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Reconstructing
Time-Dependent Dynamics
This paper provides an in-depth review of the framework of analysis applied to

biomedical data in the context of the challenges posed by the time dependence

of living systems.

By Philip Clemson, Gemma Lancaster, and Aneta Stefanovska

ABSTRACT | The usefulness of the information contained in

biomedical data relies heavily on the reliability and accuracy

of the methods used for its extraction. The conventional as-

sumptions of stationarity and autonomicity break down in the

case of living systems because they are thermodynamically

open, and thus constantly interacting with their environ-

ments. This leads to an inherent time-variability and results

in highly nonlinear, time-dependent dynamics. The aim of sig-

nal analysis usually is to gain insight into the behavior of the

system from which the signal originated. Here, a range of sig-

nal analysis methods is presented and applied to extract in-

formation about time-varying oscillatory modes and their

interactions. Methods are discussed for the characterization

of signals and their underlying nonautonomous dynamics, in-

cluding time-frequency analysis, decomposition, coherence

analysis and dynamical Bayesian inference to study interac-

tions and coupling functions. They are illustrated by being ap-

plied to cardiovascular and EEG data. The recent introduction

of chronotaxic systems provides a theoretical framework

within which dynamical systems can have amplitudes and fre-

quencies which are time-varying, yet remain stable, matching

well the characteristics of life. We demonstrate that, when

applied in the context of chronotaxic systems, the methods

presented facilitate the accurate extraction of the system dy-

namics over many scales of time and space.
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diovascular system; coupling function; dynamical Bayesian

inference; phase coherence; time-dependent dynamics; time-

frequency analysis; wavelet bispectrum

I . INTRODUCTION

Continuous technological advances allow the acquisition
of an increasing number of biomedical signal types. These

signals may arise from simple mechanical effects, such as

the movement of the thorax during breathing, electrical ef-

fects, such as the synchronization of firing neurons in the

brain, as measured during an electroencephalogram (EEG),

optical effects, as utilized in near infrared spectroscopy

(NIRS) and laser Doppler flowmetry (LDF), or from any

other measurable biological process. Improvements in the
temporal resolution of these techniques allows accurate re-

cording of the time-dependent dynamics inherent to all

biomedical signals. Although systems on a microscopic

scale may initially appear to be very complicated, there are

cases when simple macroscopic behavior may still arise

from these systems [1], [2]. Decomposition of these macro-

scopic effects recorded by experimental signals can now be

considered within already well-established theoretical
frameworks, based on dynamical systems which are nonlin-

ear, nonautonomous, and far from equilibrium, as has re-

peatedly been shown to be the case in living systems.

Information obtained from the analysis of these signals

has led to a greater understanding of fundamental physiol-

ogy and is also contributing to important advances in med-

icine. More specifically, biological oscillations exhibiting a

wide range of characteristic frequencies have been ob-
served in biomedical data [3], spanning from very high

frequencies, e.g., in EEG data [4], to very low frequencies,

e.g., in cerebral hemodynamics [5], [6], microvascular

blood flow [7], intracellular calcium levels [8], and indi-

vidual mitochondria [9].

Although observed in many living systems [10], the im-

portance of biological oscillators, and their interactions, is
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often overlooked, despite the fact that the extraction of
their dynamics at different time scales could bring new

insights and understanding of the function of living sys-

tems. In fact, these oscillations have been shown to be of

great importance in many systems, such as cellular signal-

ing [11], [12], cellular energy metabolism [13], and neural

networks [14].

The coupled nonlinear oscillators approach is

marked by two major milestones: the introduction of
the entrainment of collective oscillators by Winfree [15]

and its analysis using the phase dynamics approach of

Kuramoto [16], [17]. The identification of the underly-

ing mechanisms of some of these oscillations allows

their use in the characterization of different physiologi-

cal states. Observing changes in these oscillations and

their interactions then yields valuable information about

the underlying system, for example during epileptic sei-
zures [18], or in skin microvascular blood flow, where

changes in oscillatory behavior have been demonstrated

in pathological states with impaired microvasculature,

such as hypertension [19], diabetes [20], and skin mela-

noma [21]. Not only do these changes in the dynamics

of biological oscillators provide important physiological

insights, they can also be directly utilized in medicine.

Potential applications include the identification of the
depth of anesthesia [22], [23], monitoring of intracranial

pressure [24], and detection of impaired cerebrovascular

reactivity after acute traumatic brain injury [25].

Frequency analysis of biomedical signals first became

feasible with the widespread availability of computational

resources combined with fast Fourier transforms (FFTs).

In this way, biological oscillations were observed on

many scales. However, while very useful in the first in-
stance, assumptions made in the application of frequency

domain analysis techniques are often not applicable

when considering signals arising from living systems.

The Fourier transform assumes stationarity of the signal,

i.e., that the frequency content does not change over

time. In living systems this is never the case due to the

openness of the system, resulting in time-varying ampli-

tudes and frequencies of oscillations. The introduction of
time-frequency analysis techniques provided an optimal

solution to this problem, allowing full characterization of

the underlying dynamics of an oscillatory biological sys-

tem in time, with no prior assumptions. Now established

as almost mandatory in biomedical signal analysis [26],

time-frequency analysis methods are continually being

developed for the investigation of biological systems in

terms of their oscillatory components and the nature of
their interactions.

Analysis based on time-frequency methods is often

like peeling an onion. Fig. 1 shows how different classes

of methods can be used at each level of analysis to bring

new information. The initial time-frequency representa-

tion of a signal is ideal for decoding the complexity

caused by combinations of nonstationary oscillations at

different frequencies. These can be extracted by decom-
position, which form the next class of methods. After the

individual components of the signal have been separated

they can be characterized by another set of methods,

giving general information about the underlying system

(e.g., the frequency range of the components, whether

the components exchange information or are coherent).

Another set of methods allow the direct physical interpre-

tation of a modeled system from the data observed, such
as whether its oscillations and interactions are stable or

unstable.

Depending on the nature of the signal, not all of

these levels of analysis may be available. For example, if

the system has dominant stochastic properties, with a ho-

mogeneous amplitude distribution in the time-frequency

representation, then it cannot be decomposed into sepa-

rate oscillatory components, excluding most of the
methods that would be used for the characterisation or

interpretation as well. Similarly, if the system is strongly

deterministic and its components could be extracted

from a signal, but the signal was perhaps too short rela-

tive to the inherent time scales, then there is no way any

meaningful interpretation can be made either.

Fig. 1. An illustration showing the challenges related to each

level of analysis and the corresponding methods used to tackle

them. For biomedical time series, the challenge of the signal’s

complexity must first be overcome with time-frequency analysis.

This allows the identification and extraction of the phase and

amplitude of individual oscillatory components using

decomposition methods. Information from these modes can be

used to characterise the dynamics of the modes and detect

how they interact with each other. Finally, the properties of an

explicit physical model of the dynamics provide an interpretation

of the system that generated the signal.
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Fig. 2 provides an overview of the methods discussed

in this paper within the context of this framework. It can

be seen that while some methods can be applied to the

time series directly, others rely on either one or two addi-

tional steps. However, even for those that do not depend

on prior analysis, there still exists a great deal of overlap

between the information provided by each method. For

example, if the initial time-frequency analysis shows only
random noise fluctuations then the corresponding power

spectrum should have a smooth continuous distribution.

Similarly, the characterization of the dynamics and inter-

actions should match the information from the methods

used to determine the actual functional relations (such as

the direction of coupling between two modes).

