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Abstract— Medical image analysis (MedIA) has become an
essential tool in medicine and healthcare, aiding in disease di-
agnosis, prognosis, and treatment planning, and recent successes
in deep learning (DL) have made significant contributions to
its advances. However, deploying DL models for MedIA in
real-world situations remains challenging due to their failure
to generalize across the distributional gap between training
and testing samples — a problem known as domain shift.
Researchers have dedicated their efforts to developing various DL
methods to adapt and perform robustly on unknown and out-
of-distribution data distributions. This paper comprehensively
reviews domain generalization studies specifically tailored for
MedIA. We provide a holistic view of how domain generalization
techniques interact within the broader MedIA system, going
beyond methodologies to consider the operational implications on
the entire MedIA workflow. Specifically, we categorize domain
generalization methods into data-level, feature-level, model-level,
and analysis-level methods. We show how those methods can
be used in various stages of the MedIA workflow with DL
equipped from data acquisition to model prediction and analysis.
Furthermore, we critically analyze the strengths and weaknesses
of various methods, unveiling future research opportunities.

Index Terms—Domain generalization, medical image analysis,
out-of-distribution, deep learning

I. INTRODUCTION

Medical image analysis (MedIA) plays a critical role in
modern healthcare, enabling accurate diagnosis and treatment
planning for various diseases. Over the past few decades, deep
learning has demonstrated great success in automating various
MedIA tasks such as disease diagnosis [1], prognosis [2],
and treatment planning [3]. These achievements have become
feasible by the capability of deep learning algorithms to learn
from vast amounts of data, identify patterns, and generate
predictive models that aid in MedIA tasks. Moreover, the
availability of powerful computational resources has greatly
expedited the process of training deeper, wider, and more
complex models. These have led to impressive performance in
relatively well-controlled settings. However, many challenges
in real-world scenarios remain.
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With homogeneous data distributions, well-designed mod-
els perform on par with and often surpass their human
counterparts in many applications. However, their reliability
and robustness can be compromised when presented with
previously unseen, out-of-distribution, or heterogeneous data.
This highlights a common challenge in the field of MedIA:
the limited capacity of models to generalize to unfamiliar
data distributions. Changes in data distribution can result
from variations in imaging equipment, protocols, or patient
populations. Domain generalization aims to overcome these
challenges by developing models that can adapt to new, unseen
domains without compromising performance.

A. Domain Generalization for Medical Image Analysis
Domain generalization has emerged as a crucial field in
deep learning, particularly in applications where the ability
to generalize across diverse domains is of importance. Its
significance is particularly high in the context of MedIA,
where data is very heterogeneous. To better understand the
unique challenges of domain generalization for MedIA, it is
important to consider the following factors:

• Image appearance variability: Variability in medical
imaging refers to differences and inconsistencies typi-
cally manifest during the data acquisition process [4].
This variability may arise externally from using different
modalities, protocols, scanner types, and patient popula-
tions across multiple healthcare facilities, while internal
variability may also occur within a controlled setting
(e.g., same scanner or healthcare facility) due to factors
such as hardware aging, software parameter variations,
and human error (e.g., human motion).

• Complex and high-dimensional data: Medical images
are often high-dimensional and may contain multiple
channels or sequences. Many of such datasets span
from thousands of pixels to gigapixel [5] and from 2-
dimensions to 5-dimensions [6]. This complexity makes it
difficult to identify and extract domain-invariant features
that can generalize well across different domains.

• Challenging data acquisition, organization, and label-
ing: Large-scale, diverse, and labeled datasets are difficult
to obtain due to the cost of data acquisition, privacy
concerns, data sharing restrictions, and the labor-intensive
nature of manual annotation by medical experts. Further-
more, quality assurance is challenging as the medical
image is prone to noise and artifacts, such as patient
motion, scanner imperfections, and imaging artifacts from
hardware or software limitations.

• Model interpretability, safety, and privacy: In Me-
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Fig. 1. Overview of the medical imaging analysis (MedIA) pipeline illustrating various stages and their associated domain generalization (DG) techniques.
Stages include data acquisition, image reconstruction, upstream feature extraction, downstream task, and analysis. Each stage is associated with references to
specific sections (§), pages (p.), or external citations where the techniques are detailed.

dIA, ensuring model interpretability, safety, and com-
pliance with regulatory and ethical standards is crucial.
Robustness against adversarial examples and to out-
of-distribution samples is essential to prevent adverse
effects on patient care. Additionally, privacy-preserving
data sharing and collaboration in multi-center contexts
add complexity to implementing domain generalization
techniques.

B. Our Contributions

With these challenging factors in mind, this review provides
a comprehensive review of domain generalization techniques
specifically tailored to MedIA. There already exist few review
papers on domain generalization with a specific focus on Me-
dIA, but these are limited to specific data domain and task, i.e.,
mammography-based mass detection [7], electroencephalogra-
phy (EEG)-based emotion assessment [8], and computational
pathology [9]. Also, there are several review papers on related
topics for MedIA, such as domain adaptation [10], [11] and
harmonization [4]. However, domain generalization presents
unique challenges compared to these tasks.

Multiple survey papers have been published that offer a
comprehensive understanding of domain generalization for
general data domains and tasks, presenting broader perspec-
tives [12], [13], [14], [15], [16], [17], [18] as well as focused
approaches such as causal models [19], graph models [20],
and federated learning [21]. While these surveys serve as
a detailed reference for specific algorithms, techniques, and
model architecture, they lack an in-depth exploration of the
system-level implications of domain generalization on the
overall workflow of MedIA.

Our review aims to provide a holistic view of how domain
generalization techniques interact within the broader structure
of a MedIA system. We go beyond the methodological hier-
archy presented in previous surveys and delve into the oper-
ational consequences of domain generalization on the entire
MedIA workflow (see Fig. 1). Our focus is on understanding
how domain generalization can be seamlessly integrated into
every step of the decision-making process, including but not
limited to data acquisition, pre-processing, model prediction,
and analysis. To this end, we categorize domain generalization
techniques into each step of the MedIA workflow, i.e., from
data preparation to analysis.

C. Scope of Review
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Fig. 2. Number of publications per year on the Google Scholar database.

Literature search and selection were conducted by re-
searchers experienced in machine learning and medical image
analysis. We used the Google Scholar search engine with
three different search strategies, resulting in a database of
1,621 papers. First, we searched for all papers that cited the
existing domain generalization review [12], [13], [14], [19],
[20], [11], [8]. Second, we searched Google Scholar using
the exact phrase “domain generaliz(s)ation” and medical-
related keywords (“Medical, CT, ultrasound, MRI, PET, X-
ray, histology, histopathology, pathology, fundus, dermoscopy,
endoscopy, mammography”) and selected 1,000 papers sorted
by relevancy. Lastly, we searched for the top 1,000 papers with
the terms “unseen”, “domain”, and medical-related keywords.
The eligibility criteria for papers to be included in this review
are that they have conducted at least one experiment involving
the use of medical images within the domain generalization
problem settings (see §II-A), regardless of their use of the
term “domain generalization” in their paper (small number of
papers instead use “unseen”, “out-of-distribution”, or their own
terms). Peer-reviewed published papers were prioritized, but
non-peer-reviewed archive papers (e.g., arXiv, bioRxiv) were
also included if they had been deemed particularly suitable
for selection (e.g., highly relevant, highly significant, highly
cited).

II. BACKGROUND

A. Problem Definition
In this section, we formalize the problem of domain gener-
alization (DG) by following the mathematical notations and
formulations used in previous surveys [12], [21] (see Table I
for the definition of mathematical notations). Let X denote a
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Fig. 3. Settings of source and target domain for domain generalization. Source domain consists of M domains, where M = 1 refers to single-source and
M > 1 refers to multi-source settings. The target domain consists of K domains. Cross-site, cross-sequence, and cross-modality define unique settings of
the target domain for MedIA. Cross-site refers to generalization to different sites, e.g., different devices, and healthcare facilities. Cross-sequence refers to
generalization to different sequences, i.e., different acquisition times or imaging protocols. Cross-modality refers to generalization to different modalities, e.g.,
CT to MRI.

TABLE I
DEFINITION OF MATHEMATICAL NOTATIONS, FOLLOWING [12].

Notation Definition Notation Definition
X ,Z,Y Input, feature, output space x, z, y Input, feature, output variables
PXY Probability distribution S Domain
ni i-th domain data count M,K Number of source, target domains
L(·, ·) Loss function h(·) Predictive function
M(·) Manipulation function f(·) Feature mapping function
D(·, ·) Dissimilarity function

nonempty input space and Y an output space (e.g., labels).
A domain is composed of data that are sampled from a joint
distribution of the input sample and output label PXY . We
denote a domain as S = {(xj , yj)}nj=1 ∼ PXY , where x ∈ X ,
y ∈ Y , and n is the number of data pairs.

In DG, we are given M training (source) domains Ssource =
{Si | i = 1, · · · ,M}, where Si = {(xi

j , y
i
j)}

ni
j=1 denotes the

i-th domain with ni data pairs. The joint distributions between
each pair of domains are different: P i

XY ̸= P j
XY , 1 ≤ i ̸= j ≤

M . The goal of DG is to learn a robust and generalizable
predictive function h : X → Y from the M training domains
to achieve a minimum prediction error on an K unseen test
(target) domain Starget = {Si | i = M +1, · · · ,M +K +1}
(i.e., Starget cannot be accessed in training). In other words,
the goal of DG is to minimize the generalization error:

E(x,y)∈Starget
[L(h(x), y)]. (1)

B. Settings of Domain Generalization

This subsection elucidates different settings for DG in the
MedIA workflow, detailing the various configurations and
challenges present in both the source and target domains dur-
ing the implementation process (see Fig. 3). A critical aspect
of DG is overcoming the domain shift — differences between
the source and target domains that hinder the model’s ability
to generalize. These gaps typically arise due to variations such
as:

• Intensity Variations: Differences in image brightness or
contrast, e.g., varying exposure levels in chest X-rays or
staining intensities in histology images.

• Resolution Differences: Variations in image detail, such
as differences between high and low-resolution ultra-
sound devices or varying pixel densities in fundus pho-
tographs.

• Noise Characteristics: Varying levels of image noise, e.g.,
speckle noise in ultrasound or grain in low-dose CT scans.

• Artifact Patterns: Modality-specific artifacts, such as mo-
tion blur in MRI, beam hardening in CT, or light reflec-
tions in endoscopy images.

• Anatomical Variations: Differences in patient popula-
tions, leading to variations in organ sizes or shapes across
different datasets.

• Label Distributions: Varying disease prevalence or sever-
ity between domains, affecting class balance in tasks like
skin lesion classification from dermatology images.

• Acquisition Protocols: Differences in imaging techniques,
such as varying MRI sequences, CT reconstruction ker-
nels, or staining protocols in histopathology.

As it is often challenging to attribute domain shifts to a single
cause, we have systematically categorized these variations
with into cross-site, cross-modality, cross-temporal, and cross-
protocol domain shifts (see §II-B2). These shifts can be
further classified into covariate and concept shifts (see §II-B3),
providing a comprehensive framework for understanding and
addressing domain shifts in MedIA.

1) Settings for Source Domain
DG typically focuses on two settings regarding the number of
source domains: multi-source DG and single-source DG [13].
The multi-source setting assumes multiple distinct but rel-
evant domains are available (i.e., M > 1). By leveraging
the data from these domains, representations invariant to
disparate marginal distributions are learned. This is usually
accomplished by minimizing the domain discrepancy among
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the source domains during the training process. The single-
source setting assumes training data is homogeneous (i.e.,
M = 1). Therefore, this setting does not require domain
labels during training. Single-source DG tends to be more
challenging than multi-source DG as it may not capture the
full diversity of data distributions that exist across different
domains. Refer to Section IV for some extreme settings for
domain generalization (such as, open-set DG, source-free DG,
and unsupervised DG).

2) Settings for Target Domain
There are three settings for target domains that are unique to
DG for MedIA as follows.

• Cross-site DG: As the most prevalent form of DG for
MedIA, the goal of cross-site DG is to develop models
that can generalize well across different medical imaging
datasets collected from multiple healthcare institutions.
Cross-site DG helps in creating more robust models that
can be deployed across different healthcare institutions
without the need for extensive site-specific fine-tuning.
Cross-site DG research often define a domain or ‘site’ as
an individual healthcare facility, but some define it as an
individual vendor, scanner, or even an individual patient
when inter-patient variability is extremely large, which is
a common setting in many EEG studies.

• Cross-sequence DG: Medical imaging data often con-
sists of multiple types of sequences or series, each
capturing different aspects of the underlying anatomy or
pathology. The most commonly used sequences are the
cross-temporal sequences and cross-protocol sequences.
Temporal sequences are images taken at different time
points (e.g., before, during, and after treatment), while
protocol sequences are images of the same modality with
different acquisition protocols. For example, in magnetic
resonance imaging (MRI), protocol sequences like T1-
weighted, T2-weighted, and fluid attenuated inversion re-
covery (FLAIR) images provide different tissue contrasts
and diagnostic information.

• Cross-modal DG: Medical imaging encompasses a wide
range of modalities, such as MRI, computed tomography
(CT), and X-ray. Each modality provides different types
of information and is suited for specific clinical applica-
tions. This type of DG can involve training a model on
data from one modality and testing its performance on
data from a different, previously unseen modality.

3) Settings for Domain Shift
In the context of DG, domain shift can be categorized into
covariate shfit and concept shift. Covariate shift happens
when the data distribution between the source and target
domains is different, but the functional relationship between
the input and output (the “concept”) remains the same. Given
the source domain and a target domain, we have covariate
shift when P source

X ̸= P target
X but P source

Y |X = P target
Y |X .

Here, PX and PY |X denote the marginal distribution of the
input features and the conditional distribution of the output
given the input, respectively. Concept shift occurs when the
functional relationship between the input and output changes,
i.e., P source

Y |X ̸= P target
Y |X .

To illustrate, consider two clinics that perform brain MRI
scans on their patients. A covariate shift might be caused
by differences in the MRI scanners, patient population, or
other factors that affect the appearance of the brain scans.
On the other hand, a concept shift might occur when the
diagnostic criteria or the diseases of interest vary between the
clinics. For example, one clinic might focus on diagnosing
Alzheimer’s disease, whereas another might concentrate on
detecting brain tumors, in which case Alzheimer’s disease
might not be deemed significant. Additionally, the concept
shift can manifest in the differences in diagnoses made by
various medical professionals. This type of shift is closely
associated with alterations in the assigned labels (label shift)
or the interpretation of these labels (semantic shift).

In the context of different DG settings, cross-site DG and
cross-temporal DG could lead to covariate shift as the same
concept (e.g., the presence or absence of a disease) may be
associated with different input features (e.g., different patient
populations) across different sites or at different times. In
contrast, cross-protocol and cross-modal DG could potentially
involve concept shifts. For example, a concept shift could
occur when a model trained on MRI images, which highlights
detailed information about soft tissues, struggles to correctly
interpret CT scans that provide more detailed depictions of
bone structures, essentially changing the underlying relation-
ship between image features and the corresponding disease
labels.

