide
tools that would automatically modify the customization
process. One way of doing this is to infer or learn
appropriate customization rules by observing a user’s
actions. Such a capability has been proposed by others (8,
23) and we plan to incorpoate it in KASE.

References

1. W. van Melle, A Domain Independent System that
aids in Constructing Consultation Programs, PhD, Computer
Science Department, Stanford University (1980).

2. H. P. Nij, N. Aiello, AGE (Auempt to Generalize): A
knowledge-based program for building knowledge-based
programs, 6th International Joint Conference on Artificial
Intelligence 1979), pp. 645-655.

3. D. R. Smith, KIDS: A Semi-automatic Program
Development System, /EEE Transactions om Software
Engineering 16, 1024-1043 (1990).

4. H. P. Nii, N. Aiello, S. Bhansali, R. Guindon, L.
Peyton, Knowledge Systems Laboratory, Computer Science
Department, Stanford University, Knowledge Assisted Software
Engineering (KASE): An introduction and status (1991).

5. S. Bhansali, H. P. Nii, KASE: An integrated
environment for software design, 2nd International Conference
on Artificial Intelligence in Design Pittsburgh, PA, 1992),

6. R. Guindon, Requirements and design of
DesignVision, an object-oriented graphical interface to an
intelligent software design assistant., ACM Proceedings of
CHI'92 Monterrey, CA, 1992),

7. S. Bhansali, Generic software architecture based
redesign, AAAI Spring Symposium on Computational
Considerations in Supporting Incremental Modification and
Reuse Sunford, CA, 1992),

8. P. Garg, S. Bhansali, Process Programming by
Hindsight, 14th International Conference on Software

ineering Melbourne, Australis, 1992),

9. H. D. Brown, E. Schoen, B. A. Delagi, An
Experiment in Knowledge-Based Signal Understanding Using
Parallel Architectures, No. STAN-CS-86-1136, Department of
Computer Science, Stanford University,(1986).

10. H. P. Nii, E. A. Feigenbaum, J. J. Anton, A. I
Rockmore, Signal-to-Symbol Transformation: HASP/SIAP Case
Study, Al Magazine Spring, 23-36 (1982).

11. 1. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-oriented modeling and design (Prentice Hall,
Englewood Cliffs, New Jersey, 1991).

12. T. R. Gruber, The Role of Common Ontology in
Achieving Sharable, Reusable Knowledge Bases, in Principles
of Knowledge Represemtation and Reasoning: Proceedings of
the 2nd Insernational Conference J. A. Allen, R. Fikes, E.
Sandewall, Eds. (Morgan Ksufmann, San Mateo, CA, 1991).

13. W. L. Johnson, M. S. Feather, Using Evolution
Transformations to Construct Specifications, in Automating
Software Design M. Lowry, R. McCartney, Eds. (AAAI Press,
Cambridge, MA, 1991).

14. H. B. Reubenstein, . C. Waters, The Requirements
Apprentice: Automated Assistance for Requirements
Acquisition, [EEE Transactions on Software Engineering 17,
226-240 (1991).

15. R. Guindon, Designing the Design Process: Exploiting
Opportunistic Thoughts, Human-Computer Interaction 8, 305-
344 (1990).

16. R. C. Waters, The Programmer’'s Apprentice: A
Session with KBEmacs, /EEE Transactions on Software
Engineering 11, 1296-1320 (1985).

17. Notes, AAAI Workshop om Automating Software
Design , San Jose, CA, 1992).

18. H. Graves, Lockheed Environment for Automatic
Programming, 6th Annual Knowledge-Based Software
Engineering Conference Syracuse, NY, 1991), pp. 78-89.

19. M. Feather, S. Fickas, B. R. Helm, Composite System
Design: the Good News and the Bad News, 6th Annual
Knowledge-based Software Engineering Conference 1991), pp.
13-27.

20. M. D. Lubars, M. T. Harandi, Addressing Software
Reuse through Knowledge-based Design, in Software
Reusability T. J. Biggerstaff, A. J. Perlis, Eds. (ACM Press,
New York, New York, 1989), vol. 2, pp. 345-377.

21. N. Maiden, A. Sutcliffe, Analogical Matching for
Software Reuse, 6th Annual Knowledge-Based Software
Engineering Conference Syracuse, NY, 1991), pp. 101-112,

22. N.Iscoe, et al., Model-Based Software Design, AAAI
Workshop on Automating Software Design San Jose, CA,
1992), pp. 72-77.

23. S. C. Bailin, R. H. Gattis, W. Truszkowski, A
Leaming-based Software Engineering Environment, 6th Annual
Knowledge-Based Software Engineering Conference Syracuse,
NY, 1991), pp. 251-263,