II . RELATION TO DYNAMICAL
SYSTEMS THEORY

Living systems require special treatment when their dy-

namics is analyzed. This comes from the features dis-

cussed in the following sections.

A. Nonlinearity
If one is given all of the information about a linear

system at one point in time it is trivial to find its state at

any other point in time, thus making analytical solutions

possible. Essentially, this means that in a linear model it

is possible to understand all of the properties of the sys-

tem without actually observing its dynamics. In contrast,

nonlinear systems such as living systems cannot be ana-

lyzed in this way. While some of their properties can still

be derived analytically, it is not possible to know what
trajectory a nonlinear system will take without the aid of

computer simulations or by observing the dynamics of

real systems. It is also worth noting that this is not a

question of the complexity of the system; a linear system

can be incredibly complex or a nonlinear system can be

very simple, but these fundamental rules still apply to

their analysis.

The effects of nonlinearity can be quite profound.
Not only does it cause mathematical headaches, but it re-

sults in phenomena such as hysteresis. This describes the
effect where the trajectory that a system takes from one

state to another is different from the trajectory it takes

in the reverse direction between the same two states,

making the arrow of time important in the analysis of

nonlinear systems. Nonlinearity also causes the effect of

harmonics which are modes that can be detected when
nonlinear oscillations are analyzed using methods based

on linear systems.

B. Openness
The properties described above can in fact be

thought of as manifestations of a single feature of living

systems: the fact that they are open and exchange en-

ergy and matter with their environment. The main theo-
ries of dynamical systems typically assume that the

system is closed, meaning that it is autonomous and

completely described by its state in space. In contrast,

living systems are open and non-autonomous, which

means they are described by both their state in space

and time. Consequently, the inclusion of time-dependent

variables is vitally important in the analysis of living

systems.
Note that the statistical properties of closed systems

can still vary with time and the dynamics of such systems

is said to be nonstationary. Complex nonstationary dynam-

ics in closed systems is usually modelled by chaotic be-

havior, where small perturbations in a system’s trajectory

grow exponentially over time [27]. Complex dynamics

that do not conform to the chaotic approach are often in-

stead modelled by stochastic systems, where the nonsta-
tionarity arises from the influence of external random

variables. Both of these approaches still fit into the frame-

work of autonomous systems and as such time-dependent

variables are traditionally not included in the analysis.

However, due to the fact that living systems are not only

nonstationary but nonautonomous, neither of these ap-

proaches can be applied [28].

C. Chronotaxic Systems
Recently, a new class of systems has been developed

which more closely captures the properties of living sys-

tems. The new model follows from the theory of self-

sustained limit cycle oscillators, which have been used

to describe oscillations with stable amplitude dynamics

[29]. Named Chronotaxic systems, they now add to this

Fig. 2. A workflow chart of the methods discussed in this

paper, organized into the levels of analysis illustrated in Fig. 1.

Some methods are able to extract information directly from

the original time series data. However, the methods

further down the chart which are used to characterise or

interpret the underlying system often depend on the outcome

of time-frequency analysis and decomposition.
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theory by combining it with the theory of nonautono-
mous systems [30] to provide a mechanism for stable os-

cillations with time-varying frequencies [31], [32]. A

new framework of analysis has since been developed to

detect such chronotaxic behavior [33], [34].

To demonstrate the analytical framework discussed in

this paper and its application to signals from living sys-

tems the following time series from a chronotaxic phase

oscillator system are used:

xðtÞ¼cosð�x;1ðtÞÞþcosð�x;2ðtÞÞþcosð�x;3ðtÞÞþ�1ðtÞ (1)

where �x;i are the phases of three chronotaxic modes

and �1ðtÞ is a 1/f noise signal. In addition, a second time

series pðtÞ containing the external modes which drive

the x modes is defined as

pðtÞ¼cosð�p;1ðtÞÞþcosð�p;2ðtÞÞþcosð�p;3ðtÞÞþ�2ðtÞ (2)

where �p;i are the phases of the modes driving the sys-

tem and �2ðtÞ is a separate 1/f noise signal. The chrono-

taxic modes were generated using the equations

_�p ¼ !0ðtÞ
_�x ¼ "!0ðtÞ sinð�x � �pÞ þ ��ðtÞ

�
(3)

where " is the coupling strength from the external vari-

able p to the observed variable x. The function �ðtÞ is

white Gaussian noise with noise strength � ¼ 0:2 and

standard deviation � ¼ ffiffiffiffiffi
2E

p
, where h�ðtÞi ¼ 0,

h�ðtÞ�ð�Þi ¼ �ðt� �ÞE. The frequency of �p is given as

!0ðtÞ ¼ !1 1þ A=!1 sinð!2tÞ½ �: (4)

The modes were given the parameters [!1 ¼ 2�, !2 ¼
0:016�, A ¼ 1] for mode 1, [!1 ¼ 0:3�, !2 ¼ 0:005�,
A ¼ 0:15] for mode 2 and [!1 ¼ 0:05�, !2 ¼ 0:001�,
A ¼ 0:025] for mode 3. In each case the mode was made

chronotaxic by setting the coupling strength j"j ¼ 1:5.

III . TIME-FREQUENCY ANALYSIS

Complexity is the first challenge that is encountered
when dealing with biomedical signals. Not only do these

signals often comprise of a mixture of oscillations at dif-

ferent frequencies, but these oscillations each have their

own time-dependent dynamics. In the time domain,

these oscillations cannot be easily separated. We must

therefore transform the signal to the time-frequency
domain.

A. Continuous Transforms
The Short-time Fourier transform (STFT) (also

known as the windowed Fourier transform), was devel-

oped as a solution to the shortcomings of the Fourier

transform when dealing with nonstationary signals [35].

While the Fourier transform provides a representation of

a signal in the frequency domain, the STFT transforms

the data to the time-frequency domain.

The STFT is computed by calculating the Fourier
transform of a sliding window which moves over the

signal. The Fourier spectrum of the window is as-

signed to the central point. This process is defined

mathematically as

STFTð~!; tÞ ¼
ZL=2

�L=2

gðu� tÞfðuÞe�2�i~!u
l du (5)

where fðuÞ is a signal of length L and gðuÞ is a rectan-

gular function of length l that is zero outside u,
�l=2 � u � l=2. The variable ~! is directly related to

the frequency ! by ! ¼ ~!=l�t, while t is the time.

One immediate problem with this form of the STFT
is time-localization. By using a rectangular window

function this means that data at the edges of the win-

dow carries the same weight as the data at the centre.

Ideally only the data at the centre of the window

would contribute to the Fourier transform. However, in

Fourier transforms the frequency resolution is propor-

tional to the length of the data. Therefore, reducing

the window size to improve time-localization also re-
duces the frequency resolution and makes it more diffi-

cult to separate oscillations of different frequencies in

the time-frequency domain. This limitation comes from

the uncertainty principle: one cannot determine the ex-

act frequency of an oscillation at an exact time. The

window size also determines the lowest possible fre-

quency that can be detected, so that the amplitude of

oscillations that have frequencies below this value are
merged together into the same Fourier coefficient at

! ¼ 0. A quick fix for this problem is to use a Gauss-

ian window, which provides optimal time resolution

[35]. However, this still only provides the optimal reso-

lution for the lowest observable frequencies. Higher

frequencies can still be observed in smaller windows

and the frequency resolution relative to the frequency

of these oscillations is much better. Other solutions
therefore tried to make an adaptive transform that took

the frequency of the oscillation into account [36]. One

such idea was to use windows of different sizes to com-

pute each frequency in the Fourier spectrum, resulting

in the wavelet transform [37], [38].