C. Related Machine Learning Tasks

TABLE II
RELATED MACHINE LEARNING TASKS CATEGORIZED BY COVARIATE AND

CONCEPT SHIFT, AND ACCESS TO Starget .

Task Covariate Concept Starget

Multi-Task Learning

Transfer Learning

Harmonization

Domain Adaptation (DA)

Unsupervised/Zero-shot DA

Zero-shot Learning

Test-time Adaptation

Out-of-distribution

Domain Generalization

: Full access, : Partial access (e.g., auxiliary information, mini-batch).

In this subsection, we discuss the relationship between
DG and its related machine-learning tasks and clarify their
differences. The main takeaway is that DG restricts its access
to the target domain data, while other tasks have full or partial
access to the target domain distribution. An overview of related
tasks is in Table II.

• Multi-task Learning (MTL) aims to learn a single
model that performs well on multiple related tasks. In
the context of DG, MTL can be viewed as learning a
predictive function h that minimizes the combined risk
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Domain Generalization for MedIA

Data-level §III-A

Manipulation §III-A1

Augmentation §III-A2
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Fig. 4. Hierarchical structure of the different aspects of domain generalization (DG) for medical image analysis (MedIA). This taxonomy divides the DG
strategies into four primary levels: data-level, feature-level, model-level, and analysis-level, each encompassing distinct sub-strategies.

over M related tasks. The main difference between MTL
and DG is that MTL aims to perform well on the same
set of tasks that the model was trained on, while DG aims
to generalize to unseen data distributions.

• Transfer Learning (TL) aims to transfer the knowledge
learned from one or more source domains to a different
but related target domain. Both TL and DG deal with sit-
uations where the target distribution is different from the
source distribution. However, in TL, the target domain is
used during training (usually during fine-tuning), whereas
in DG we assume no access to the target domain.

• Harmonization aims to reduce non-biological hetero-
geneity caused by cohort bias (e.g., different scanner
type or acquisition protocol). However, harmonization
primarily focuses on cross-site datasets and does not
necessarily impose restrictions on access to the target
domain distribution. Most harmonization techniques are
performed prior to model training mainly as a prepro-
cessing technique.

• Domain Adaptation (DA) aims to tackle the domain
shift problem encountered in new test environments. DA
assumes the availability of labeled or unlabeled target
data (i.e., unsupervised DA, UDA) for model adapta-
tion. Source-free DA (SFDA) assumes source data is
unavailable after pretraining a model (e.g., due to privacy
reasons). Zero-shot DA (ZDA) limit its access to target
domain data, but leverages auxiliary information related
to the target domain. The primary distinction between
UDA/SFDA/ZDA and DG lies in the (partial) access to
target domain data during training.

• Zero-shot Learning (ZSL) is closely related to out-
of-distribution (OOD) generalization in that it aims to
classify test samples with concept shift, but ZSL gen-
erally leverages auxiliary information, such as attribute
descriptions, related to the target domain.

• Test-time Adaptation (TTA) deals with the domain shift
problem as well. TTA differs from DA in that only a
single or mini-batch of test data is used for model tuning,
which is often done in an online manner. TTA and DG
both share the constraint of not having access to the
target domain during training. However, TTA requires

an additional step of fine-tuning at test time, requiring
a mini-batch of target data.

• OOD Generalization aims to detect the concept shift
between in-distribution (ID) and OOD data. While OOD
and DG both assume no access to the target domain,
the main difference between OOD and DG lies in that
they focus on different domain shifts. Specifically, OOD
mainly focuses on concept shift whereas DG considers
both covariate and concept shift in their problem settings.

III. METHODS

In this section, we review and explain a series of DG
methods for medical imaging. We employ a bottom-up ap-
proach and categorize the methods into data-level, feature-
level, model-level, and analysis-level DG methods (see Fig. 4).
Then, we explore some DG methods under extreme constraints
(see §IV).

• Data-level generalization methods focus on manipu-
lating and generating input data to facilitate learning
generalizable representations.

• Feature-level generalization methods focus on extract-
ing domain-invariant features from input images to im-
prove the generalization performance of models. These
methods often involve learning a shared feature repre-
sentation across multiple domains by extracting domain-
invariant features.

• Model-level generalization aims to improve DG in
medical imaging by refining the learning process, model
structure, or optimization techniques.

• Analysis-level generalization methods help users under-
stand, explain, and interpret the decision-making process
of machine learning models.

This categorization is inspired by the various stages of the
MedIA pipeline, i.e., stages starting from data acquisition,
image reconstruction, feature extraction, downstream task to
analysis (see Fig. 1). Our aim is to provide researchers and
practitioners a holistic view of how different approaches can
be combined and applied throughout the MedIA pipeline.

It is important to note that some DG techniques can be
applied at multiple levels of the MedIA pipeline (see Table III).
Augmentation at the data-level (§III-A2) involves directly
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TABLE III
DG TECHNIQUES APPLICABLE TO MULTIPLE LEVELS OF THE MEDIA

PIPELINE.

Data-level Feature-level Model-level

Augmentation §III-A2 §III-B3a
Adversarial §III-A2b §III-C1c
Contrastive §III-B2a §III-C1b

manipulating input images to increase data diversity, while
feature-level augmentation (§III-B3a) operates on extracted
feature representations to expand the feature space. Adversar-
ial techniques at the data-level (§III-A2b) focus on generating
challenging examples to improve robustness, whereas at the
model-level (§III-C1c) they aim to learn domain-invariant
features through adversarial training. Contrastive learning at
the feature-level (§III-B2a) encourages similar samples to
have close representations while pushing dissimilar ones apart,
while at the model-level (§III-C1b) it is used as a self-
supervised pretraining strategy to learn generalizable repre-
sentations. These multi-level applications of similar concepts
highlight how DG techniques can be integrated throughout
the pipeline, each tailored to address domain shift at different
stages of processing.

A. Data-level Generalization
The success of machine learning models often hinges on
the training data’s quality, quantity, and diversity. As the
qualitative acquisition of medical images is challenging and
costly, data-level generalization methods present an efficient
and straightforward approach to enhance a model’s general-
ization capability. These methods focus on manipulating and
augmenting input data to increase the diversity and quan-
tity of available samples, ultimately improving the model’s
adaptability to different domains. Data-level generalization can
be divided into two primary techniques: Data manipulation,
which transforms existing data to expose the model to a
broader range of samples, and data augmentation, which
creates new samples to further expand the model’s exposure
to various data variations. As these techniques are at the early
stages of the MedIA workflow, e.g., data acquisition and image
reconstruction, some of them are problem-specific methods
that require specialized model architectures or algorithms for
the task at hand. The theoretical understanding of how these
techniques enhance a model’s generalization ability has been
shown by Wang et al. [12], and empirical results [52] also
show promising improvements in model performance on both
out-of-distribution and in-distribution samples.

The general learning objective of data-level DG can be
expressed as:

min
h

λ1Ex,y[L(h(x), y)] + λ2Ex′,y′ [L(h(x′), y′)], (2)

where S = {(xj , yj)}nj=1 ∼ PXY refers to the source domain,
S ′ = {(x′

j , y
′
j)}nj=1 ∼ PXY refers to manipulated domain

derived from the distribution of the source domain PXY using
data-level DG methods, and λ is a constant hyperparameter.
The parameter λ1 determines the extent to which original data
contributes to the learning process, and λ2 quantifies the in-

fluence of manipulated data on the process. Specifically, when
λ1 > 0 and λ2 > 0, data augmentation is employed alongside
original data, while if λ1 = 0, the learning objective function
relies exclusively on manipulated data. Hence, existing data-
level DG can further be refined by choosing the manipulated
domain S ′, resulting in the methods in the following sections.

1) Data Manipulation
In data manipulation methods, S ′ can be defined as a trans-
formed version of the original dataset S, where each sample
has been modified using a specific manipulation function.
This manipulation function, M(·), can be a closed-form or
learnable function that alters the characteristics of the data,
making the manipulated data different from the source data.
The specific form of the function M(·) often depends on the
data and the task. To this end, a manipulated domain S ′ that
encapsulates data manipulation methods could be defined as:

S ′ = {(M(xj), yj)}nj=1 ∼ PXY . (3)

III-A1a Image Processing Methods
Image processing techniques involve closed-form or learnable
transformation functions to increase the diversity and quantity
of training data. Examples of some traditional image pro-
cessing methods include registration, resampling, and filtering,
which are specifically designed for the distinct characteristics
of the medical image data in question. Although many tra-
ditional image processing methods have empirically shown
to improve the model’s generalizability [53], they are pre-
dominantly employed as pre-processing tools for downstream
tasks, rather than as standalone solutions for DG. Also, with
the advancement of deep learning, there has been a gradual
shift towards incorporating these techniques directly into deep
learning architectures, enabling a more seamless integration
of end-to-end learning of domain-invariant features (see Sec-
tion III-B). Readers are referred to [54] for a comprehensive
review of the traditional image processing methods. In the
following paragraphs, we explore several deep learning-based
image processing methods specifically designed for DG for
MedIA tasks.

Intensity normalization methods aim to normalize the
raw intensity values or their statistics to reduce the impact
of variations in image intensity across different domains.
Several deep learning-based works [55] have been proposed
for intensity normalization technique, typically utilizing an
autoencoder-based approach. For example, inspired by z-score
normalization, Yu et al. [22] proposed a U-Net-based [56]
self-adaptive normalization network (SAN-Net) for the stroke
lesion segmentation task. The U-Net encoder of SAN-Net
minimizes the inter-site discrepancy by learning the site-
invariant representation with a site classifier and a gradi-
ent reversal layer, and the decoder outputs an intensity-
normalized image that removes any site-related distribution
shifts. Karani et al. [23] proposed an intensity denoising
method for medical image segmentation. The DAE is trained
on intensity-perturbed images to produce denoised outputs,
which are then used to train a segmentation CNN.

Other image processing techniques often involve applying
a linear or non-linear transformation to the image intensi-
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TABLE IV
DATA-LEVEL DOMAIN GENERALIZATION METHODS. METHODS CATEGORIZED BY DIFFERENT SETTINGS FOR SOURCE AND TARGET DOMAINS (SEE

§II-B), TASK, ORGAN, AND MODALITY USED IN EXPERIMENT.

Method Specific Ref. Source Target Task Organ Modality

Image Processing Intensity
Normalization

[22] Multiple Site Segmentation Brain MRI

[23] Single Site, Sequence Segmentation Brain, Prostate,
Cardiac MRI

Histogram
Matching

[24] Multiple Site Segmentation Cardiac MRI

[25] Multiple Site Segmentation Atrial MRI

[26] Multiple Site Segmentation Retinal Fundus

Color
Normalization

[27] Multiple Site Detection Tissue Histology

[28] Multiple Site Classification Retinal Fundus

[29] Multiple Site Classification Skin Dermatology

[30] Single, Multi Site Segmentation,
Classification Retinal, Chest Fundus, X-ray

Surrogate Frequency-
based DG

[31] Multiple Site Segmentation Brain MRI

[32] Single,
Multiple Site Segmentation Retinal Fundus

[33] Multiple Site Restoration Retinal Fundus

[34] Multiple Site Segmentation Retinal Fundus, OCT

[35] Single Site Segmentation Retinal Fundus

Using Raw
Signals

[36] Multiple Site Segmentation Brain MRI

[37] Single Sequence Segmentation Brain MRI

Dictionary
Learning

[38] Multiple Sequence Reconstruction Brain MRI

[39] Single Site Segmentation Prostate, Retinal MRI, Fundus

Augmentation Randomization-
based

[40] Single Sequence Segmentation Cardiac MRI

[33] Multiple Site Restoration Retinal Fundus

[41] Single Site Segmentation Retinal Fundus

[42] Single Site Segmentation Retinal Fundus

Adversarial-
based [43] Multiple Site Segmentation Spinal, Prostate,

Colon MRI, Histology

Generative
Model

[44] Multiple Site Classification Colon, Breast Histology

[45] Single Site Classification Colon Histology

[46] Single Sequence, Site Detection Liver PET, CT

Problem-specific Cross-modal
Generative

Model

[47] Multiple Modality,
Sequence Segmentation Brain, Prostate,

Abdominal MRI, CT

[48] Single Modality,
Sequence Segmantation

Prostate,
Abdominal,

Cardiac
MRI, CT

[49] Single Modality Segmentation Cardiac,
Abdominal MRI, CT

Stain
Normalization

[50] Multiple Site Detection Breast Histology

[51] Multiple Site Classification,
Segmentation Tissue, Breast Histology

ties, such as histogram matching and color normalization.
Histogram matching is a contrast adjustment method that
scales pixel values to fit the range of a specified histogram.
Ma [24] showed that augmenting the source domain with
histogram-matched images improves generalization perfor-
mance for the cardiac image segmentation task. A subsequent
benchmark by Li et al. [25] also revealed that histogram
matching had the highest performance compared to some
commonly used DG methods for atrial segmentation. Gunas-
inghe et al. [26] proposed a randomized histogram matching
method for glaucoma detection that sequentially matches a
target image’s histogram to multiple randomly selected refer-

ence images from the source domain. This process iteratively
adjusts the target image’s intensity distribution, promoting a
better representation of the source domain.

Global color normalization [57] transfers color statistics
by globally altering the image histogram, while local color
normalization transfers color statistics of specific regions,
preserving intensity information within regions of interest.
These color normalization methods are commonly used in
histopathology images, and these methods have improved the
generalizability of a neural network [58]. Kondo et al. [27]
employed a color normalization method [59] in their architec-
ture for mitosis detection in histopathology images. This color
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normalization method decomposes the input image into stain
density maps and combines them with the stain color basis of
a target image. Xiong et al. [28] introduced the Enhanced
Domain Transformation, a color transformation method to
align the color space distributions of seen and unseen data
for diabetic retinopathy classification. Pakzad et al. [29] intro-
duced a color transformer utilizing StarGAN [60] to diversify
clinical skin images by altering skin types while retaining
original visual characteristics, enhancing dataset diversity and
reducing skin type biases in skin disease classification.

It is worth noting that some harmonization techniques,
while primarily aimed at reducing non-biological variability
across imaging sites or protocols, can be applied in a DG
setting. A notable example is the ComBat harmonization [61],
which uses an empirical Bayes framework to adjust for site
effects while preserving biological variability. More recently,
deep learning-based harmonization techniques have emerged.
Those include autoencoders with heavy regularization or nor-
malization layers [62], [63], and generative adversarial net-
works (GANs) capable of scanner-to-scanner translation [64],
[65]. Some of those methods, such as adversarial learning
with domain classifiers [66], [67] and conditional variational
autoencoders [68], showed the capability of deriving scanner-
/cohort-invariant features for reconstructing harmonized sam-
ples across unseen scanners.

III-A1b Surrogate Methods
Surrogate methods involve using a surrogate representation,
such as summary statistics or closed-form mathematical repre-
sentations, as a substitute for the original input data to improve
the generalization performance.