The wavelets that form the basis of the wavelet trans-

form are distinct from the Fourier transform in that they
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are defined in time as well as frequency. The continuous

wavelet transform (CWT) given by

WTðs; tÞ ¼
ZL=2

�L=2

�ðs; u� tÞfðuÞdu (6)

where �ðs; tÞ is the mother wavelet, which defines all

wavelets by being scaled according to the scale s to

change its frequency distribution and time-shifted ac-
cording to t. Instead of computing a “stand-alone trans-

form” for each time window, the wavelet transform

performs a different calculation depending on both time

and frequency (or more specifically, s). This makes it

possible to define an adaptive window size that is small

for high frequencies and large for low frequencies. The

time resolution at high frequencies is therefore no longer

limited by the condition of needing a large window to
detect low frequencies.

The Morlet wavelet provides a basis which is closest

to the Fourier basis and is defined as [39]

�ðs; tÞ ¼ 1ffiffiffi
�4

p e
2�i!c t

s � e�
2�!2c
2

� �
e�

t2

2s2 (7)

where s ¼ 1=!. The parameter !c is the central fre-

quency, which determines the time-frequency resolution

of the wavelet; high values ð!c 9 2Þ give good frequency

but poor time resolution while low values ð!c G 1Þ give

good time but poor frequency resolution. At very small

values ð!c G 0:2Þ the wavelet transform becomes mean-
ingless as the wavelets become smooth functions with no

defined cycles, while at very high values relative to the

length of the time series the wavelet transform has a dis-

tribution similar to the Fourier transform. A more in

depth review on the technical aspects of the wavelet

transform can be found in [40].

Fig. 3 shows a comparison of the STFT with the

CWT for the time series (1). Neither transform is de-
fined for all times and frequencies due to either not be-

ing able to observe a full cycle in a given window

[resulting in the white space below 0.04 Hz in (a)] or

the window running over the edge of the time series.

This region defines the cone of influence for the times

where oscillations of certain frequencies can be ob-

served. However, the limitations of the time-frequency

resolution are much more apparent in the STFT. In (a)
the short windows allow the highest-frequency mode to

be distinguished but the second mode is blurred and the

third is not visible due to the low-frequency limit. In

(b), the two lower-frequency modes are resolved but the

highest-frequency mode fades into the background as its

Fig. 3. Time-frequency analysis of the time series (1). STFTs of this time series are shown in (a) and (b) for a 25 and 250 s

window, respectively. Continuous Morlet wavelet transforms of the same time series are shown in (c) and (d) where the central

frequencies f0 ¼ 1 and f0 ¼ 5 were used respectively. White spaces indicate the limit of the cone of influence where the

transform is not defined.
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frequency variability cannot be tracked by the large win-
dow. In contrast, the adaptive resolution of the CWT in

(c) makes it possible to resolve all 3 components simul-

taneously. In (d), the use of a higher central frequency

improves the frequency resolution of each of the compo-

nents while still allowing the variation in these frequen-

cies to be tracked.

IV. DECOMPOSITION

The Morlet wavelet transform provides the best compro-

mise when dealing with signals in the time-frequency do-

main and can be used to track time-varying oscillations.

It can be interpreted in the same way as the STFT, but

while this compatibility is an advantage it also means

that the wavelet transform inherits the same problem of

generating harmonics for nonlinear oscillations since it is
still a linear method.

Further work is therefore needed to deal with the

problem of decomposing and extracting individual non-

linear modes. One way to do this is by using Empirical

Mode Decomposition (EMD) [41]. In this method the

components are extracted by marking all of the peaks

and troughs in a time series and interpolating between

these two sets of points using splines. The average of
these two “margins” is used to define the trend of the

time series, which contains dynamics relating to all but

the highest-frequency component in the time series. Sub-

tracting this trend leaves the highest-frequency compo-

nent. If there are still trends the process is repeated

until

Np þ Nt � Nz ¼ 0 or � 1 (8)

where Np, Nt, and Nz are the number of peaks, troughs,

and zero-crossings, respectively. Once this condition is

met the extracted component is subtracted from the orig-

inal time series and the method continues by attempting

to extract the next highest-frequency component.
One of the problems with EMD is mode mixing,

which happens when the amplitude of a mode falls to

zero. The result is that the next mode replaces the one

being extracted, which can result in errors if the differ-

ence in amplitudes is large. This problem has been tack-

led by repeating the procedure on the same time series

with different iterations of additive noise and taking the

average of the result, a technique known as ensemble
EMD (EEMD) [42]. However, the iterative nature of

EMD is still susceptible to error propagation, causing

small errors in the extraction of high-frequency compo-

nents to affect the extraction of the lower-frequency

components.

An alternative to EMD is to use information from the

time-frequency domain to decompose the time series.

Specifically, identifying all of the harmonics of a nonlin-
ear mode in the time-frequency domain makes it possible

to separate and reconstruct this mode in the time do-

main. This can be done in the wavelet transform by mak-

ing use of the time-dependent phase information of the

oscillations, which is given by 	ðs; tÞ ¼ arg½Wtðs; tÞ�. As-
suming the waveform of the oscillation keeps the same

shape, the phases of harmonics will share the same dy-

namics. This means that two harmonics at scales s1 and
s2 will have 	ðs1; tÞ ¼ ðs1=s2Þ	ðs2; tÞ.

Therefore, despite the fact that the wavelet trans-

form is a linear transformation, methods have now been

developed that use it to find and extract nonlinear oscil-

lations [43]. Given that the noise fluctuations for the

harmonics are different from the noise fluctuations in

the fundamental mode, the real dynamics of the mode

can be more easily separated from the noise this way.
The most recent method, nonlinear mode decomposi-

tion (NMD), uses information from the harmonics to

improve the extraction of the mode as a whole [44].

Specifically, the method is based on ridge extraction

where the highest peak over a defined frequency range

in the wavelet transform is traced over time. This line

can then be used to extract the oscillation at the de-

fined times and frequencies. The algorithm then looks
at the phase and amplitude variations of several oscilla-

tions together in order to distinguish harmonics (which

share the same variations) from genuine independent

modes.

Fig. 4 compares EEMD with NMD in the analysis of

the example time series xðtÞ. While the oscillatory modes

are observable in both decompositions, NMD is more se-

lective and does not extract modes relating to the 1/f
noise. The continuous noise distribution means that the

modes calculated using EMD suffer from mixing, which

means it is not possible to isolate the three main oscilla-

tory modes. Instead, most of the EMD modes are associ-

ated with high-frequency components which try to fit

the original time series as closely as possible and as such

do not have much physical meaning.

V. CHARACTERISATION

After transforming a signal to the time-frequency domain

and/or extracting its oscillatory modes, the next step is

to use this representation to characterise the dynamics of

the system. This means connecting what is seen in the

signal with properties that can be related to a physical

system.

A. Power
The power spectrum of a time series is defined in

the frequency domain as the integral of the square of

the amplitude. For the Fourier transform this is a

straightforward process since the frequency scale is lin-

ear, causing the square of the Fourier transform to be
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directly proportional to the power spectrum. Similarly,

the wavelet power spectrum can be found using

PWð!0; tÞ ¼
Z!0þd!

2

!0�d!
2

WTð!; tÞ
�� ��2d!: (9)

However, in the case of the wavelet transform the fre-
quency scale is logarithmic, which means that the compo-

nents at higher frequencies correspond to larger

frequency intervals. Obtaining the power spectrum from

the Morlet wavelet transform is also not as simple be-

cause the transform is continuous. This means that al-

though the wavelet amplitude is analogous to the Fourier

amplitude, for finite data the integration of the squared

amplitude to find the power is always an estimate (a con-
tinuous curve cannot be integrated discretely).