One traditional example is the frequency-based DG, which
employs Fourier transformation to separate an image into
its amplitude and phase components, typically representing
style and content, respectively [32]. This is motivated by a
well-known property of Fourier transformation that amplitude
contains low-level statistics while phase contains high-level
semantics [69]. The goal of frequency-based DG is to ma-
nipulate the low-level statistics of the amplitude component
without significantly varying the high-level semantics of the
phase component. These methods are usually well-suited for
tasks where high contrast is advantageous, such as fundus
imaging [32] or image segmentation tasks [31]. For the white
matter hyperintensity segmentation task, Zhao et al. [31]
creates amplitude prototypes from source domains and learns
a calibrating function that reduces the divergence between
source and target amplitudes during inference time. Inspired
by Mix-Up [70], Xu et al. [32] introduces perturbation to
the amplitude by interpolating the amplitudes of images from
different domains for the fundus image segmentation task.
Lie et al. [33] proposed an alternative frequency-based DG
for fundus image restoration, which uses a Gaussian filter
to decompose low-frequency and high-frequency components
from an image. Hu et al. [34] uses Hessian matrices of
an image for retinal vessel segmentation, as vector fields
better capture the morphological features and suffer less from
covariate shift.

Distribution shifts in medical imaging often arise from

image reconstruction processes, which transform raw device
data into interpretable images. An alternative is to train using
raw signals, such as k-space data in MRI and sinogram-
space data in CT, to circumvent domain-specific variations
introduced by reconstruction algorithms and scanner param-
eters. Lee et al. [71] found that a sinogram-space CNN
was about 3% more accurate than an image-space CNN in
body part recognition tasks, demonstrating the advantage of
using sinogram-space data over CT images. Their findings,
along with the potential for radiomics signature analysis on
raw data [72], underscore the benefits of leveraging raw
image data to bypass reconstruction biases. For example,
Zakazov et al. [36] proposed a DG method that operates
on k-space data for brain segmentation tasks. The proposed
method transfers the contrast and structure-related features
by swapping the low-frequency areas (i.e., center) of the
target k-space data with that of the source k-space data.
Zhang et al. [37] tackled motion correction in brain MRI by
training their model on synthesized motion-corrupted images,
which created by introducing motion artifacts into the k-space
data.

Dictionary learning [73], or sparse representation learn-
ing, can be considered as a type of surrogate method that
seeks to find a sparse representation of input data (i.e.,
the surrogate) as a linear combination of basic elements,
capturing common structures while reducing domain-specific
variations [74]. Song et al. [38] applied this to multi-contrast
MRI reconstruction by learning dictionaries that highlight
structural similarities. Similarly, Liu et al. [39] used dictionary
learning for prostate MRI and fundus image segmentation,
constructing a shape dictionary with templates to represent
diverse segmentation masks efficiently.

2) Data Augmentation
Data augmentation is one of the most prevalent and important
forms of DG in MedIA. It refers to techniques that artifi-
cially expand and diversify the training dataset by applying
various transformations to existing data. The primary goal is
to improve the model’s ability to generalize across different
domains by exposing it to a wider range of data variations
during training. Unlike feature-level augmentation (§III-B3a),
which modifies the learned feature representations, data-level
augmentation directly alters the input data-space.

The widespread adoption and significance of data augmen-
tation in DG for MedIA stem from its effectiveness, relative
simplicity, and broad applicability across different tasks and
modalities. It serves several crucial purposes:

• Simulating domain shift: By applying transformations
that mimic potential variations across different domains
(e.g., changes in image intensity, contrast, or noise levels),
models can learn to be more robust to these shifts.

• Addressing data scarcity: In medical imaging, where
large, diverse datasets are often challenging to obtain,
augmentation can help mitigate the limitations of small
sample sizes.

• Enhancing model generalizability: By exposing the model
to a broader range of data variations, it can learn more
robust and generalizable features.
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For a comprehensive review of general (non-DG) data
augmentation methods for MedIA, readers are referred to the
survey by Chlap et al. [54]. In the following subsections,
we focus on augmentation techniques specifically designed or
adapted for domain generalization in medical image analysis.

III-A2a Randomization-based Augmentation
The idea of random augmentation is to generate novel input
data by applying random transformations to the original data.
Some conventional techniques include randomly applying flip-
ping, rotation, scaling, cropping, adding noise, etc., which are
used extensively to improve a model’s generalization perfor-
mance by reducing overfitting [75]. Li et al. [40] developed
a novel style transfer network that augments a domain by
modifying cardiac images with randomly sampled shape and
spatial (i.e., slice index) priors to alleviate the modality-
level difference for cardiac segmentation. Liu et al. [33]
proposed a random amplitude mixup method that randomly
mixes the amplitudes of different images for DG for fundus
image restoration. Billot et al. [76] introduced SynthSeg, a
novel approach that leverages domain randomization to train
a segmentation network on synthetic brain MRI scans with
randomized contrasts and resolutions. This method enables
the network to generalize to real scans of varying imaging
characteristics without retraining. Similarly, Shen et al. [77]
proposed RandStainNA, which unifies stain normalization and
augmentation techniques by randomly generating virtual stain
templates.

III-A2b Adversarial-based Augmentation
Adversarial-based data augmentation methods operate on the
principle of creating adversarial examples that aim to maxi-
mize the model’s uncertainty, thereby improving its robustness
and generalizability. In this section, we concentrate on data-
level adversarial augmentation, while a discussion on model-
level adversarial training can be found in Section III-C1c.
Tomar et al. [43] developed a method that combines knowl-
edge distillation with adversarial-based data augmentation for
cross-site medical image segmentation tasks. The process
involves the creation of augmented data that is adversarial to
the current model, to push the model’s feature representations
toward the decision boundary. This is achieved by optimizing
and sampling data augmentations that simulate data in the
uncertain region of the feature space, thereby improving the
model’s ability to generalize from the training data to unseen
test data.

III-A2c Generative Models
Generative models have been widely used for data augmenta-
tion in DG tasks. These models learn to generate new data that
mirrors the training data distribution, thus providing additional
examples for the model to learn from. Scalbert et al. [44]
designed a new augmentation strategy based on multi-domain
image-to-image translation to enhance robustness in unseen
target protocols. By adapting the style encoding method [78]
based on generative models, they derive a considerable boost
of performances for DG at test time. Yamashita et al. [45] pro-
posed a style transfer-based augmentation (STRAP) method
for a tumor classification task, which applies the style of non-

medical images to histopathology images while preserving
their semantic content. The authors argue that the style of
these images is specific to their domain and irrelevant to their
classification, making STRAP effective in learning domain-
agnostic representations.

3) Problem-specific Data-level Methods
Problem-specific manipulation methods are tailored to address
unique challenges posed by particular types of medical imag-
ing data.

III-A3a Cross-modal Generative Models
Cross-modal generative models represent a pioneering
paradigm for achieving DG, wherein models are trained to gain
knowledge of the data distribution across diverse modalities
(e.g., CT, MRI, X-ray, and PET). These models, often based
on GANs, generate synthetic data [40] or suitable latent rep-
resentations [79], which bridge the distributional gap among
cross-modalities. This strategy allows us to provide a model
especially capable in medical imaging where data could vary
greatly due to patient cohorts, hospital practices, or different
imaging modalities. As obvious advantages of such a model,
it can be highly valuable when one modality is unavailable
for a particular patient or when the model is required to
generalize to an unseen domain where a different imaging
modality is used. Readers are referred to Xie et al. [80] for a
comprehensive review on cross-modal neuroimage synthesis.

Taleb et al. [47] introduced a self-supervised learning strat-
egy using multimodal jigsaw puzzles for synthesizing cross-
modal medical images, where patches from different imaging
modalities are assembled to enhance feature extraction across
modalities. They further augmented multimodal data volume
by generating synthetic images between modalities through a
CycleGAN-based translation model. Xu et al. [48] proposed
an adversarial domain synthesizer for single-source cross-
modality image segmentation, employing adversarial training
coupled with a mutual information regularizer to maintain
semantic consistency between original and synthetic domains.
Su et al. [49] introduced the Saliency-balancing Location-scale
Augmentation (SLAug) for enhancing cross-modal and cross-
sequence medical image segmentation. SLAug modifies image
distribution with class-specific adjustments and dynamically
tunes location-scale weights via model gradients, effectively
mitigating domain shifts in medical imaging.

III-A3b Stain normalization
Stain normalization and stain separation techniques are primar-
ily used in histopathology, where different tissue components
(e.g., nuclei, cytoplasm, extracellular matrix) are separated
based on their staining patterns. This process helps remove
staining artifacts and enhances the precision of MedIA tasks,
such as cell counting and segmentation. Xu et al. [50]
proposed a stain normalization method for cell detection in
histopathology images. Specifically, the authors address the
limitations of stain transformation performed during network
training, which may not perfectly represent the stain color of
test images. Thus, their approach involves mixing stain colors
of target and source domain images and generating multiple
transformed test images for better stain representation during
testing. Chang et al. [51] proposed Stain Mix-Up for the cancer
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detection task. By decomposing histopathology images into
stain color matrices and density maps, the stain mix-up method
allows for combining stain colors from different domains. This
approach enhances the color diversity in the training data,
improving cancer detection performance. The stain mix-up
technique can effectively address stain color variations and
staining artifacts, providing more accurate and reliable results
for histopathology image analysis.

B. Feature-level Generalization

TABLE V
SUMMARY OF FEATURE-LEVEL DOMAIN GENERALIZATION METHODS.

Method Formulation

Normalization ẑ =
f(x)−µ√

σ2+ϵ

Dissimilarity-based minf D(f(xi), f(xj)), ∀1 ≤ i ̸= j ≤ M

Information theoretic minf I(ztask; zdomain)

Contrastive L(xi,xj) = − log
exp(sim(f(xi),f(xj))/τ)∑

k∈a(i) exp(sim(f(xi),f(xk))/τ)

Variational L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)] − KL(qϕ(z|x)||p(z))

Explicit minh,f E(x,c)∈S [ℓ(h(f(x)), c)] + λ ℓreg

Feature-level generalization methods aim to utilize the
domain-invariant features from the input images to improve
the generalization performance of a model. These methods
often involve learning a feature representation shared across
multiple domains, either by training a domain-invariant feature
extractor or adapting the feature extractor on the fly during
inference. We denote f as a feature mapping function that
maps input data to a feature space. The objective function of
domain generalization from Eq. 1 can be modified to include
a feature extractor f : X → Z and the redefined predictive
function h : Z → Y:

min
h,f

E(x,y)[L(h(f(x)), y)]. (4)

Refer to Table V for a summary of feature-level methods.
In the following paragraphs, we explore feature-level domain
generalization techniques.

1) Feature Alignment
Feature alignment aims to align or standardize the feature
distributions across different domains. These strategies aim
to produce domain-invariant features through statistical and
structural adjustments, enhancing generalization across varied
domains by minimizing distributional discrepancies and align-
ing feature distributions to a common representation.

III-B1a Feature Normalization
Feature normalization methods aim to statistically center,
scale, decorrelate, standardize, or whiten feature distributions
across domains and enhance the model’s ability to general-
ize [107]. By transforming all features to the same statistical
distribution, normalization prevents features with larger nu-
merical values from dominating those with smaller ones during
training, ensuring a more balanced and accurate model. These
methods generally stem from the traditional scaling methods,
such as z-score and unit vector normalization, as well as
some traditional machine learning methods, such as batch and

instance normalization. These methods can be formulated as
the following generalized equation for feature normalization:

min
h,f

E(x,y)

[
L
(
h

(
z− µ√
σ2 + ϵ

)
, y

)]
, (5)

where z = f(x) is the feature embedding, µ and σ2 are the
statistics of the feature embedding z (usually the mean and
variance), and ϵ is a constant for numerical stability.

Zhou et al. [81] proposed a per-domain batch normalization
method for medical image segmentation. When testing the
model on the target domain, the model compares the distri-
bution information of the target domain with the stored dis-
tribution information (mean and variance) from each domain.
Then, the model selects the most suitable domain distribution
statistics to normalize the activated features from the target
domain. Liu et al. [82] introduced spectral-spatial normal-
ization (SS-Norm) for retinal vessel segmentation, merging
frequency and spatial normalization to isolate domain-invariant
features. The approach uses discrete Fourier transformation
for frequency normalization and a convolutional network for
spatial normalization, improving the representation of spatial
details in activation maps.

III-B1b Dissimilarity-based Alignment
Dissimilarity-based alignment methods attempt to reduce the
difference between the feature distributions of different do-
mains by minimizing a dissimilarity measure. This aligns the
distributions to a common representation, which helps mitigate
the domain shift problem. The goal of dissimilarity-based
alignment is to find f to minimize the distribution shift among
domains in the feature space. For instance, given the i-th and j-
th source domains with input samples xi and xj , we may want
to minimize the difference between the distributions of their
mapped features: D(f(xi), f(xj)), where D(·, ·) measures the
dissimilarity between two distributions, i.e.,

min
f

D(f(xi), f(xj)), 1 ≤ i ̸= j ≤ M. (6)

Numerous statistical metrics exist to measure the dissimilarity
between distributions, including ℓ2 distance, f -divergences,
and the Wasserstein distance.

Stacke et al. [83] empirically evaluated different dissimilar-
ity metrics for tumor classification in cross-site histopathology
images. Among various metrics, Wasserstein-based metrics
have been shown to better capture the domain shift in cross-site
histopathology images. Lyu et al. [84] applied a Wasserstein-
based metric, specifically the Sinkhorn distance, to measure
divergence between augmented domains created through var-
ied image transformations for retinal image segmentation. This
approach facilitated the evaluation of domain shift through
the divergence of novel distributions induced by different
augmentation sub-policies. Similarly, Li et al. [85] developed
Linear-Dependency Domain Generalization (LDDG) to im-
prove generalization for lesion classification and spinal cord
segmentation by aligning latent feature distributions across
multiple source domains using Kullback-Leibler (KL) diver-
gence and linear dependency modeling. This approach seeks
to reduce empirical risk on unseen target domains, aiming for
a theoretical performance upper bound.
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TABLE VI
FEATURE-LEVEL DOMAIN GENERALIZATION METHODS. METHODS CATEGORIZED BY DIFFERENT SETTINGS FOR SOURCE AND TARGET DOMAINS (SEE

§II-B), TASK, ORGAN, AND MODALITY USED IN EXPERIMENT.

Method Specific Ref. Source Target Task Organ Modality

Feature
Alignment

Feature
Normalization

[81] Single Sequence,
Modality Segmentation Brain, Cardiac,

Abdominal MRI, CT

[82] Single Site Segmentation Retinal Fundus

Dissimilarity-
based

[83] Multiple Site Classification Colon, Breast Histology

[84] Multiple Modality Segmentation Retinal Fundus, OCT

[85] Multiple Sequence, Site Classification,
Segmentation Skin, Spinal Dermatology,

MRI

Implicit
Disentanglement

Mutual
Information

[86] Multiple Site Classification
Abdominal,

Brain, Femur,
Lips

Fetal Ultrasound

[87] Multiple Site Classification
Abdominal,

Brain, Femur,
Lips

Fetal Ultrasound

[88] Single Site Segmentation Carotid Ultrasound

[89] Single,
Multiple Sequence Classification Blood Cell Histology

[48] Single Modality,
Sequence Segmantation

Prostate,
Abdominal,

Cardiac
MRI, CT

Contrastive [90] Multiple Site Detection Breast X-ray

[91] Multiple Site Segmentation Retinal Fundus

Variational [92] Multiple Site Classification Blood Cell Histology

[93] Multiple Site Classification Breast Histology

[94] Multiple Site Classification Breast X-ray

[95] Multiple Site Classification Breast X-ray

Explicit
Disentanglement

Conditional
Representation

Learning

[96] Multiple Site Classification Retinal Fundus

[97] Multiple Site Classification Retinal Fundus

[98] Multiple Site Segmentation Retinal Fundus

Feature
Reguarlization

[99] Multiple Site Segmentation Cardiac MRI

[100] Multiple Site Compression,
classification Brain, Skin MRI, Histology

[101] Single Site Segmentation Spinal MRI

Others Feature
Augmentation

[102] Single,
Multiple Site Segmentation Cardiac, Prostate MRI

[103] Multiple Site Segmentation Prostate MRI

[104] Single Site Liver CT

Kernel-based [105] Single Site Classification Brain MRI

[106] Multiple Site Detection Brain EEG

2) Disentanglement Methods
Disentanglement methods aim to decompose an input sample
into a feature vector that reveals various factors of varia-
tion where each dimension or subset of dimensions carries
information linked to a specific factor. The primary goal of
these methods is to create a clear boundary between domain-
specific and task-specific features. This distinction is crucial
in capturing the universal patterns related to the task. Given
this goal, the disentanglement process seeks to isolate task-
relevant features from those features intrinsic to the domain,
i.e., z = [ztask, zdomain], respectively. The goal is to create a
model that emphasizes ztask while effectively ignoring zdomain,
thus ensuring that the model’s focus is primarily on the
features that contribute to the task at hand and less on those
that are domain-specific features. To this end, we further refine

disentanglement methods into implicit and explicit methods.

III-B2a Implicit Feature Disentanglement

Implicit feature disentanglement strategies learn to decompose
factors of variations by utilizing, for example, the statistical
properties of the data and indirect incentives to encourage
disentanglement. Such approaches provide scalable and flexi-
ble techniques for learning disentangled representations. Typ-
ical examples of these methods include information-theoretic
methods, contrastive learning, and variational inference.

Information theoretic disentanglement methods often fo-
cus on using mutual information to separate and understand
the different factors of variations in data. Mutual information,
denoted by I(X;Y ), measures the information obtained from
a random variable X by observing another variable Y . The



PROCEEDINGS OF THE IEEE, VOLUME 112, ISSUE 10, 2024 12

goal of information-theoretic disentanglement is to minimize
the mutual information between the task and domain repre-
sentations, i.e.,

min
f

I(ztask; zdomain), (7)

where f (x) = [ztask, zdomain] is a feature mapping function
that disentangles the input image into ztask and zdomain. This
minimization process plays a vital role in ensuring that the
task-related and domain-specific feature sets are independently
informative. This disentanglement approach seeks to construct
a learning model capable of robustly interpreting and classify-
ing data across a spectrum of domains, making it adaptable to a
wide range of task-specific challenges in diverse applications.

Specifically, Meng et al. [87] proposed MIDNet, an MI-
based model specifically designed for fetal ultrasound clas-
sification tasks. MIDNet’s primary objective is to distinguish
domain-invariant features from domain-specific ones by min-
imizing the mutual information between these feature sets.
To achieve this, they employ the Mutual Information Neu-
ral Estimation (MINE) [108] approach to approximate the
lower bound of the mutual information. This facilitates the
extraction of generalizable features and enables knowledge
transfer across unseen categorical features in target domains.
Similarly, Bi et al. [88] proposed MI-SegNet for ultrasound
image segmentation. MI-SegNet employs two encoders that
separately extract anatomical and domain features from im-
ages, and MINE approximation is used to minimize the mutual
information between these features. Rather than minimizing
the mutual information between domains, Chen et al. [89] and
Xu et al. [48] proposed to maximize the mutual information
for maintaining the consistency between the source domain
and augmented samples.

Contrastive Disentanglement aims to make representations
of similar instances more alike (low contrast) and those of
different instances more dissimilar (high contrast). In the
context of domain generalization, this approach can be used
to learn domain-invariant features by encouraging similarity
between samples that share the same task-relevant character-
istics, regardless of their domain, while separating samples
with different characteristics. A typical contrastive learning
loss function [109] is defined as:

L(xi,xj) = − log
exp (sim (f(xi), f(xj)) /τ)∑

k∈a(i) exp (sim (f(xi), f(xk)) /τ)
,

(8)
where sim(·, ·) is a function for cosine similarity, xi and xj

are positive pairs, k ∈ a(i) are the indexes of selected negative
samples, and xi and xk are negative pairs. In the context
of domain generalization for medical image analysis, positive
pairs could be defined as images showing the same pathology
(e.g., two images of malignant tumors) regardless of whether
they come from different hospitals or were acquired using
different imaging protocols. Negative pairs would be images
showing different pathologies (e.g., an image of a malignant
tumor paired with an image of healthy tissue), again regardless
of their source domain. This pairing strategy encourages the
model to learn features that distinguish between pathologies
while being invariant to domain-specific characteristics like
image acquisition settings or hospital-specific protocols.

Li et al. [90] proposed a novel approach that couples
multi-style and multi-view contrastive learning to enhance the
generalization capability for mammography lesion detection.
Specifically, positive pairs for multi-style contrastive learning
were synthesized using a GAN, and different views of the
breast (i.e., craniocaudal and mediolateral oblique) were used
as multi-view contrastive learning. In a similar approach,
Gu et al. [110] proposed Contrastive Domain Disentanglement
and Style Augmentation (CDDSA) for image segmentation in
the fundus and MR images. The unique feature of CDDSA
is its implementation of a style contrastive loss function,
which ensures that style representations from the same domain
bear similarity while those from different domains diverge
significantly.

Variational disentanglement is a method that utilizes vari-
ational autoencoders (VAEs) to learn a disentangled represen-
tation. The typical approach for this method involves encoding
input data x into a latent variable z using an encoding function
qϕ(z|x). The decoder, pθ(x|z), then reconstructs the original
data from the latent representation z. The objective function of
VAEs, or the evidence lower bound (ELBO), can be expressed
as:

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)||p(z))
= Lrec + λLreg, (9)

where KL(qϕ(z|x)||p(z)) is the K divergence between the
approximate posterior qϕ(z|x) and the prior p(z), which is
often chosen to be a normal distribution. ELBO can also
be interpreted as minimizing the reconstruction error Lrec,
i.e., the posterior pθ(x|z), and regularizing the approximate
posterior Lreg, i.e., the KL term. The key idea behind vari-
ational disentanglement involves structuring a latent space so
that distinct dimensions capture domain-specific and domain-
invariant factors. This is typically achieved by introducing
tailored constraints or regularization mechanisms during train-
ing [111]. For example, regularization or constraints can be
incorporated into the ELBO to specifically encourage the
separation of domain-specific and domain-invariant factors in
the latent space.

Ilse et al. [92] proposed the Domain Invariant Varia-
tional Autoencoder (DIVA) for malaria cell image classifi-
cation [112]. DIVA is an extension to the VAE framework
that can partition a latent space into three independent latent
subspaces for domain label zd, class label zy , and residual
variations zx, which captures any residual variations left in
data x. This partitioning aims to encourage the model to disen-
tangle these sources of variation. Specifically, DIVA employs
three separate encoders that serve as variational posteriors
over the three latent variables. In addition to the ELBO
term, DIVA formulates classifier-based auxiliary objectives to
further encourage the separation of domain-specific and class-
specific information into their respective latent variables:

L(θ, ϕ;x) = Eqϕd
(zd|x)qϕx (zx|x),qϕy (zy|x) [log pθ(x|zd, zx, zy)]

− βKL (qϕd
(zd|x)||pθd(zd|d))− βKL (qϕx(zx|x)||p(zx))

− βKL
(
qϕy

(zy|x)||pθy (zy|y)
)
. (10)



PROCEEDINGS OF THE IEEE, VOLUME 112, ISSUE 10, 2024 13

Wang et al. [93] introduced the Variational Disentanglement
Network (VDN) for breast cancer metastasis classification,
which separates domain-invariant and domain-specific features
by maximizing information gain and posterior probability.
Through adversarial training between a task-specific encoder
and a feature discriminator, VDN aligns latent features with
a predefined prior and employs a generator network for high-
quality reconstruction and effective feature disentanglement,
enhancing domain generalization. Wang et al. [94], [95]
propose a variational causal model for the breast cancer
classification task. Specifically, they propose a structural causal
model that can decompose the latent factors of medical images
into domain-agnostic causal features and domain-aware fea-
tures. These features are factored into a reformulated ELBO
term of VAE, and optimizing the modified ELBO provably
disentangles the domain-agnostic causal features from domain-
aware features.

III-B2b Explicit Feature Disentanglement
There is an explicit mechanism separating task-relevant fea-
tures from domain-specific features in disentanglement. These
methods often involve supervision or hard constraints in the
model. Supervision could take the form of domain labels or
auxiliary attributes indicating the values of factor of variations
for each data instance. Some methods use constraints or
regularization terms in the objective function to encourage
the model to separate specific factors of variation in the
representations. The loss for these types of methods can be
in the form of:

min
h,f

E(x,c)∈S [L(h(f(x)), c)] + λLreg, (11)

where c is an auxiliary attribute or a domain label, Lreg

is a regularization term that encourages separation between
the task-relevant and domain-specific features, and λ is a
hyperparameter controlling the strength of this regularization.
The first term in this loss refers to model supervision with an
auxiliary attribute or a domain label, while the second term
encourages the model to keep the task-relevant and domain-
specific features separate.

Conditional representation learning refers to learning
a representation of the input data influenced by a certain
conditioning variable. This variable can be any additional
information, such as domain labels or induced priors. Con-
ditional representation learning aims to create representations
that are sensitive to the specific aspects of the data relevant to
the condition, and invariant or insensitive to other aspects. This
can improve performance on tasks where certain aspects of the
data are more relevant than others, or where the relevance of
different aspects varies under different conditions.

Liu et al. [96], [97] proposed the Recursively Conditional
Gaussian (RCG) prior for diabetic retinopathy and congenital
heart disease diagnosis task. Their proposed method utilizes
the ordinal structure of the class labels to construct an appro-
priate RCG before the class-related latent space. This RCG
prior enforces a poset constraint that aligns the extracted
latent vectors with the ordinal class labels. By conditioning
the latent space on the ordinal labels, the RCG prior aims to
learn a representation sensitive to the relevant aspects of the

data for the specific diagnosis task, while invariant to other
aspects. Wang et al. [98] proposed Domain-oriented Feature
Embedding (DoFE) for fundus image segmentation, which
incorporates a domain knowledge pool to learn the domain
prior information extracted from the multi-source domains.
This domain prior knowledge is then dynamically enriched
with the image features to make the semantic features more
discriminative.

Feature regularization methods focus on incorporating
regularization terms into the learning objective to guide the
model toward extracting meaningful and generalizable fea-
tures. These methods often utilize penalties that discourage
the model from relying too heavily on individual features or
encourage the model to maintain certain structures or proper-
ties in the learned representations. Additionally, regularization
can be used to encourage the model to learn representations
invariant to certain transformations of the data, such as trans-
lations or rotations. These kinds of regularization can make
the learned features more robust to data variations that are
irrelevant to the task at hand. For example, this might be done
by promoting sparse representations (e.g., dropout [113], ℓ1,
ℓ2 regularization), where the model is encouraged to use as
few features as possible to achieve its task, or by promoting
orthogonality, where the model is encouraged to learn features
that are independent of each other.

Islam and Glocker [99] proposed Frequency Dropout (FD)
for cardiac image segmentation task. FD uses a random feature
map filtering approach that works as a form of feature-level
regularization during training. In this method, random filters
(e.g., Gaussian smoothing, Laplacian of Gaussian, and Gabor
filtering) are applied to the feature maps to prevent the neu-
ral network from learning frequency-specific image features.
Nguyen et al. [100] introduced the Adversarially-Regularized
Mixed Effects Deep learning (ARMED) for Alzheimer’s dis-
ease diagnosis and cell image classification tasks. ARMED
incorporates a regularization mechanism that enforces the
model to learn features invariant to specific clusters in the data.
This is achieved by introducing an adversarial classifier that at-
tempts to predict the cluster membership based on the learned
features, while the main model is penalized for enabling this
prediction. Wang et al. [101] proposed Knowledge Distillation
for Domain Generalization (KDDG) for MRI gray matter
segmentation task. KDDG applies a form of feature-level
regularization that encourages the student model’s predictions
to align with the teacher’s predictions, thus improving the
student model’s robustness and generalization capability.

3) Other Representation Learning Methods
III-B3a Feature Augmentation
Feature augmentation is a technique used to improve machine
learning models’ generalization capability by transforming
the feature space, rather than the input space. Unlike tra-
ditional data augmentation, which directly manipulates raw
data, feature augmentation operates on the derived features
extracted from the raw data. While data augmentation creates a
more comprehensive and diverse source domain by introducing
variations at the data level, it is limited by the extent and
variety of feasible and meaningful transformations on the
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raw data. On the other hand, by working directly in the
feature space, feature augmentation allows for a richer set
of transformations. Feature augmentation can also incorporate
domain knowledge more effectively, as transformations can be
designed to specifically target and vary important features.

Chen et al. [102] proposed a novel feature augmenta-
tion framework, MaxStyle, for cardiac MRI segmentation.
MaxStyle introduces adversarial noise into the feature styles
and conducts a worst-case style composition search through
adversarial training. This approach broadens the range of aug-
mented styles and makes the model more robust by exposing it
to harder cases. Zhou and Konukoglu [103] proposed a Fed-
erated Feature Augmentation (FedFA) for cross-site prostate
MRI segmentation. FedFA augments the features by estimating
a vicinity distribution at each layer of the neural network
during training, thus enhancing the data representation at each
client. It manipulates the channel-wise statistics of the features,
such as the mean and standard deviation, which often carry
significant domain-specific information.

III-B3b Kernel-based Learning
Kernel-based methods are a classic and effective approach
within feature-level domain generalization. These methods
improve generalization by mapping the original input fea-
tures into a higher dimensional space. This mapping offers
several advantages for domain generalization. In the higher-
dimensional space, kernel methods can potentially reveal
domain-invariant structures that are not apparent in the original
feature space. Kernel methods can also model non-linear rela-
tionships in the data, which is particularly useful for capturing
intricate patterns in medical images that may be consistent
across domains. There are various kernel-based methods for
feature-level domain generalization, including Support Vec-
tor Machine (SVM) variants, Maximum Mean Discrepancy
(MMD), and Transfer Component Analysis (TCA). Kernel
trick enables these methods to operate in high-dimensional
spaces without explicitly calculating the coordinates of the
data in that space, but by simply computing the dot products
between the images of all data pairs in the feature space.
This makes the calculations more tractable and efficient. These
kernel-based methods can benefit medical image analysis as
they can handle high-dimensional data and discover complex
patterns. They also offer an excellent way to incorporate
domain knowledge, such as spatial relationships in images,
by defining appropriate kernels.