Taking the average of PW in time provides a good

starting point in the analysis of any time series data. Spe-

cifically, it is used to identify the frequency range of the

main oscillatory components. Once this is known, the

variation in the power of each individual component

over time can be found using one of the two methods

shown in Fig. 5(b). The first method involves summing
over the wavelet transform in the frequency intervals de-

fined in the time-averaged power spectrum for each

point in time (black line). The second method is to in-

stead follow the peak in the power spectrum for the

given frequency interval in time (grey line), which is

known as ridge extraction [45]. As can be seen, the two

methods show similar fluctuations caused by the noise in

the system although the second method is less suscepti-

ble to these variations.

B. Bispectrum
The bispectrum is a frequency-frequency domain

method that arises from high-order statistics [46]. Specif-

ically, the bispectrum is a third order statistic, in the

same sense that the skewness of a data series is of the

third order, which comes after the mean (first order)
and variance (second order) [47]. In this case the bispec-

trum is the next order measure after the frequency do-

main spectrum of a time series.

The bispectrum provides information about the qua-

dratic properties of the time series, which makes it

ideal for investigating nonlinear couplings between os-

cillations. However, the frequency-frequency domain is

still unable to track time-variability. Therefore, similar
to the need for time-frequency analysis, a need for

time-frequency-frequency analysis led to a proposal of

wavelet-based bispectral analysis [48]. The wavelet bis-

pectrum is given by

BWðs1; s2Þ ¼
Z
L

WTðs1; tÞWTðs2; tÞW�
Tðs3; tÞdt (10)

where s3 ¼ 1=ðð1=s1Þ þ ð1=s2ÞÞ. It is also possible to define
an instantaneous bispectrum with amplitude Aðs1; s2; tÞ ¼
jWTðs1; tÞWTðs2; tÞW�

Tðs3; tÞj and phase 	ðs1; s2; tÞ ¼
	ðs1; tÞ þ 	ðs2; tÞ � 	ðs3; tÞ.

Couplings between two oscillations at s1 and s2 can

be identified by peaks in the amplitude of the bispectrum

Fig. 4. Decomposition of the time series defined in (1). The signal reconstructed from the first 19 components from EEMD is shown by

the red line in (a), while the reconstruction from NMD is shown by the red line in (b). In both plots the black line corresponds to the

original signal. Plots (c) and (d) show the amplitude of the modes transformed to the time-frequency domain using the Hilbert

transform for EEMD and NMD respectively. The Hilbert transform generates the analytic signal of a sinusoidal oscillation, which can

then be used to calculate its instantaneous frequency. This offers a direct comparison with the time-frequency analysis shown in Fig. 3.

Vol. 104, No. 2, February 2016 | Proceedings of the IEEE 229

Clemson et al.: Reconstructing Time-Dependent Dynamics



or by observing the dynamics of the phase 	ðs1; s2; tÞ,
where if the phase is constant a coupling exists [48]. In

the case of the amplitude though, the value is also de-

pendent on the amplitude of the oscillations in the wave-

let transform. To remove this effect a normalized version

can be defined as

bðs1; s2Þ¼ BWðs1; s2Þ
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

L WTðs1; tÞWTðs2; tÞ
�� ��2dtRL WTðs3; tÞ

�� ��2dtq (11)

where bðs1; s2Þ is known as the bicoherence and takes
values between 0 and 1. However, even with this nor-

malisation it is important to note that the bispectrum/

bicoherence will still be nonzero for Gaussian white

noise. These random peaks are biased towards lower

frequencies, with a chi-squared distribution [49]–[51].

An additional complication comes from dealing with

the scale s3, which causes the bispectrum to become

meaningless as both f1 ¼ 1=s1 and f2 ¼ 1=s2 approach the
Nyquist frequency fs=2. This is because f3 starts to take

amplitude and phase information at frequencies which

are outside the observable range. Couplings at the high-

est frequencies are therefore not detectable, meaning an

“effective” Nyquist frequency for the bispectrum is de-

fined as the line from f1 ¼ fs=4, f2 ¼ fs=4 to f1 ¼ fs=2,
f2 ¼ 0 (and vice versa for when f1 and f2 are switched).

One other disadvantage is that wherever the differ-
ence in the frequencies of a pair of oscillations is large,

the adaptive frequency resolution of the wavelet trans-

form means that the combined frequency fHIGH þ fLOW �
fHIGH, making these couplings undetectable. On the other

hand, the logarithmic frequency scale of the wavelet

transform means that couplings between pairs of low fre-

quencies can be identified.

The same method can also be used to detect cou-

plings between components from different time series.

The cross-bispectrum can be defined in several ways

[48], [52], [53] using different combinations of the three

wavelet components in (10), i.e.,

BW122ðs1; s2Þ ¼
Z
L

W1ðs1; tÞW2ðs2; tÞW�
2 ðs3; tÞdt (12)

where W1 and W2 are the wavelet transforms of the cor-

responding time series. The wavelet cross-bicoherence

can similarly be defined as [54]:

bW122ðs1; s2Þ¼
BW122ðs1; s2Þ
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

L W2ðs1; tÞW2ðs2; tÞ
�� ��2dtRL W1ðs3; tÞ

�� ��2dtq :

(13)

By comparing the cross-bispectra from different combi-

nations it is also possible to deduce some information

about the direction of coupling between the oscillations

in two separate time series.

Fig. 6 shows the bispectral analysis of the time series

xðtÞ and pðtÞ. The time-averaged bicoherence shows in-

teractions between the modes but also across a much

wider range of frequencies. These interactions appear
due to the 1=f noise present in the time series, which

makes the time-averaged bispectrum difficult to inter-

pret. However, when the phase of a coupled frequency

pair is compared in time with that of two unrelated fre-

quencies it is clear that the phase corresponding to the

coupled frequencies is locked and stays close to its origi-

nal value.

Fig. 5.Wavelet power spectrum of the time series (1). The time-averaged power spectrum is shown in (a), where the frequency

ranges of the three modes are defined using the minima at each side of the peak (yellow shaded regions). In (b) the power of the

three modes is traced in time using the sum and peak methods. The power is normalized by dividing by the sum or peak of the

time-averaged spectrum respectively.
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C. Coherence
Waves can be coherent in space and oscillations can

be coherent in time. Generally, coherence in time de-

scribes all properties of correlation between physical

quantities of a single oscillation, or between several os-

cillations. Like power, bispectral amplitude and phase,

coherence is defined for specific frequencies. If at a cer-
tain frequency the changes in amplitude and phase of an

oscillatory component are the same for the same oscilla-

tion observed in different time series, then they are said

to be coherent at that frequency. While this is the gen-

eral definition of coherence, it is also possible to define

separately amplitude and phase coherence, which con-

sider only matching amplitude or phase dynamics of the

components respectively.
A phenomenon related to coherence is synchroniza-

tion. However, while oscillations can be coherent with-

out direct coupling, synchronization is a property of the

underlying system which results from a coupling between

two oscillations. This phenomena is not as trivial as one

might expect, with multiple ways to both define and de-

tect synchronization [55]. Specifically, oscillators can be

phase synchronized, phase and amplitude synchronized
or Lyapunov synchronized (also known as generalized

synchronization) and also have n : m relations where

there are n cycles of one oscillator in m cycles of the

other. Phase coherent oscillations can result in 1:1 phase

synchronization.