Wang et al. [105] proposed a kernel-based binary classifier
for cross-site brain disease diagnosis tasks. In the kernel
setting, we can reformulate the regularization term as:

Lreg =
||f(x)||2

2
=

1

2

∑
i

k(xi,x), (12)

where the norm is the Reproducing kernel Hilbert space
(RKHS) norm, and k(·, ·) is the kernel function that mea-
sures the similarity between two variables. The RKHS norm
captures the classifier’s complexity or “smoothness” within
the chosen kernel space. The authors use this kernel-based
classifier to measure the disharmony and utilize it to improve
the generalizability of the given model. Ayodele et al. [106]

proposed a multi-TCA approach for epileptic seizure detection
using an EEG dataset. In contrast to utilizing the dishar-
mony [105], the authors use the RKHS norm to measure
the shared subspace between source domains. Then, they
utilize various dimension reduction techniques to extract a
generalized feature vector for a recurrent neural network.

C. Model-level Generalization

Model-level generalization focuses on enhancing the intrinsic
ability of machine learning models to generalize across do-
mains by modifying core aspects of the model itself, including
the learning process, model architecture, and optimization
techniques. Specifically, such strategies encompass several
categories of methods: a) Learning strategy, which focuses on
adequately reflecting the target-suitable knowledge or lever-
aging distinct representations gained from a variety of sub-
tasks; b) Model framework, which exploits modifications to the
network architecture or the incorporation of adaptive auxiliary
components to more efficiently address the domain shift;
and lastly c) Other model-based DG, which involve various
optimization and adaptation techniques.

1) Learning Strategy
Methods in this category concentrate on harnessing the gen-
eral learning strategy to enhance the model’s generalizability,
which mainly involves various techniques as a) Meta-learning,
wherein the model learns how to rapidly adapt to new tasks,
thereby improving its flexibility and generalization capacity;
b) Self-supervised learning, which is an unsupervised manner
that can leverage large amounts of unlabeled data by creating
pretext tasks; c) Adversarial learning, which strives to mini-
mize the divergence between different domains to enhance the
model’s transferability.

III-C1a Meta-learning
Meta-learning techniques are closely relevant in medical imag-
ing due to the prevalent scarcity of annotated data coupled
with the need to rapidly adapt to unseen data domains.
Specifically, a model employing such strategies aims to learn
an optimal initialization or update rule that can be quickly
fine-tuned to perform well in unseen data domains. By virtue
of these advantages, it is possible to improve the model’s
flexibility and the efficiency of its generalization capabilities.
To simulate domain shift, meta-learning methods divide the
source domains into meta-training and meta-test sets. Meta-
learning can be formulated as follows:

ϕ∗ = argmin
ϕ

Lmeta(ϕ;Smtrain),

θ∗ = argmin
θ

Ltask(θ;Smtest, ϕ), (13)

where ϕ∗ denotes the meta-learned parameters optimized
on the meta-training set Smtrain, which are then used to
initialize the task-specific parameters θ∗ optimized on the
meta-test set Smtest. Lmeta and Ltask are the meta-learning
and task-specific loss functions, respectively. This formulation
is inspired by the Model-Agnostic Meta-Learning (MAML)
algorithm [143], where the meta-objective is to find an initial-
ization that allows for quick adaptation to new tasks.



PROCEEDINGS OF THE IEEE, VOLUME 112, ISSUE 10, 2024 15

TABLE VII
MODEL-LEVEL DOMAIN GENERALIZATION METHODS. METHODS CATEGORIZED BY DIFFERENT SETTINGS FOR SOURCE AND TARGET DOMAINS, TASK,

ORGAN, AND MODALITY.

Method Specific Ref. Source Target Task Organ Modality

Learning Strategy Meta-learning [114] Multi Site Segmentation Spinal CT

[115] Multiple Site Segmentation Brain MRI

[116] Multiple Site Segmentation Prostate MRI

[117] Multiple Site, Sequence Segmentation Cardiac, Spinal MRI

[118] Multi Site Segmentation Retinal Fundus, OCT, FC

[119] Single,
Multiple Site Classification Brain Functional MRI

Self-
supervised
Learning

[110] Multiple Site Segmentation Retinal Fundus

[91] Multiple Site Segmentation Retinal Fundus

[120] Multiple Modality Segmentation Abdominal,
Cardiac CT, MRI

[121] Multiple Site Classification Skin, Retinal,
Chest, Breast

Histology,
Fundus, X-ray,
Mammography

[122] Single Site Segmentation Retinal Fundus

Adversarial
Learning

[123] Single,
Multiple Sequence Detection Skin, Hip MRI

[124] Multiple Site Segmentation Cardiac MRI

[125] Multiple Site Segmentation Retinal, Prostate Fundus, MRI

[126] Single Site Classification Breast Histology

Model Framework Ensemble
Learning

[127] Multiple Sequence, Site Segmentation Brain MRI

[128] Single Sequence Localization Surgical Scene Video Frames

[44] Single,
Multiple Site Classification Colon, Breast Histology

Model
Distillation

[101] Single Site Segmentation Spinal MRI

[129] Multi Site Detection Breast Histology

[130] Single, Multi Site Classification Retinal Fundus

[131] Single Site Segmentation Prostate MRI

[132] Single Site Segmentation Prostate MRI

[133] Multi Site Segmentation
Abdominal,

Prostate, Surgical
Scene

CT, MRI, Video

Distributed
Learning

[134] Multiple Site Segmentation Retinal, Prostate Fundus, MRI

[135] Multiple Site Classification Breast Histology

[136] Multiple Site Segmentation Retinal Fundus

[137] Multiple Modality Segmentation Tumor MRI

Other Geometric
Learning

[138] Multiple Modal, Sequence,
Site

Classification,
segmentation,

detection
Multiple organs, modalities from 55 datasets

[139] Multiple Site Segmentation Surgical Scene Video Frames

[140] Single Site Segmentation Abdominal,
Cardiac, Prostate MRI, CT

Distributionally
Robust

Optimization

[141] Multiple Site Classification Skin Dermatology

[142] Multiple Site Classification Skin Dermatology
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Khandelwal and Yushkevich et al. [114] extended the Meta-
learning for Domain Generalization [144] for the CT vertebrae
segmentation task (MLDG-Seg). The key idea behind MLDG-
Seg is to simulate the domain shift during the training process
by artificially creating a meta-test set Smtest from multiple
source domains and then training the model in a way that
optimizes its performance across these varied domains or
tasks. Dou et al. [115] proposed Model-agnostic learning
of Semantic Features (MASF) for the cross-site brain MRI
segmentation task. MASF employs a meta-learning algorithm
that enhances generalization to unseen domains by globally
aligning class relationships and locally clustering class-specific
features, optimizing semantic feature representations. This
approach updates model parameters for improved accuracy in
source domains during meta-training, and enforces semanti-
cally relevant learning through global and local mechanisms
during meta-testing. Liu et al. [116] proposed a Shape-aware
Meta-learning (SAML) approach for the prostate MRI segmen-
tation task. SAML introduces two loss functions specifically
designed to improve the compactness and smoothness of
segmentation in the presence of domain shift. The compact-
ness loss function encourages segmentations to preserve the
complete shape of the prostate, while the smoothness loss
function enhances boundary delineation by promoting intra-
class cohesion and inter-class separation between contour-
relevant and background-relevant embeddings across different
domains. Lie et al. [117] proposed a semi-supervised meta-
learning approach for domain generalization in medical im-
age segmentation tasks. Specifically, they split their training
dataset into meta-train and meta-test sets, including labeled
and unlabeled data, enabling their model to generalize to
unseen domains. Hu et al. [118] proposed Meta-Learning on
Anatomy-Consistent Pseudo-Modalities (MAP) for the retinal
vessel segmentation tasks. MAP employs a mixup technique
with episodic training on synthesized pseudo-modalities to
emphasize structural vessel features, achieving improved gen-
eralization across different imaging domains.

III-C1b Self-supervised Learning
Self-supervised learning (SSL) is a novel learning paradigm
where the model is trained to figure out a pretext task that
learns general but useful feature representations from unla-
beled large-scale data. Specifically, the principal idea behind
SSL is to design a proxy where the answers can be deduced
by a portion of the input data, enabling the model to learn
representations under its own supervision. Thanks to such an
advantage, creating the pretext task can alleviate the chronic
issues induced by a scarcity of annotated data, especially in
medical imaging. Further fine-tuning the downstream task via
these universally useful features improves the generalization
capability, allowing the model to adequately escape overfitting
for domain-specific biases. A typical example of SSL is the
contrastive learning paradigm introduced in Eq. 8.

Gu et al. [110] proposed a contrastive domain disentan-
glement and style augmentation for domain generalization.
In particular, domain-style contrastive learning is to prop-
erly decompose an image into domain-invariant representation
and domain-specific modality representation (i.e., style code),

whereas a style augmentation strategy enhances generalizabil-
ity by combining the randomly generated style codes with
given anatomical representation to reconstruct new styles’
images. Meanwhile, Ouyang et al. [120] devised a superpixel-
based SSL with details in pseudo-label generation for few-
shot semantic segmentation. By further designing the adaptive
local prototype module, they prevent the local information
of each class such that it achieves outstanding segmentation
performance while improving generalizability. Azizi et al.
[121] combines large-scale supervised transfer learning on
natural images and intermediate contrastive learning on med-
ical images for specific downstream medical-imaging ML
tasks, thereby enhancing the data-efficient generalization per-
formance.

An emerging and powerful strategy in addressing domain
shifts is the combination of pretraining and self-supervised
adaptation. This approach leverages the benefits of both large-
scale pretraining and task-specific fine-tuning to enhance
model generalization. A notable example is FINE (Feature-
level Instance Normalization and Exchange) method proposed
by Zhang et al. [145], which incorporates the physical model
of data generation into the adaptation process. FINE updates
the weights of a pretrained network by minimizing a data
fidelity loss for each test case, allowing it to better capture
features specific to the target domain while maintaining phys-
ical consistency. Similarly, Zhao et al. [146] introduced Syn-
thetic Multi-Orientation Resolution Enhancement (SMORE).
SMORE is a self-supervised technique for super-resolution
and anti-aliasing of MRI images that does not require external
training data. It works by training a network on high-resolution
in-plane slices and applying it to low-resolution through-plane
slices to enhance image quality.

III-C1c Adversarial Learning
Adversarial learning is widely used for learning domain invari-
ant features in machine learning. The key idea of adversarial
learning is to introduce adversarial examples during training to
make the model more robust to potential attacks or unexpected
inputs. These adversarial examples are usually generated by
applying minute perturbations to the original input data to
deceive the model into making incorrect predictions. By
incorporating such adversarial examples, the model can better
handle real-world scenarios where it may encounter unseen
domains, enhancing its ability to make accurate and reliable
diagnoses.

Bekkouch et al. [123] proposed the adversarial reconstruc-
tion loss to force an encoder to forget style information
while extracting useful classification features for hip MRI
landmark detection. Chen et al. [124] introduces a realistic
adversarial intensity transformation model for data augmenta-
tion in MRI that simulates intensity inhomogeneities, common
artifacts in MR imaging. This method is a simple yet effective
framework based on adversarial training to learn adversarial
transformations and to regularize the network for segmentation
robustness, which can be used as a plug-in module in general
segmentation networks. Zhang et al. [125] proposed an adver-
sarial intensity attack method for medical image segmentation,
which exploits an adversarial attack strategy to adjust the
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intensity distribution in images without altering their content.

2) Model Framework
Model framework dives into the architectural and structural
strategies deployed to tackle the pervasive challenge of domain
shift. Within this framework, three pivotal approaches are dis-
cussed: Ensemble learning, model distillation, and distributed
learning. Together, these strategies represent a comprehen-
sive framework aimed at improving the generalizability of
models through innovative architectural solutions and privacy-
preserving techniques, ultimately aiming to bridge the gap
between diverse medical imaging domains while safeguarding
patient privacy.

III-C2a Ensemble Learning
Ensemble learning methods are a fundamental approach in
machine learning that can significantly enhance model gener-
alization. The key idea behind ensemble models is to build a
predictive model by combining the predictions of several base
models trained on different subsets of data or using different
network architectures. The diverse models can capture varying
aspects of unique patterns and feature representation, so their
combination could lead to more robust predictions. In partic-
ular, ensemble learning empowers medical imaging systems
to achieve robustness and generalization in medical imaging,
ultimately contributing to enhanced clinical decision-making
and patient care.

Kamraoui et al. [127] proposed the Mixture of Calibrated
Networks (MCN) for brain tumor segmentation. The proposed
MCN utilizes the complementarity of different base models
and takes advantage of their strengths, thus improving the
overall system performance. Specifically, MCN combines the
predictions from multiple base models, each with unique
calibration characteristics, to deliver more precise tumor
boundary definitions and more accurate segmentation results.
Philipp et al. [128] proposed a dynamic CNN for surgical
instrument localization, which fuses image and optical flow
modalities so that the most reliable information contributes
to the prediction. Scalbert et al. [44] introduces an ensemble
strategy based on multi-domain image-to-image translation for
various classification tasks using histology images. Specifi-
cally, the proposed method performs image-to-image trans-
lation by projecting the target image to the source domains
and then ensembles the model prediction of these projected
images.

III-C2b Model Distillation
Model distillation involves transferring the knowledge from
a large, sophisticated teacher model to a more compact
and efficient student model. This process not only preserves
the intricate insights and performance capabilities of the
teacher model but also ensures that the student model remains
lightweight and practical for deployment in environments with
stringent computational or memory constraints.

Wang et al. [101] proposed Knowledge Distillation for Do-
main Generalization (KDDG) for the spinal cord gray matter
segmentation task. The authors propose a training strategy
that utilizes a gradient filter as a novel regularization term,
aiming to simplify the learning task and thereby improve the
generalization performance of the model. The paper articulates

that the ”richer dark knowledge“ [147] derived from the
teacher network, along with the proposed gradient filter, can
significantly mitigate the learning challenge, leading to better
generalization in various tasks. Fernandez-Martı́n et al. [129]
proposed Uninformed Teacher-Student (UTS) for the mitosis
localization task, employing a method that distills “hard” sam-
ples by training a teacher model to identify and retain only the
clean, closely matched predictions to annotated mitoses, thus
creating a purified training subset. This subset is used to train a
student model, incorporating strong image transformations to
challenge and refine the model’s focus, enhancing its ability to
generalize by learning from a distilled dataset that minimizes
noise and irrelevant variability.

III-C2c Distributed learning
Distributed learning techniques, such as federated learning and
privacy preservation, are essential in medical domain gener-
alization due to patient information’s sensitivity in exploiting
the data from various institutions [148]. When we have used
or shared the data from the decentralized device or different
data server, privacy concerns may arise in model updates
that could leak patients’ information [136]. Accordingly, it
may violate social ethics that are accompanied by potential
risks. To alleviate this fatal issue, advanced techniques such
as differential privacy [149] and federated learning [150] allow
models to learn a wide range of data from different institutions
or hospitals without directly accessing it while preserving data
privacy.