In the case of biomedical signals, measures of phase

synchronization are often used as a simple way to ob-

serve interactions between two oscillations. Methods

such as the phase synchronization index typically rely on

the detection of phase locking, where the phase shift be-

tween two oscillations remains constant [56]. However,

if only 1:1 synchronization between two signals is of in-
terest then it is more straightforward to consider the

phase coherence instead, which is defined as [57]

�ðsÞ ¼ 1

N

XN
n¼1

ei 	1ðs;tnÞ�	2ðs;tnÞð Þ
�����

����� (14)

where 	1ðs; tnÞ � 	2ðs; tnÞ is the phase difference be-

tween the oscillatory components of the same frequency

from two signals at time tn. If the oscillations remain

phase locked for all time (i.e., the oscillations are coher-

ent) then �ðsÞ ¼ 1, whereas if �ðsÞ ¼ 0 there is no ten-
dency to preserve a particular phase difference. A more

general definition is also given by [58]

�¼ 1

2

XN
n¼1

w1ðtnÞw2�ðtnÞ
" #

1

2

XN
n¼1

w1ðtnÞ � w2ðtnÞ
" #8<

:
9=
;

1
2

(15)

Fig. 6.Wavelet bispectrum analysis for the time series xðtÞ and pðtÞ. The bicoherence for the various combinations of the

cross-bispectrum are shown in (a), where without the time axis it is difficult to distinguish the amplitude due to noise fluctuations

from the amplitude contributions of genuine couplings. In (b) and (c) the bispectral amplitude and phase are shown for the points

marked in (a) which correspond to the coupled frequency pair (1 Hz, 1 Hz) and unrelated frequency pair (0.6 Hz, 1.4 Hz). While the

amplitude is higher for the coupled pair, the coupling is also indicated by the fact that the phase does not grow over time.
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where wiðtÞ represents any time-frequency representation
with complex values corresponding to the analytic signals

of the oscillations. In this paper � will represent the

phase coherence of the power-normalized wavelet trans-

form, which is identical to the first definition shown

above.

The phase coherence can be calculated systemati-

cally for all wavelet scales s to provide a graph of coher-

ence vs. frequency [59]–[61]. However, even in the
phase coherence of two noise signals there is some level

of coherence. This means that the coherence rarely ap-

proaches 0 and significant coherence is usually close to 1.

Additionally, this baseline coherence is not constant for

all scales but increases when moving lower in frequency

to the point where at the lowest observable frequencies

�ðsÞ � 1 even if the dynamics is unrelated.

This bias towards lower frequencies can be accounted
for by using surrogates of the signals [62], [63]. These are
designed to preserve all of the properties of the original

signals apart from the property relating to the hypothesis

that is being tested. In the case of phase coherence, the

null hypothesis is that the phases in the signals are inde-

pendent for all frequencies, which means that it is the

time-phase information that needs to be randomized in

the surrogates. In this case, iterative amplitude adjusted
Fourier transform (IAAFT) surrogates fit this null hypoth-

esis [64]. The phase coherence between these surrogates

at each frequency can then be used as a baseline above

which the coherence is said to be significant.

In order to track time-variations in the phase coher-

ence, the calculation can be performed over time by using

a sliding window along each scale. The time-localized

phase coherence is able to avoid the issue of frequency
bias since the windows can be scaled appropriately with

frequency so that the window will always contain the

same number of cycles [58]. However, this successive

windowing of the signals can result in a loss of low-

frequency information. First, preprocessing is often re-

quired to detrend the data and remove the effect of

high harmonics of oscillations that are too slow to be

observed, usually resulting in the loss of data at the
edges. The cone of influence from the continuous

wavelet transform also causes a significant reduction in

the part of the time series that is observable at low fre-

quencies. Finally, to observe significant coherence at

least 5 cycles need to be observed [36], which further

raises the low-frequency limit of the analysis.

Fig. 7 shows the phase coherence of the example time

series xðtÞ and pðtÞ. It can be seen that the coherence is
only greater than the surrogate level at the frequencies

corresponding to the common oscillatory modes. Note

however that the surrogate level is inversely proportional

to the frequency, which means it is more difficult to de-

tect significant coherence in low-frequency oscillations.

The windowed wavelet phase coherence also reveals the

shared time-variability of these modes.

D. Information and Entropy
Wavelets are not the only available tool for the

analysis of interactions in complex systems. Another

way to detect couplings is by using statistics based on

information theory, such as transfer entropy [65] and

Granger causality [66], [67]. In the latter case, a cou-
pling is said to exist if one system gives information

about the state of the other system at some point in

the future [48], [62], [68], [69]. Starting with the

probability distributions of the two time series, pðx1ðtÞÞ
and pðx2ðtÞÞ, the Shannon entropy for each can be

defined as

HðxiÞ ¼ �
X

pðxiÞ log pðxiÞ (16)

which gives a measure of the uncertainty or “ran-

domness” in xi. The joint entropy can also be de-

fined as

Hðxi; xjÞ ¼ �
XX

pðxi; xjÞ log pðxi; xjÞ (17)

where pðxi; xjÞ is the 2-dimensional joint probability

distribution. The amount of common information

contained in xi and xj, which is analogous to the in-
verse of the joint entropy, is given by the mutual

information:

Iðxi; xjÞ ¼ HðxiÞ þ HðxjÞ � Hðxi; xjÞ: (18)

Fig. 7.Wavelet phase coherence between the time series xðtÞ
and pðtÞ. In (a) significant phase coherence is shown when the

coherence (black line) is greater than the 95th percentile of

100 pairs of IAAFT surrogates (grey line). The windowed phase

coherence is shown in (b), which reveals the time-variability

of the modes but at the cost of losing information about

lower frequencies.
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Finally, the conditional entropy is defined as

HðxijxjÞ ¼ �
XX

pðxi; xjÞ log pðxjjxiÞ (19)

where pðxjjxiÞ is the probability distribution for xj if
the value for xi is given. The dependence between xi
and xj without the possible influence of another vari-

able x3 can then be defined using the conditional
mutual information (CMI)

Iðx1; x2jx3Þ¼Hðx1jx3ÞþHðx2jx3Þ�Hðx1; x2jx3Þ: (20)

Consider now two time series xðtÞ and yðtÞ. The informa-
tion flow from x to y is given by Iðx; ydjyÞ, where yd is

the delayed time series yðtþ �Þ. This quantity excludes

information from both the history of yðtÞ on itself and

the common history of xðtÞ and yðtÞ [48]. Similarly, the

information flow from y to x is given by Iðx; ydjyÞ. There-
fore, the strength of coupling from one time series to an-

other should be indicated in the amount of information

flow in the corresponding direction.
In reality, there is always going to be some baseline

mutual information contained within even two completely

unrelated time series. This is why the method requires the

use of surrogate data to determine whether there is a signif-
icant amount of information being transferred either from

x1 ! x2 or x2 ! x1. It is also dependent on estimates of

the probability distributions of the time series, which re-

quire careful consideration. However, the main advantage
of this approach is that it is not restricted by frequencies;

the CMI gives a measure of the information transfer be-

tween two arbitrary sets of data, rather than being local-

ized in any one domain. It is also worth noting that

Granger causality can be calculated using other methods

that do not rely on CMI [70].

An advantage of information and entropy based mea-

sures is that they are dimensionless, meaning that they
can be applied to any type of signal. In particular, they

can be applied both to the raw signal but also to the ex-

tracted phases of the oscillations in order to determine

specific phase-phase interactions [48], [68].

Fig. 8 shows the CMI of the time series defined in

(1) and (2). It can be seen that there is much more

significant information transfer above the surrogate

level for Iðx; pdjpÞ as opposed to Iðp; xdjxÞ, which sug-
gests a coupling from the modes in pðtÞ to the modes

in xðtÞ. However, it is also worth noting the times

when there appears to be no transer of information.

This can be explained by the fact that the chronotaxic

modes are very close to being phase synchronized with

the driving modes in p. When they do become fully

synchronized there is no transfer of information, which

means that even if there is a coupling it is not possible

to detect one.

VI. INTERPRETATION

The information learned from the characterisation of the

signals can only go so far. For example, chaotic, stochas-

tic and nonautonomous systems can all generate similar

continuous power spectra [28]. The bispectral couplings

also provide basic information about the direction and

strength of the coupling but little information about the
form of the function, while phase coherence does not

provide any information about the means by which the

signals become coherent. To obtain more information it

is necessary to infer the properties of a physical model of

the system based on the observed dynamics.

A. Phase Oscillator Model
Living systems are characterized by a multitude of os-

cillations over a broad range of timescales. However, the

real complexity arises from the interactions between

these oscillations, and there have been many attempts to

model this accurately [3]. The simplest models of

coupled oscillators focus purely on the changes that oc-

cur in an oscillator’s phase over time and neglect any

amplitude variations. This simplification is justified in

models of the heart (or similar oscillators with all-or-
nothing responses), because it is only changes in the tim-

ing of the periodic features that carry significance. Even

when a system does vary in amplitude, many oscillators

can still remain close to an attracting limit cycle, which
again causes these variations to be negligible.

An example of a phase oscillator model is given by

d	=dt ¼ !, which describes a phase increasing at a rate

Fig. 8. Information analysis of the time series xðtÞ and pðtÞ. The
solid black lines show the average CMI calculated for delays

ranging from 0.05 s to 5 s. The grey lines show the 75th

percentiles of the CMI calculated between 100 pairs of IAAFT

surrogates. The information transfer in the direction p ! x

is shown in (a), while (b) shows the information transfer in the

direction x ! p.
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of !, which is the natural frequency of the oscillator. A
model of two interacting oscillators is given by

d	1

dt
¼!1 þ F1ð	1; 	2Þ

d	2

dt
¼!2 þ F2ð	1; 	2Þ (21)

where F1ð	1; 	2Þ and F2ð	1; 	2Þ are coupling functions
which allow the dynamics of one oscillator to be depen-

dent on the other. Such coupling functions are expected

to be periodic on the phases 	1 and 	2, which means

that they can be modelled by a Fourier series [71]

F1;2ð	1; 	2Þ ¼
X
l;m

a1;2ðl;mÞ cosðm	1 þ l	2Þ
h

(22)

þ b1;2ðl;mÞ sinðl	1 þ m	2Þ
i

(23)

where a1;2ðl;mÞ and b1;2ðl;mÞ are the parameters which de-

scribe the function. By inferring these parameters from
the observed dynamics of the system it is possible to gain

an in-depth understanding of the oscillations, such as

whether they exhibit synchronization, or how they re-

spond to perturbations.

B. Dynamical Bayesian Inference
A problem with the model shown above is that the pa-

rameters are stationary. This makes it more difficult for
this model to reveal information about the coupling func-

tions in nonautonomous systems, which are expected to be

time-dependent. However, there is no straightforward way

to apply a moving time window because windowing means

that a smaller data series goes into the algorithm used to

estimate of the couplings, increasing the uncertainty.

The Bayesian theorem offers a solution to this win-

dowing problem. When applied to inverse problems
where one would like to infer parameters related to the

generation of a data set [72]–[76] it is known as dynami-
cal Bayesian inference. The theorem is summarized in

PðMjXÞ ¼ PðXjMÞPprðMÞ
PðXÞ (24)

where PðXjMÞ is the conditional probability of observ-

ing the data X given the hypothesized parameters M.

PprðMÞ is the probability of M before observing the

data X and

PðXÞ ¼
Z

PðXjMÞPprðMÞdM (25)

is the marginal probability of X . PðMjXÞ is known as
the posterior probability—the probability that the hypoth-

esized parameters are correct given X and the prior
probability PprðMÞ.

The most likely combination of values for the param-

eters for a single window of data is inferred by locating

the stationary point in the negative-log likelihood func-

tion, known as maximum likelihood estimation. In this

case the likelihood function is specified for the phases of
two systems [75] defined by the following stochastic dif-

ferential equations:

d	1;2

dt
¼ !1;2 þ F1;2ð	1;2Þ þ G1;2ð	1; 	2Þ þ �1;2ðtÞ (26)

where F1;2ð	1;2Þ and G1;2ð	1; 	2Þ are coupling functions

which, as in the previous methods, are modelled using a

Fourier basis. The parameters ck for this basis are eventu-
ally inferred in a covariance matrix denoted �. By mak-

ing use of Bayes’ theorem, the posterior covariance

matrix for the previous window can exploit information

from the prior covariance matrix �prior for the current
window. Hence, information is allowed to propagate be-

tween windows, enabling the inferred parameters to be-

come more accurate with time [75].

However, the inference only improves if the parame-

ters do not vary in time. To account for changes in the

values of the parameters, the prior can take the form of a

convolution between the posterior of the previous window

and a diffusion matrix which describes the change in ck
[75]. The standard deviation corresponding to the diffu-

sion of the parameters is assumed to be a known fraction

of the parameters themselves, 
k ¼ pck, where p is known

as the propagation constant. This modification allows the

method to track the change in the couplings over time.

A tutorial for the implementation of this Bayesian-

based approach is provided in [77], which includes a Ma-

tlab toolbox.
Fig. 9 shows the method applied to the extracted

phases of the example time series xðtÞ and pðtÞ. The cou-

pling functions for the modes in xðtÞ have a much higher

amplitude than the modes in pðtÞ, which suggests a strong

coupling term such as the one present in the chronotaxic

modes. The method also reconstructs the time-variability

of !0 for the first mode. However, for the other modes

the frequency variation is not traced as well because the
window sizes are much larger in order to cover enough

cycles of the low-frequency oscillations. Despite this, in

all cases the method correctly identifies a coupling in the

direction from the modes in pðtÞ to those in xðtÞ.

C. Phase Fluctuation Analysis
Let us now return to chronotaxic systems, which were

introduced in Section II-C. They are nonautonomous
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systems and have stable dynamics relative to a time-

dependent point attractor [31]. This property deter-

mines how the system responds to perturbations,

whether resisting them or allowing them to dictate

their dynamics. However, despite this strong dichotomy,

the actual effects are not obvious and hidden even in
the time-frequency domain. Another approach is there-

fore needed.

The easiest way to determine whether a system is

chronotaxic or not is to observe its fluctuations relative

to its unperturbed trajectory. If the original distribution

of the perturbations is known, then the stability of the

system relative to the unperturbed trajectory (which by

definition follows the time-dependent point attractor in a
chronotaxic system) can be determined from how these

fluctuations grow or decay over time. For example, take

the nonchronotaxic phase oscillator

d�x

dt
¼ !0ðtÞ þ �ðtÞ (27)

where !0ðtÞ is the time-dependent natural frequency and

the observed phase �x is perturbed by noise fluctuations

�ðtÞ. Integrating we find

�x ¼
Z

!0ðtÞdtþ
Z

�ðtÞdt: (28)

Assuming that !0ðtÞ 9 0 and �ðtÞ is an uncorrelated

Gaussian process, this means that the dynamics of �x

will consist of a monotonically increasing phase per-

turbed by a random walk noise (Brownian motion).