To secure sensitive patient information, Liu et al. [134] pro-
posed a privacy-preserving solution with a boundary-oriented
episodic learning scheme, which allows us to aggregate model
updates from multiple clients without revealing any individual
client’s data or compromising their privacy. Chen et al. [135]
designed cross-client style transfer using style vectors to im-
prove performance in domain generalization while preserving
privacy in federated learning. Meanwhile, Xu et al. [136] pro-
posed Federated Adversarial Domain Hallucination (FADH),
which encodes the information of multiple domains through
weight aggregation, as a surrogate for the domain classifier.
Using differential privacy, Li et al. [137] brings sparse vector
technique to the patient data owners and only shares inter-
mediate model training updates among them, thus preserving
patient data privacy. By doing so, these approaches ensure the
surveillance and security of sensitive patient information while
enabling the incorporation of diverse datasets into the learning
process, thereby promoting model generalization.

3) Other Model-based DG
III-C3a Geometric learning
Geometric learning [151] is an approach that leverages the
intrinsic geometric structure of data, often residing in non-
Euclidean spaces. Non-Euclidean spaces refer to geometric
environments that do not adhere to Euclidean geometry, e.g.,
graphs, topologies, and manifolds, often encountered in Me-
dIA. Here, geometric learning harnesses these intrinsic data
geometries, exploiting the geometric information to better
generalize across different domains. By modeling the complex
correlations in high-dimensional data, geometric learning can
better handle irregularities inherent in medical imaging. Read-
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ers are referred to [20] for a comprehensive review of the OOD
generalization on graphs. The following paragraph explores
the geometric learning techniques specifically proposed for
MedIA tasks.

Nguyen et al. [138] developed a graph-matching algorithm
employing a k-nearest neighbors approach to construct graphs
from medical images, where nodes represent distinctive image
regions and edges define spatial relationships. Their Learned
Vertex Matching (LVM) method analyzes structural similar-
ities and differences across images, enhancing abnormality
detection and segmentation tasks. In a similar approach, Seeni-
vasan et al. [139] proposed a graph network for surgical scene
understanding. They utilized graph learning to understand
interactions in the surgical scene by embedding the visual
and semantic features of instruments and tissues into graph
nodes. Santhirasekaram et al. [140] proposed a hierarchical
topology preservation method for medical image segmentation
tasks. Their method constrains the latent space of a deep
learning model to a dictionary of base components, which are
chosen to capture the limited structural variability found across
patients’ medical images. This dictionary is learned through
vector quantization, and a topological prior is incorporated
into the sampling process using persistent homology, which
ensures topologically accurate segmentation maps.

III-C3b Distributionally Robust Optimization
Distributionally Robust Optimization (DRO) [161] is a model-
level domain generalization method aiming to optimize model
performance over the worst-case distribution within a specified
uncertainty set. In other words, instead of optimizing the
model’s performance based on a single training data distri-
bution, DRO tries to ensure good performance across a range
of possible data distributions.

Bissoto et al. [141] utilized the Group Distributionally
Robust Optimization (GDRO) [162] in their skin lesion classi-
fication model. GDRO extends the DRO framework by consid-
ering groups, or “environments”, in the data distribution. They
partitioned the training data into different environments based
on the presence of various artifacts, such as hair, ruler marks,
and dark corners. These environments were then used to train
the model under the GDRO framework. Goel et al. [142]
enhanced Generalized Distributionally Robust Optimization
(GDRO) by introducing class-conditional Subgroup DRO (SG-
DRO) for skin lesion classification, which refines risk min-
imization by considering both broad data groups and more
granular subgroups defined by class-specific traits. SGDRO
optimizes for the worst-case scenario within each subgroup
across different environments, resulting in a model that is
better equipped to handle complex data distributions and more
resistant to distributional shifts.

D. Analysis-level Generalization
Analysis-level DG refers to techniques that focus on under-
standing and interpreting the behavior of domain-generalized
models. These methods aim to: (1) provide insights into how
models make decisions across different domains, (2) evaluate
the extent of a model’s generalization, (3) identify potential
biases or failure modes in generalized models, and (4) enable
trust and adoption of DG models in clinical settings. Unlike

data-level, feature-level, or model-level approaches that pri-
marily aim to improve generalization performance, analysis-
level methods are concerned with the post-hoc examination
and interpretation of already generalized models. This is
particularly crucial in MedIA, where understanding model
decisions is essential for clinical validation and trust.

Analysis-level DG techniques face unique challenges, as
they must provide interpretations that are consistent and mean-
ingful across multiple domains, often with varying charac-
teristics. These methods must balance the trade-off between
model performance and interpretability, especially for com-
plex, highly generalizable models.

1) Interpretable AI
Interpretable AI aims to develop techniques that help evaluate
and debug a model’s decisions making process. Interpreting
domain generalization models is more challenging as these
models have special architectures and learning paradigms to
accommodate the novel DG settings (e.g., cross-modality).
Hence, interpretable AI for DG proposes new techniques to
visualize the model’s output given heterogeneous data, such
as multi-modal [153] and temporal [154] data. In MedIA,
AI’s ability to adapt to new, unseen data from various hos-
pitals or demographic backgrounds is crucial for diagnosing
and determining treatment paths accurately. Interpretable AI,
especially under DG setting, is essential as it allows healthcare
professionals to understand and trust AI’s decisions, thereby
enhancing patient care and safety through transparency and
clinical evidence validation. For a general overview of in-
terpretable AI for MedIA, readers are referred to the survey
by Singh et al. [163] and Van et al. [164]. In the following
paragraphs, we present domain generalization techniques for
interpretable AI specifically designed for MedIA.

Dong et al. [152] proposed a saliency map-based method
for lung lesion classification that uses a contrastive learn-
ing scheme incorporating synthetic causal interventions. This
technique utilizes weighted backpropagation to generate a
saliency map that visualizes and highlights causally relevant
areas in the data, thereby improving our understanding of the
model’s decision-making process. Karim et al. [153] proposed
DeepKneeExplainer, a CAM-based interpretable AI method
for multimodal knee osteoarthritis diagnosis. The DeepKnee-
Explainer uses an explainable neural ensemble method to
improve performance by implicitly reducing the generalization
error and using CAM to visualize the model’s decision.
Similarly, Wang et al. [154] proposed a novel focal domain
generalization loss and used Grad-CAM++ [165] to visualize
the pathological activity from stereo-electroencephalogram
(sEEG).

III-D1a Transferability
Methods that provide interpretability in one domain may not
necessarily transfer well to other domains. Since different
medical imaging data and tasks may require different inter-
pretability approaches, ensuring that interpretability methods
can be effectively applied across diverse domains is challeng-
ing. Gao et al. [156] proposed BayeSeg for interpretable medi-
cal image segmentation. One of the key advantages of BayeSeg
is its ability to control the performance and interpretability
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TABLE VIII
ANALYSIS-LEVEL DOMAIN GENERALIZATION METHODS. METHODS CATEGORIZED BY DIFFERENT SETTINGS FOR SOURCE AND TARGET DOMAINS (SEE

§II-B), TASK, ORGAN, AND MODALITY USED IN EXPERIMENT.

Method Ref. Source Target Task Organ Modality

Interpretable AI [152] Single Site Classification,
Segmentation Retinal, Cardiac OCT, CT

[153] Single Site Classification,
Segmentation Knee MRI

[154] Multiple Site Classification Brain EEG

[155] Multiple Sequence Detection Gastrointestinal Endoscopy

Transferability [156] Single Sequence, Site Segmentation Cardiac, Prostate MRI, CT

[157] Single,
Multiple Site Classification Breast Histology

Causality [158] Single,
Multiple Sequence Classification Chest X-ray

[159] Multiple Site Classification Brain MRI

[160] Single Modality,
Sequence, Site Segmentation

Prostate,
Abdominal,

Cardiac
MRI, CT

tradeoff. By approximating the posterior distributions of the
shape, appearance, and segmentation, BayeSeg captures the
statistical relationships between these variables. This statistical
modeling allows users to adjust the weights of the variational
loss terms in BayeSeg to prioritize different aspects of the
segmentation process, allowing them to control the tradeoff
between interpretability and performance. Yuan et al. [157]
proposed a method for augmenting histopathology images
using text prompts (e.g., “synthesize image of a lymph node
in the style of S*”). To tackle the challenge of transferability,
authors proposed to leverage text-to-image (T2I) generators
as a means of enabling interpretable interventions for robust
representations. The authors argue that T2I generators offer
unprecedented capability and flexibility in approximating im-
age interventions conditioned on natural language prompts.
By using T2I generators, the proposed method can provide a
more interpretable and domain-agnostic approach that can be
effectively applied across diverse domains.

2) Causalility

Causality refers to the relationship between variables in a
causal system, where one variable (the cause) directly affects
or influences another variable (the effect). In domain gener-
alization, causality focuses on understanding the underlying
causal mechanisms that lead to the differences between source
and target domains. It aims to identify the causal factors
invariant across different domains and responsible for the tar-
geted MedIA task. By understanding and leveraging causality,
domain generalization methods can effectively generalize the
learned knowledge from a source domain to target domains
with different distributions. Readers are referred to a survey by
Seth et al. [19] for a deeper insight into the causal perspective
of domain generalization for general tasks. In the following
paragraph, we explore several approaches of causal learning
specifically designed for domain generalization for MedIA
tasks.

Mahajan et al. [158] proposed a causality-aware domain
generalization method for pneumonia detection using chest X-

ray images. They used a causal Bayesian network to model
the relationships among the domain, the image features, and
the class label. By explicitly modeling the causal relationships,
they were able to identify the common causal features that are
invariant across domains and are important for predicting the
presence of pneumonia. Wang et al. [159] used a causal graph-
based approach for Alzheimer’s disease diagnosis using MRI.
They modeled the causal relationships among imaging sites,
gender, age, and imaging features using a Structural Causal
Model (SCM). By performing counterfactual inference on the
model, they could generate harmonized data that simulate
the imaging data as if it came from the same site. This
approach effectively removed the site-specific confounding
factors and improved the generalization of the trained model
across different sites. Similarly, Ouyang et al. [160] proposed
a causal learning framework for single-source domain general-
ization in CT image segmentation. They introduced a SCM to
represent the causal relationships between the input data, the
domain shift variables, and the task-specific output. The SCM
allows for the identification of invariant causal factors shared
across different domains, which can be used to improve the
generalization of the models.

IV. DG UNDER LIMITED SOURCE

TABLE IX
COMPARISON OF SOURCE-LIMTED DG

DG Paradigm Access to Source Domain

Multi-source DG Full access (i.e., {Si}M
i=1)

Single-source DG Single source domain (i.e., S1)

Unsupervised DG Unlabeled source domain

Open-set DG With concept (label) shift

Source-free DG Pretrained source model only

Zero-shot DG Auxiliary information only

In this section, we examine the challenge of domain gen-
eralization under severe restrictions in the source domain,
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as detailed in Table IX. These particular DG scenarios have
received relatively less attention in the field of MedIA due
to their extreme conditions. Our review aims to shed light on
these under-explored areas and their implications for MedIA.

A. Single-source Domain Generalization
Single-source domain generalization (SSDG) assumes that
there is only one source domain to learn from. Due to
the lack of diversity in the training data, most SSDG pro-
pose augmentation-based solutions, both in data and feature
space, to simulate a broader range of domain variability.
For example, augmentation-based SSDG inlcude color nor-
malization [30] (§III-A1a), frequency-based [35] (§III-A1b),
randomization [41], [42] (§III-A2a), generative models [46]
(§III-A2c), feature augmentation [104] (§III-B3a), contrastive
learning [122] (§III-C1b), adversarial learning [48], [126]
(§III-C1c). Recent bleeding-edge SSDG include transferring
knowledge from large-scale pretrained models, i.e. variations
of model distillation [130], [131], [132] (§III-C2b).

B. Open-set Domain Generalization

TABLE X
OPEN-SET DOMAIN GENERALIZATION METHODS. METHODS

CATEGORIZED BY DIFFERENT SETTINGS FOR SOURCE AND TARGET
DOMAINS (SEE §II-B), TASK, ORGAN, AND MODALITY USED IN

EXPERIMENT.

Method Ref. Source Target Task Organ Modality

Open-set
DG

[166] Single Site Classification Chest X-ray

[167] Multiple Site Classification Chest X-ray

[168] Single Site Classification Chest X-ray

[169] Single Site Classification Chest X-ray

[170] Single Site Classification Chest X-ray

[171] Multiple Site Classification Breast Histology

Open-set domain generalization (OSDG) refers to DG
techniques that specialize in capturing and correcting the
concept shift in addition to the covariate shift (§II-B3).
Yang et al. [166] proposed a simple feature-based semantics
score function to consider both detecting label shift and
being tolerant to covariate shift as in-distribution. Maha-
jan et al. [167] investigated the theoretical relationship of
whether better OOD generalization leads to better privacy
for ML models in practice and showed that capturing stable
features from models represents superior open-set generaliza-
tion with robustness. Zheng et al. [168] proposed Open-Set
Single-Domain Generalization for Multiple Cross-Matching
(MCM) for the open-set lung cancer diagnosis. This work
delves into an open-set single-source DG problem where the
source domain only contains data with unique class names,
while the target domain contains multiple unseen class names.
Puli et al. [169], [170] and Gao et al. [171] deal with the
spurious correlation or variations underlying several confound-
ing variables in terms of causal perspective to circumvent the
open-set problem.

C. Other under-explored DGs
In this section, we introduce some under-explored DGs where
only preliminary research has been done in the field of MedIA.

Fig. 5. Problem-specific suggestion for strategies for integrating domain gen-
eralization into MedIA workflow. Diamond box indicates the start terminator,
angled boxes indicate the process, and round boxes indicate the decision.
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Unsupervised domain generalization refers to methods that
enable a model to learn useful, domain-invariant features
from unlabeled source data such that it can perform well on
unseen domains. Source-free domain generalization places
an extreme constraint on privacy-preserving models (§III-C2c)
where it assumes source data is inaccessible, but only the
pretrained source model is available. Zero-shot domain gen-
eralization is another extreme case of DG where only the
auxiliary information (e.g., meta-data) from the source domain
is available. A possible solution [130], [131], [132], [133]
(§III-C2b) to these extreme cases of DGs involves a pretrained
foundation model combined with zero-shot prompting tech-
niques, though these topics fall beyond the scope of this survey
due to the lack of literature in this topic.

V. FUTURE DIRECTIONS

Domain generalization for MedIA is a rapidly evolving field
with several promising directions for future research. In this
section, we outline some important areas that warrant further
exploration.