However, the situation is different for a chronotaxic

phase oscillator, e.g.,

d�p

dt
¼!0ðtÞ

d�x

dt
¼ "!0ðtÞ sinð�p � �xÞ þ �ðtÞ (29)

where �p is an external phase and j"j 9 0. Here the sta-

bility provided by the point attractor causes each noise

perturbation to decay over time, preventing �ðtÞ from be-

ing integrated over to the same extent. The perturbations

still do not decay instantly as the system takes time to

Fig. 9. Dynamical Bayesian inference analysis of the phases extracted using NMD from the time series xðtÞ and pðtÞ. Plots (a), (b),

and (c) show the coupling functions for the pairs of phases extracted from each mode. The inferred value of !0ðtÞ is shown in (d), (f),

and (h) by the solid black line, while the dotted line is the actual value. Plots (e), (g), and (i) show the direction of coupling calculated

by taking the ratio of the amplitudes for the terms dependent on the other phase for each coupling function. D90 for a coupling in

the direction x ! p and D G 0 for a coupling in the direction p ! x. The model parameters were inferred using a 20 s moving window

with 50% overlap for mode 1, a 150 s window with 75% overlap for mode 2 and a 500 s window with 90% overlap for mode 3.

In each case the propagation constant had the value p ¼ 0:2.
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return to the point attractor, meaning that some integra-
tion of the noise still takes place. However, the size of

the observed perturbations over longer timescales is

greatly reduced, causing a change in the overall distribu-

tion from that expected for Brownian motion.1

The phase �x of the observed system can be esti-

mated using the decomposition methods mentioned in

the previous section. However, further work is needed to

obtain the unperturbed phase �u
x . In particular, it is diffi-

cult to separate the dynamics corresponding to �u
x from

the effect of the noise perturbations �ðtÞ. This task is

simplified by assuming that the dynamics of �u
x is con-

fined to timescales larger than a single cycle and that the

noise is either weak or comparable in magnitude.

With these assumptions, an estimate of �u
x can be

found by filtering out high-frequency components of

�x. However, such a filter should not smooth over
the dynamics of �u

x . An optimal way of removing these

high-frequency noise fluctuations without affecting the

unperturbed dynamics is to instead smooth over the fre-

quency extracted from the wavelet transform [33]. This

provides the estimated angular velocity _�u
x , which can

in turn be integrated over time to give �u
x .

Given the estimates of �x and �u
x , the next step is to

analyze ��x ¼ �x � �u
x to find the distribution of fluctua-

tions in the system relative to the unperturbed trajectory.

In order to quantify the distribution of fluctuations,

detrended fluctuation analysis (DFA) can be performed

on ��x [78], [79]. This method provides an estimate of

the fractal self-similarity of fluctuations at different time-

scales. The scaling of these fluctuations is determined by

the self-similarity parameter �, where fluctuations at

timescales equal to t=a can be made similar to those at
the larger timescale t by multiplying with the factor a�.

In order to calculate � the time series ��x is inte-

grated in time and divided into nonoverlapping sections

of length n. For each section the local trend is removed

by subtracting a fitted polynomial—usually a first order

linear fit [78], [79]. The root mean square fluctuation for

the scale equal to n is then given by

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

YnðtiÞ2
vuut (30)

where YðtÞ is the integrated and detrended time series

and N is its length. The fluctuation amplitude FðnÞ fol-
lows a scaling law if the time series is fractal. By plotting

log FðnÞ against log n, the value of � is simply the gradi-

ent of the line. For completely uncorrelated white

Gaussian noise (the noise assumed to perturb the sys-

tem) the parameter for � has a value of 0.5, while inte-

grated white Gaussian noise (expected in nonchronotaxic

systems) returns a value of 1.5.

When � G 1:5 this therefore suggests that there is

some resistance to perturbations (chronotaxicity) which

prevents their integration over larger timescales. The ac-
tual value is typically dependent on the gradient of the

coupling function relative to �p � �x. If the gradient

close to the point attractor is very steep then the system

returns to the attractor more quickly after being per-

turbed and less integration of the noise occurs, resulting

in smaller values of �.
Fig. 10 shows the phase fluctuation analysis for the

extracted phases of the modes in the time series xðtÞ.
The method finds � G 1 for the first two modes, which

suggests that they are chronotaxic. However, the scaling

in mode 2 is not a straight line, and thus � must be in-

terpreted with caution, as this suggests that there may

not be sufficient information available. The method iden-

tifies the third mode as being nonchronotaxic since

� � 1:5. This is due to the fact that not enough cycles of

the oscillation are observed to reliably determine
whether the mode is chronotaxic or not. This highlights

the crucial importance of the length of the time series

for the accurate characterization of the underlying

dynamics.

1Note that this assumes the noise does not cause phase slips in �x.
This would cause perturbations over large timescales (i.e., greater than
one cycle) to not decay even if the system was chronotaxic. In these
cases another approach should be used instead [33].

Fig. 10. Phase fluctuation analysis of the modes in the time

series xðtÞ. Estimates of the phase �x for mode were obtained

from the wavelet transform using ridge extraction and !c ¼ 0:5.

Estimates of the phase �u were found in the same way but

using !c ¼ 2 and integrating over the smoothed instantaneous

frequency. Plots (a), (b), and (c) show the detrended difference

between the two phases for each mode. Plots (d), (e), and

(f) show the detrended fluctuation analysis of ��x (solid black

lines). Linear least squares fits (red lines) were used to estimate

the values of � in each case.
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VII. APPLICATIONS

To demonstrate how the described analytical framework

can be used in practice, the methods from the previous
sections are now applied to real biomedical signals.

A. Skin Microvascular Flow Evaluated by Laser
Doppler Flowmetry (LDF)

LDF is a technique applied to measure blood flow in

the microvasculature. It involves shining laser light into

the microvascular bed, that includes capillaries and small

arterioles, and measuring the Doppler shift in the light

caused by the movement of the blood. This movement is

influenced by a wide range of oscillations of different
frequencies ranging from 0.005 to 2 Hz, originating

from both systemic and local processes [3], [7], [79]. As

each of these oscillations is also time-varying, the result

is a very complex signal.

Fig. 11 shows the time-frequency analysis of an LDF

signal. The strong cardiac oscillation is easily recognized

in the Fourier transform. However, there is also power

at low frequencies which appear as a continuous noise-
like distribution. The wavelet transform reveals these

low-frequency fluctuations to be highly nonstationary os-

cillations, relating to myogenic, neurogenic and endothe-

lial activity [7]. Without time-frequency techniques, such

oscillations can often elude discovery or be discounted as
noise [26].

There are limitations in the analysis of such signals,

however. While the power spectrum can almost always

be used to characterize the dynamics of the underlying

processes, attempting to decompose and analyze the low-

frequency oscillations in an LDF signal is a very difficult

task. The oscillations are simply too nonstationary, and

the available part of the time series is too short, due to
the cone of influence. If an LDF signal was several hours

long then the low-frequency dynamics could be analyzed

using the other decomposition, characterization, and in-

terpretation methods discussed. However, the length of

recordings is limited by the fact that subjects must re-

main motionless throughout as movement artefacts

strongly affect the low-frequency components of the sig-

nal [80]. But even when only the power of the oscilla-
tions is considered, without attempting to consider their

coupling, the insights obtained can be of diagnostic and

prognostic use, as shown in a recent study of blood flow

in melanoma [21].