A. Source-limited Domain Generalization
Unlike the common focus on scenarios involving multiple
sources, there is a significant gap in research for methods
tailored to domain generalization under limited source (§IV).
For example, single-source domain generalization requires the
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TABLE XI
CRITICAL ANALYSIS OF DOMAIN GENERALIZATION METHODS

Level Method Specific Strengths Limitations

Data Image
Process. Intensity Normalization Uniformity across images; improved ML performance May reduce contrast; relies on similarity assumptions

Histogram Matching Adapts to reference histograms improving consistency Depends on reference choice; less suitable for multi-domain

Color Normalization Standardizes color for consistency and feature recognition Could alter diagnostic features; mostly for stain images

Surrogate Frequency-based Separates amplitude/phase for style/content manipulation Sensitive to noise; limited by domain applicability

Raw Signals Manages early-stage data manipulation; captures latent info Complexity/accessibility issues; limited applicability

Dictionary Learning Captures sparse representation and structural similarities Computationally intense; may not handle unique features

Augment Randomization Increases data diversity and simplicity Limited augmentation scope; may create unrealistic images

Adversarial Improves robustness through targeted examples Computationally intense; risks catastrophic forgetting

Generative Generates diverse and realistic data Complex to train; prone to modal-collapse

Problem-
specific Cross-modal Enhances unpaired data utilization Complex and relies on synthetic data quality

Stain Normalization Enhances histopathological analysis Limited applicability; risks of over-normalization

Feature Feature
Align. Feature Normalization Standardizes statistical distributions efficiently Depends on choice of domain-specific statistics

Dissimilarity-based Mitigates domain shift through direct measures Computationally complex and challenges in metric selection

Implicit
Disent. Information Theoretic Enhances interpretability and adapts to complex structures Difficult to estimate MI; depends on estimation quality

Contrastive Improves sample efficiency; robustness to domain shifts Depends on pair quality; risks representational collapse

Variational Models uncertainty; direct latent space regularization Balance between fidelity and disentanglement

Explicit
Disent.

Conditional
Representation Enhances contextual adaptation; targeted feature learning Complexity leading to potential overfitting on condition

Feature Regularization Robustness to variations; prevents over-reliance on features Sensitive to choice of hyperparameters

Others Feature Augmentation Incorporates domain knowledge within latent space Complex and can overfit to augmented features

Kernel-based Learning Incorporates domain knowledge efficiently Selection of kernel is critical; scalability issues

Model Learning
Strategy Meta-learning Enables rapid adaptation and efficient learning Faces complex optimization; overfitting to meta-tasks

Self-supervised
Learning Utilizes unlabeled data for enhanced features Dependent on pretext task design

Adversarial Learning Learns domain-invariant features and enhances robustness Vulnerable to adversarial attacks; computationally complex

Model
Frame-
work

Ensemble Learning Increases robustness and leverages model diversity High computational cost and implementation complexity

Distillation Highly efficient; preserves ID performance Dependent on choice of teacher; complex training process

Distributed Learning Preserves privacy and improves scalability Faces communication overhead and heterogeneity issues

Others Geometric Handles non-Euclidean data well High complexity; limited applicability

DRO Optimizes across worst-case scenarios for robustness Complex in defining uncertainty sets

Analysis Interpretable AI Enhances trust; model debugging Interpretability-complexity tradeoff

Causality Focuses on invariant features for robust generalization Complex model development and limited scalability

model to generalize well to unseen domains even when only
a single source domain is available for training. This scenario
often arises in medical imaging, where data collection can
be resource-intensive, and privacy concerns may limit access
to multiple sources. Future research should explore novel
methods that effectively address the challenges of source-
limited domain generalization, such as robustness to concept
shift in the presence of covariate shift.

B. Medical Foundation Model

Foundation models [172] refer to hyper-scale models that
has been trained on massive and diverse datasets. Arguably,
this new class of model is a step towards next-level artificial
intelligence that has state-of-the-art zero-shot generalizability

performances. However, development of foundation model for
MedIA is challenging as medical datasets are heterogeneous
and hard to collect in large scale. Despite these challenges,
research on medical foundation models is very active and
shows great potential [173]. Recently, Segment Anything
Model (SAM) [132], [131] has shown promising results for
various source-limited DG in segmentation tasks for MedIA.

C. Benchmark Datasets

Many DG methods for MedIA rely on custom datasets that
mix private and public datasets, treating each dataset as a
distinct domain. The reproducibility of these custom datasets
is extremely low because the processes for data splitting,
preprocessing, and annotation vary widely and are hard to
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duplicate. Therefore, there is a need to establish standardized
benchmark datasets that reflect the diversity and challenges
encountered in real-world medical imaging scenarios. These
benchmark datasets should cover various imaging modalities,
patient populations, and imaging protocols to facilitate the
fair and rigorous evaluation of domain generalization meth-
ods. Additionally, benchmark datasets for different settings
of domain generalization, i.e., multi-source, single-source,
cross-site, cross-sequence, cross-modality, covariate shift, and
concept shift, should be developed to enable comprehensive
evaluation and comparison of different techniques. Readers
are referred to the Supplementary and the interactive website
(https://milab.korea.ac.kr/dg-dataset) for a review of existing
DG benchmark datasets and a summary of public datasets.

D. Suggestions for Domain Generalization for MedIA

There exist a number of empirical evaluations of commonly
used domain generalization techniques suggesting appropri-
ate methods for specific tasks at hand. For example, Kore-
vaar et al. [174] evaluated methods on benchmark datasets,
whereas Zhang et al. [175] and Galappaththige et al. [130]
evaluated them on some custom cross-site datasets consisting
of publicly available datasets. While these benchmarks shed
light on the capabilities of certain techniques in domain
generalization, they do not offer a comprehensive guide for
problem-specific and task-specific strategies throughout the
MedIA workflow. To this end, we critically analyze different
DG methods (Table XI) and suggest strategies to incorporate
domain generalization into the model (Fig. 5).

VI. CONCLUSION

Domain generalization is a crucial capability for modern
medical image analysis, aimed at creating machine learning
models capable of handling a wide variety of data distributions
arising from variations in, for example, imaging protocols,
patient demographics, and equipment. This paper provides a
comprehensive review of domain generalization techniques,
extending beyond the methodological hierarchy of previous
surveys and considering the implications of domain generaliza-
tion on the entire MedIA workflow. Our focus includes every
stage of the decision-making process, from data acquisition to
pre-processing, prediction, and analysis.

We have also highlighted and discussed the current bench-
mark datasets, emphasizing the necessity to expand the spec-
trum of these resources. Moreover, we shed light on potential
directions for future research in this field. While domain gen-
eralization for MedIA is still a rapidly evolving field, it is clear
that it holds significant promise for improving patient care by
enhancing the robustness and reliability of MedIA models. As
we continue to address the challenges and capitalize on the
opportunities, we anticipate seeing substantial improvements
in the efficiency and accuracy of MedIA workflows, leading
to more personalized and effective patient treatments. This, in
turn, will help the healthcare sector move towards the broader
goal of precision medicine, providing each patient with care
that is uniquely tailored to their health profile.
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Supplementary Material
A. Benchmark Datasets
The field of domain generalization for MedIA relies primarily on customized datasets which are created by combining several
private and publicly available datasets. Although these datasets have greatly contributed to the field, there is a strong need to
expand the spectrum of benchmark datasets. In this section, we introduce three benchmark datasets for the domain generalization
task in MedIA: Camelyon17-WILDS [112], the M&Ms challenge dataset [176], and the MIDOG challenge dataset [177]. To
the best of our knowledge, these three are the only publicly open benchmark dataset for DG in MedIA. For a comprehensive
review of benchmark datasets for domain adaptation, refer to [10].

1) Existing benchmark datasets
The Camelyon17-WILDS [112] dataset is derived from the Camelyon17 Challenge, which focuses on detecting metastasis in
histopathological images of lymph nodes. This dataset, however, has been adapted specifically for domain generalization. It
includes pathology images from two separate institutions and contains a total of 100 whole-slide images. The main challenge
in this dataset comes from the inter-institutional variations, including differences in staining procedures and scanners used,
which can significantly affect the performance of models. The M&Ms challenge dataset [176] is a multi-center, multi-vendor,
and multi-disease cardiac magnetic resonance (CMR) dataset. The M&Ms challenge focuses on automatically segmenting the
left ventricle, right ventricle, and myocardium in cardiac MR images, which are critical for diagnosing and managing various
cardiovascular diseases. The dataset contains images from five different sites and five scanners, with patients suffering from five
distinct pathologies. This heterogeneity poses a challenge for domain generalization, as models need to overcome variations in
imaging protocols, equipment, and patient populations. The MIDOG challenge dataset [177] is focused on detecting mitotic
figures in histopathological images, which is an important task for cancer diagnosis and grading. This dataset comprises images
from five different hospitals, and the images have been digitized using different scanners and have undergone various staining
procedures. These inter-hospital variations make it a challenging dataset for domain generalization.

2) Emerging benchmark dataset
One promising dataset for this purpose is the Brain Tumor Segmentation (BRATS) Challenge dataset. The BRATS dataset has
been a valuable resource for neuroimaging researchers since its inception. Since the 2022 challenge, the dataset has included
additional cohorts from pediatric [178] and African [179] populations. These additions significantly increase the diversity of the
dataset, making it an ideal resource for domain generalization research. Including pediatric and African cohorts helps address
two key areas of need in the field. First, there is a growing acknowledgment of the need to ensure that machine learning models
in healthcare are trained on diverse data representing various age groups. The pediatric cohort in the BRATS dataset provides
an opportunity to test and improve the performance of models in analyzing medical images from younger patients. Second,
the African cohort provides much-needed diversity in terms of ethnicity, helping to mitigate model biases and improve the
generalizability of machine learning models across different ethnic groups. Another emerging benchmark dataset for domain
generalization is the Retinal OCT Fluid Challenge (RETOUCH) [180], a cross-site dataset of 70 OCT volumes with 3 sites.

B. Publicly Open Datasets

TABLE XII: List of datasets used by reviewed literature.

Task Organ Modality Abbreviation Ref.

Classification Brain MRI ADNI1 [100], [159]

iSTAGING2 [105], [159]

EEG MAYO3 [154]

FNUSA4 [154]

Skin Dermatology ISIC5 [85], [142], [141], [138]

HAM100006 [85], [123]

Fitzpatrick17K7 [29]

Dermofit8 [85]
Continued on next page

1Alzheimer’s Disease Neuroimaging Initiative, https://adni.loni.usc.edu/
2Imaging-based coordinate SysTem for AGing and NeurodeGenerative diseases consortium, https://doi.org/10.1093/braincomms/fcac117
3Multicenter intracranial EEG dataset for classification of graphoelements and artifactual signals, https://doi.org/10.6084/m9.figshare.c.4681208
4Multicenter sEEG dataset, https://www.kaggle.com/datasets/nejedlypetr/multicenter-intracranial-eeg-dataset
5International Skin Imaging Collaboration, https://api.isic-archive.com/collections/
6The Human Against Machine with 10000 training images, https://doi.org/10.7910/DVN/DBW86T
7Fitzpatrick17K, https://github.com/mattgroh/fitzpatrick17k
8DERMOFIT dataset, https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library

https://adni.loni.usc.edu/
https://doi.org/10.1093/braincomms/fcac117
https://doi.org/10.6084/m9.figshare.c.4681208
https://www.kaggle.com/datasets/nejedlypetr/multicenter-intracranial-eeg-dataset
https://api.isic-archive.com/collections/
https://doi.org/10.7910/DVN/DBW86T
https://github.com/mattgroh/fitzpatrick17k
https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library
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Task Organ Modality Abbreviation Ref.

Classification Skin Dermatology PH29 [85]

Derm7pt10 [85]

Histology openLCH11 [100]

Colon Histology Kather1612 [43], [44]

Kather1813 [43], [44], [45]

Kather1914 [45]

CRC-TP15 [44]

AIDA-LNCO16 [83]

Blood Cell Histology BCISC17 [89]

LISC18 [89]

BCCD19 [89]

Chest X-ray MIMIC-CXR20 [121], [169], [170], [30]

CXR821 [158], [30]

ChexPert22 [121], [167], [169], [170], [158], [30]

RSNA-PD23 [158]

ChestX-ray1424 [121]

PadChest25 [30]

Breast Histology CAMELYON1726 [44], [51], [83], [93], [121], [135], [171], [157], [126]

X-ray DDSM27 [94], [95]

Knee MRI MOST28 [153]

Lung CT LIDC-IDRI29 [152]

Retinal OCT A2ASDOCT30 [152]

Segmentation Brain MRI WMH31 [31]

ATLAS32 [22]

ABIDE33 [23], [119]

ISBI-MS34 [127]

BraTS35 [47], [81], [138], [137]

CC35936 [36]
Continued on next page

9Ph2 Database, https://www.fc.up.pt/addi/ph2%20database.html
107-point criteria evaluation Database, https://derm.cs.sfu.ca/
11Live Cell Histology, https://doi.org/10.17867/10000161
12Kather16, https://doi.org/10.5281/zenodo.53169
13Kather18, https://doi.org/10.5281/zenodo.1214456
14Kather19, https://doi.org/10.5281/zenodo.2530835
15ColoRectal Cancer for Tissue Phenotyping, https://warwick.ac.uk/fac/cross fac/tia/data/
16Regional lymph node metastasis in colon adenocarcinoma dataset, https://doi.org/10.23698/aida/lnco
17Blood Cell Images for Segmentation and Classification dataset, https://github.com/fpklipic/BCISC
18Leukocyte Images for Segmentation and Classification, https://users.cecs.anu.edu.au/∼{}hrezatofighi/Data/Leukocyte%20Data.htm
19Blood Cell Count and Detection, https://www.kaggle.com/datasets/paultimothymooney/blood-cells
20Medical Information Mart for Intensive Care-Chest X-Ray, https://doi.org/10.13026/s5dg-6s42
21ChestX-ray8, https://nihcc.app.box.com/v/ChestXray-NIHCC
22Chest eXpert (A Large Chest Radiograph Dataset), https://stanfordmlgroup.github.io/competitions/chexpert/
23RSNA Pneumonia Detection Challenge, https://www.rsna.org/rsnai/ai-image-challenge/RSNA-Pneumonia-Detection-Challenge-2018
24NIH Chest X-rays, https://www.kaggle.com/datasets/nih-chest-xrays/data
25PadChest: A Large Chest X-ray Image Dataset with Multi-Label Annotated Reports, https://bimcv.cipf.es/bimcv-projects/padchest/
26CAMELYON, https://camelyon17.grand-challenge.org/
27CBIS-DDSM: Breast Cancer Image Dataset, https://wiki.cancerimagingarchive.net/x/lZNXAQ
28Multicenter Osteoarthritis Study, https://agingresearchbiobank.nia.nih.gov/studies/most/
29The Lung Image Database Consortium and Image Database Resource Initiative, https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
30AREDS 2 Ancillary Spectral Domain Optical Coherence Tomography Study, https://clinicaltrials.gov/study/NCT00734487
31MICCAI White Matter Hyperintensity Challenge, https://doi.org/10.34894/AECRSD
32Anatomical Tracings of Lesions After Stroke, https://doi.org/10.3886/ICPSR36684
33Autism Brain Imaging Data Exchange, https://fcon 1000.projects.nitrc.org/indi/abide/
34ISBI Longitudinal Multiple Sclerosis Lesion, https://iacl.ece.jhu.edu/index.php/MSChallenge
35Brain Tumor Segmentation Challenge, https://www.med.upenn.edu/cbica/brats/
36Calgary-Campinas 359, https://www.ccdataset.com/download

https://www.fc.up.pt/addi/ph2%20database.html
https://derm.cs.sfu.ca/
https://doi.org/10.17867/10000161
https://doi.org/10.5281/zenodo.53169
https://doi.org/10.5281/zenodo.1214456
https://doi.org/10.5281/zenodo.2530835
https://warwick.ac.uk/fac/cross_fac/tia/data/
https://doi.org/10.23698/aida/lnco
https://github.com/fpklipic/BCISC
https://users.cecs.anu.edu.au/~{}hrezatofighi/Data/Leukocyte%20Data.htm
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://doi.org/10.13026/s5dg-6s42
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://stanfordmlgroup.github.io/competitions/chexpert/
https://www.rsna.org/rsnai/ai-image-challenge/RSNA-Pneumonia-Detection-Challenge-2018
https://www.kaggle.com/datasets/nih-chest-xrays/data
https://bimcv.cipf.es/bimcv-projects/padchest/
https://camelyon17.grand-challenge.org/
https://wiki.cancerimagingarchive.net/x/lZNXAQ
https://agingresearchbiobank.nia.nih.gov/studies/most/
https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
https://clinicaltrials.gov/study/NCT00734487
https://doi.org/10.34894/AECRSD
https://doi.org/10.3886/ICPSR36684
https://fcon_1000.projects.nitrc.org/indi/abide/
https://iacl.ece.jhu.edu/index.php/MSChallenge
https://www.med.upenn.edu/cbica/brats/
https://www.ccdataset.com/download
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Task Organ Modality Abbreviation Ref.