On larger scales, the dynamics of the cardiovascular

system is no less complex. In particular, the cardiore-

spiratory interaction has been shown to exhibit time-

dependent coupling functions which cause changes in
the synchronization between the heart and lungs [75].

This interaction is primarily defined by the phase rela-

tionship between the two systems, which means that it

is maintained even when the variations in the heart

rate or respiration amplitude are small. Using bispec-

tral analysis this coupling has been shown to propagate

to the microcirculation [81].

B. Dynamics of Brain Waves and Their Interaction
in Anesthesia and Awake States

The neuronal activity in the brain has long been

characterized by existence of brain waves [4] and we

will briefly illustrate how interactions between brain

waves can be extracted from an EEG signal. The signal

was recorded in the BRACCIA project with electrodes

attached to the forehead of a patient under anesthesia
[23]. The traditional waves, � (0.8–4 Hz), � (4–7.5 Hz),

� (7.5–14 Hz), � (14–22 Hz) and 
 (22–100 Hz) were

studied. Lower frequency oscillations have also been

identified [3], [4], but will not be discussed here. The

results of bispectral analysis and dynamical Bayesian in-

ference are summarized in Fig. 12.

When analyzed using the wavelet bispectrum, the

noise in the signal makes it difficult to interpret the in-
teractions from its amplitude alone. However, the phase

of the bispectrum for each frequency coupling shows

different rates of change, related to the coupling

strength between the brain waves. After extracting the

phases for each brain wave, Bayesian inference reveals

the coupling functions between the oscillations, as well

as the magnitude of these couplings. By observing the

Fig. 11. Analysis of an LDF signal measured from the left arm for

40 minutes. In the time domain (top) the cardiac oscillation is

clearly seen, with �1 s pulses. A Fourier transform (bottom left)

provides a representation of the signal in the frequency

domain, which also shows the mode with the largest power to be

at the cardiac frequency �1 Hz with its harmonics at �2 Hz and

�3 Hz. There is also power at lower frequencies but this appears

only as a continuous, noise-like spectrum with no identifiable

modes. In the wavelet transform (bottom right) the power

at low-frequencies is revealed to be due to nonstationary

oscillations whose frequencies and amplitudes vary in time.
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ratios between the grey and black lines it is possible to
infer the direction of coupling between the brain waves.

It can be seen that the other waves drive the 
 wave,

which is also observed in the form of the F
 coupling

functions. While this provides clear evidence of func-

tional interactions between pairs of brain waves, the

same techniques have also been used to show the exis-

tence of triplet interactions [82].

VIII. DISCUSSION

Biomedical signals, arising from nonlinear, time-dependent

living systems, provide an opportunity to monitor the

underlying dynamics of the observed system. The time-

variability of biomedical data necessitates the application

of time-frequency analysis methods in the first instance.
If identified as a stochastic process, the signal may be

further characterized using statistical methods. If the sig-

nal is found to contain distinct oscillatory modes, these

may then be extracted and separated using the tech-

niques presented here. The interactions between these

modes can be then investigated to provide yet another

layer of information about the dynamics of the system.

Living systems appear to possess underlying preferred
amplitudes and frequencies to which the system will re-

turn when external influences are removed. To bridge

the gap between dynamical systems theory and this ap-

parent stability, a new class of nonautonomous system

was introduced, known as chronotaxic systems [31], [32].

This led to the development of methods for the detection

Fig. 12. (a)–(c) Bispectral and (d), (e) dynamical Bayesian inference analysis of an EEG signal. The signal was measured for 20 minutes

from the forehead of a subject in anæsthesia. The phases for the �, �, �, � and 
 waves were extracted using NMD. The plot in

(a) shows the bicoherence of the raw EEG signal, while (b) and (c) show the instantaneous bicoherence and phase of the bispectrum

respectively for the pairs of brain waves. In (d) the coupling functions for the different pairs of extracted phases are shown (couplings

between adjacent bands are not shown due to frequency spillage from imperfect filtering). On the right in (e) are the magnitudes

of the coupling functions for each point in time, providing an indication of the direction of coupling between the phases. The model

parameters were inferred using a 20 s moving window with no overlap and with the propagation constant p ¼ 0:2.
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of chronotaxicity and their application to real data [33],
[34]. This provides a framework in which experimentally

observed fluctuations, which may previously have been

regarded as noise, or arising from chaotic dynamics, may

actually be considered as systems with underlying ele-

ments of determinism.

Although techniques for the analysis of biomedical

time series have greatly improved, there are still some

limitations to overcome. One requirement of methods
based on the interpretation of oscillatory activity is a suf-

ficient number of periods of oscillation, especially if the

frequency is time-varying, usually set at 5 periods of oscil-

lation. For very low frequencies this may necessitate a

time series longer than it is possible to record. For short

time series, the presented methods will become less reli-

able, or even impossible to implement. If the time series

is long enough, the analysis approach used strongly de-
pends on the characteristics of the data. For example, in

chronotaxic systems, time-frequency analysis will high-

light any oscillatory components, but will not provide any

information about interactions in that system, thus lead-

ing to the need for further extraction to identify chrono-

taxicity. Similarly, wavelet phase coherence may reveal

phase relationships between two signals, but cannot pro-

vide any information on their origins. Also important
when extracting modes from a time-frequency represen-

tation is the frequency variation. If this variation is too

fast, or more than one mode is present, it may be difficult

to reliably extract a single mode. The frequency resolu-

tion in the wavelet transform may be changed to better

resolve frequency components, but this comes at the ex-

pense of time resolution and may still be insufficient.

In some living systems, only the phase dynamics is
considered. For example, in the heart only the changes in

beat rate can be directly measured with ease, while the

cardiac output (the “amplitude” of the heart) is very diffi-

cult to quantify by noninvasive techniques. Whilst some

of the presented methods rely on the fact that amplitude

variations may be negligible, this is not always a valid as-

sumption. Again using chronotaxic systems as an exam-

ple, the current inverse approach methods for the
detection of chronotaxicity only take into account phase

dynamics. However, it is known that in many living sys-

tems, both phase and amplitude dynamics are important,

as are the interactions between them. In particular, the
brain is characterized by both spatial and temporal dy-

namics [83], [84]. Thus, further work is required to de-

velop methods which are applicable in all these scenarios,

although some have already been proposed [85]. It is

clear that to gain as much information as possible from

biomedical signals, the optimal solution is to combine dif-

ferent methods according to the information required, as

demonstrated here.

IX. CONCLUSION

We have presented the latest techniques for the analysis

of signals originating from time-dependent dynamics,

with suggestions for their optimal implementation. Using

these guidelines, it was shown how these signals can be

decomposed, characterized and interpreted to reveal a
wealth of information about the underlying system. This

is of particular significance in the analysis of biomedical

data due to the open nature of living systems. We have

also discussed that one should not arbitrarily apply these

time-dependent methods to any signal and how signals

should be analyzed in several stages starting with time-

frequency analysis. It is often the case that accurate infor-

mation extracted from the previous level of analysis is
necessary to proceed to the next level, such as the ability

to resolve modes in the time-frequency domain before de-

composing them, or the determination of the phase and

frequency of the modes through decomposition before ex-

tracting the coupling functions and chronotaxicity of the

underlying dynamics.

Using the numerically-generated time series of a

chronotaxic system we have illustrated how to recon-
struct the dynamics of noisy, time-dependent systems.

We have also shown how these same methods can be ap-

plied to real biomedical data where the information ob-

tained has physiological relevance, revealing a wealth of

information about the underlying living system. h
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