Segmentation Brain MRI MSSEG37 [127]

fMRI, MRI HCP38 [23]

Retinal Fundus Drishti-GS39 [39], [84], [98], [125], [91], [30], [41], [110]

STARE40 [82], [84], [98], [118]

IDRiD41 [84], [96], [97]

KDR42 [84], [96], [97], [35], [130]

RIM-ONE-r343 [26], [39], [84], [98], [125], [134], [91], [30], [41], [110]

DRHAGIS44 [82]

REFUGE45 [26], [32], [39], [84], [98], [125], [136], [134], [91], [30], [41], [110]

CHASE46 [82], [84], [98]

E-Ophtha47 [84]

ARIA48 [82], [118]

IOSTAR49 [82], [35]

HRF50 [84], [98]

LES-AV51 [35]

PRIME-FP2052 [118]

RIGA+53 [122]

APTOS54 [130]

MESSIDOR55 [130]

OCT OCTA-50056 [34], [84], [118]

ROSE57 [34], [84], [118]

FA RECOVERY-FA1958 [118]

Prostate MRI NCI-ISBI59 [23], [39], [43], [48], [102], [103], [116], [125], [140], [134], [156], [160], [132]

I2CVB60 [39], [43], [48], [102], [103], [116], [125], [156], [160], [132]

PROMISE61 [23], [39], [48], [102], [103], [116], [125], [134], [156], [160], [132]

Prostate, Spinal MRI SCGM62 [43], [85], [101], [117]

Spinal CT CSI63 [114]
Continued on next page

37MICCAI2016 MS Challenge Dataset, https://portal.fli-iam.irisa.fr/msseg-challenge/
38Human Connectome Project, https://www.humanconnectome.org/
39Retinal image dataset for optic disc and cup segmentation, http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
40Structured Analysis of the Retina dataset, https://cecas.clemson.edu/∼{}ahoover/stare/
41Indian Diabetic Retinopathy Image Dataset, https://dx.doi.org/10.21227/H25W98
42Kaggle Diabetic Retinopathy dataset, https://kaggle.com/competitions/diabetic-retinopathy-detection
43RIM-ONE Release 3, https://medimrg.webs.ull.es/
44DR HAGIS database, https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/
45Retinal Fundus Glaucoma Challenge, https://refuge.grand-challenge.org/
46Child Heart and Health Study in England dataset, https://researchdata.kingston.ac.uk/id/eprint/96
47e-ophtha database, https://www.adcis.net/en/third-party/e-ophtha/
48Automated Retinal Image Analysis dataset, https://www.researchgate.net/post/How can I find the ARIA Automatic Retinal Image Analysis Dataset/

5964f84aed99e15c3140b3e6/citation/download
49IOSTAR vessel segmentation dataset, https://www.retinacheck.org/download-iostar-retinal-vessel-segmentation-dataset
50High-Resolution Fundus Image Database, https://www5.cs.fau.de/research/data/fundus-images/
51LES-AV dataset, https://doi.org/10.6084/m9.figshare.11857698
52PRIME-FP20: Ultra-widefield Fundus Photography Vessel Segmentation Dataset, https://doi.org/10.21227/ctgj-1367
53RIGA+ Dataset for Unsupervised Domain Adaptation in Medical Image Segmentation, https://doi.org/10.5281/zenodo.6325549
54APTOS 2019 Blindness Detection, https://www.kaggle.com/c/aptos2019-blindness-detection
55Feedback on a Publicly Distributed Image Database: The Messidor Database, https://www.adcis.net/en/third-party/messidor/
56A Retinal Dataset for Optical Coherence Tomography Angiography, http://ieee-dataport.org/1951
57Retinal OCTA SEgmentation dataset, https://imed.nimte.ac.cn/dataofrose.html
58RECOVERY-FA19: Ultra-widefield Fluorescein Angiography Vessel Detection Dataset, https://doi.org/10.21227/m9yw-xs04
59NCI-ISBI 2013 Challenge, http://dx.doi.org/10.7937/K9/TCIA.2015.zF0vlOPv
60Initiative for Collaborative Computer Vision Benchmarking, http://i2cvb.github.io/
61Prostate MR Image Segmentation 2012, https://promise12.grand-challenge.org/
62Spinal Cord Grey Matter Segmentation Challenge, http://cmictig.cs.ucl.ac.uk/niftyweb/challenge/
63A multi-center milestone study of clinical vertebral CT segmentation, http://spineweb.digitalimaginggroup.ca/

https://portal.fli-iam.irisa.fr/msseg-challenge/
https://www.humanconnectome.org/
http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
https://cecas.clemson.edu/~{}ahoover/stare/
https://dx.doi.org/10.21227/H25W98
https://kaggle.com/competitions/diabetic-retinopathy-detection
https://medimrg.webs.ull.es/
https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/
https://refuge.grand-challenge.org/
https://researchdata.kingston.ac.uk/id/eprint/96
https://www.adcis.net/en/third-party/e-ophtha/
https://www.researchgate.net/post/How_can_I_find_the_ARIA_Automatic_Retinal_Image_Analysis_Dataset/5964f84aed99e15c3140b3e6/citation/download
https://www.researchgate.net/post/How_can_I_find_the_ARIA_Automatic_Retinal_Image_Analysis_Dataset/5964f84aed99e15c3140b3e6/citation/download
https://www.retinacheck.org/download-iostar-retinal-vessel-segmentation-dataset
https://www5.cs.fau.de/research/data/fundus-images/
https://doi.org/10.6084/m9.figshare.11857698
https://doi.org/10.21227/ctgj-1367
https://doi.org/10.5281/zenodo.6325549
https://www.kaggle.com/c/aptos2019-blindness-detection
https://www.adcis.net/en/third-party/messidor/
http://ieee-dataport.org/1951
https://imed.nimte.ac.cn/dataofrose.html
https://doi.org/10.21227/m9yw-xs04
http://dx.doi.org/10.7937/K9/TCIA.2015.zF0vlOPv
http://i2cvb.github.io/
https://promise12.grand-challenge.org/
http://cmictig.cs.ucl.ac.uk/niftyweb/challenge/
http://spineweb.digitalimaginggroup.ca/
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xVertSeg64 [114]

Segmentation Spinal CT VerSe65 [114]

Cardiac MRI EMIDEC66 [156]

RVSC67 [23]

ACDC68 [23], [102], [124], [156]

M&Ms69 [24], [40], [99], [102], [117], [140]

MS-CMRSeg70 [48], [49], [102], [120], [156], [160]

CT, MRI MM-WHS71 [81], [138], [156]

Carotid Ultrasound SPLab72 [88]

Atrial MRI cDEMRIS73 [25]

ASC74 [25]

Abdominal CT SABSCT75 [48], [49], [81], [120], [140], [160], [133]

LiTS76 [104]

CT, MRI CHAOS77 [47], [48], [49], [81], [120], [160]

MSD78 [133]

Breast Ultrasound BUID79 [138]

Lung X-ray JSRT80 [138]

Surgical Scene Video Frames EndoVis-Robot81 [139], [133]

Gastrointestinal Endoscopy KvaSir82 [138]

Detection Brain EEG CHB-MIT83 [106]

TUSZ84 [106]

Chest X-ray COVID-QU-ex85 [181]

BIMCV86 [166], [168]

Hannover-CV87 [166]

COVID-CT88 [166]

ActualMed89 [166]

RSNA-BA90 [166]

VinDr91 [138]
Continued on next page

64, https://doi.org/10.17605/OSF.IO/NQJYW
65VerSe: Large Scale Vertebrae Segmentation Challenge, https://github.com/anjany/verse
66Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI, https://emidec.com/
67Right Ventricle Segmentation Challenge, https://rvsc.projets.litislab.fr/
68Automated Cardiac Diagnosis Challenge, https://www.creatis.insa-lyon.fr/Challenge/acdc/
69Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge 2020, https://www.ub.edu/mnms/
70Multi-sequence Cardiac MR Segmentation Challenge, https://zmiclab.github.io/zxh/0/mscmrseg19/
71Multi-Modality Whole Heart Segmentation, https://zmiclab.github.io/zxh/0/mmwhs/
72Signal processing laboratory, Brno University of Technology, http://splab.cz/en/research/zpracovani-medicinskych-signalu/databaze/artery
73Cardiac Delayed Enhancement Segmentation Challenge, https://figshare.com/articles/dataset/4214532
74Atrial Segmentation Challenge, https://www.cardiacatlas.org/atriaseg2018-challenge/
75MICCAI 2015 Multi-Atlas Abdomen Labeling Challenge, https://doi.org/10.7303/syn3193805
76LiTS - Liver Tumor Segmentation Challenge, http://www.lits-challenge.com/
77Combined (CT-MR) Healthy Abdominal Organ Segmentation challenge, https://chaos.grand-challenge.org/
78The Medical Segmentation Decathlon, http://medicaldecathlon.com/
79Breast Ultrasound Images Dataset, https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
80Japanese Society of Radiological Technology, http://db.jsrt.or.jp/eng.php
81Robotic Scene Segmentation Sub-Challenge, https://endovissub2018-roboticscenesegmentation.grand-challenge.org/
82A Multi-Class Image-Dataset for Computer Aided Gastrointestinal Disease Detection, https://datasets.simula.no/kvasir/
83Children’s Hospital Boston (CHB)-MIT dataset, https://doi.org/10.13026/C2K01R
84Temple University Hospital (TUH) EEG Seizure Corpus dataset, https://isip.piconepress.com/projects/tuh eeg/html/downloads.shtml
85COVID-QU-ex, https://doi.org/10.34740/kaggle/dsv/3122958
86A large annotated dataset of RX and CT images of COVID19 patients, https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
87COVID-19 Image Repository, https://doi.org/10.25835/0090041
88A CT Scan Dataset about COVID-19, https://github.com/UCSD-AI4H/COVID-CT
89Actualmed COVID-19 Chest X-ray Dataset Initiative, https://github.com/agchung/Actualmed-COVID-chestxray-dataset
90RSNA Pediatric Bone Age Challenge (2017), https://www.rsna.org/rsnai/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
91VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations, https://vindr.ai/datasets/cxr

https://doi.org/10.17605/OSF.IO/NQJYW
https://github.com/anjany/verse
https://emidec.com/
https://rvsc.projets.litislab.fr/
https://www.creatis.insa-lyon.fr/Challenge/acdc/
https://www.ub.edu/mnms/
https://zmiclab.github.io/zxh/0/mscmrseg19/
https://zmiclab.github.io/zxh/0/mmwhs/
http://splab.cz/en/research/zpracovani-medicinskych-signalu/databaze/artery
https://figshare.com/articles/dataset/4214532
https://www.cardiacatlas.org/atriaseg2018-challenge/
https://doi.org/10.7303/syn3193805
http://www.lits-challenge.com/
https://chaos.grand-challenge.org/
http://medicaldecathlon.com/
https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset
http://db.jsrt.or.jp/eng.php
https://endovissub2018-roboticscenesegmentation.grand-challenge.org/
https://datasets.simula.no/kvasir/
https://doi.org/10.13026/C2K01R
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://doi.org/10.34740/kaggle/dsv/3122958
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://doi.org/10.25835/0090041
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://www.rsna.org/rsnai/ai-image-challenge/rsna-pediatric-bone-age-challenge-2017
https://vindr.ai/datasets/cxr
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Breast Histology TUPAC92 [50], [129]

Detection Breast X-ray INbreast93 [90]

Tissue Histology MIDOG94 [27], [129]

MITOS-ATYPIA-1495 [129]
CCMCT96 [129]

Restoration Retinal Fundus DRIVE97 [33], [34], [82], [84], [98], [138], [35], [118]

Kag-Cat98 [33]

Localization Surgical Scene Video Frames SurgicalActions16099 [128]

Cataract-101100 [128]

Reconstruction Blood Histology MalariaScreener101 [92]

Brain MRI BrainWeb102 [38]

End of table

92Tumor Proliferation Assessment Challenge, https://tupac.grand-challenge.org
93INbreast: toward a full-field digital mammographic database, https://www.kaggle.com/datasets/ramanathansp20/inbreast-dataset
94The Mitosis Domain Generalization Challenge, https://imig.science/midog/
95MITOS-ATYPIA 2014 challenge of ICPR, https://mitos-atypia-14.grand-challenge.org/Dataset/
96A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor, https://github.com/DeepMicroscopy/

MITOS WSI CCMCT
97Digital Retinal Images for Vessel Extraction, https://drive.grand-challenge.org/
98Kaggle cataract dataset, https://www.kaggle.com/datasets/jr2ngb/cataractdataset
99The ITEC SurgicalActions160 Dataset, https://ftp.itec.aau.at/datasets/SurgicalActions160/
100Cataract-101 Video Dataset, https://ftp.itec.aau.at/datasets/ovid/cat-101/
101Malaria Screener, https://lhncbc.nlm.nih.gov/LHC-downloads/downloads.html#malaria-datasets
102BrainWeb, https://brainweb.bic.mni.mcgill.ca/brainweb/

https://tupac.grand-challenge.org
https://www.kaggle.com/datasets/ramanathansp20/inbreast-dataset
https://imig.science/midog/
https://mitos-atypia-14.grand-challenge.org/Dataset/
https://github.com/DeepMicroscopy/MITOS_WSI_CCMCT
https://github.com/DeepMicroscopy/MITOS_WSI_CCMCT
https://drive.grand-challenge.org/
https://www.kaggle.com/datasets/jr2ngb/cataractdataset
https://ftp.itec.aau.at/datasets/SurgicalActions160/
https://ftp.itec.aau.at/datasets/ovid/cat-101/
https://lhncbc.nlm.nih.gov/LHC-downloads/downloads.html#malaria-datasets
https://brainweb.bic.mni.mcgill.ca/brainweb/
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