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Abstract—In this paper, we present a new scenario of di-
rection of arrival (DOA) estimation using massive multiple-
input multiple-output (MIMO) receive array with low-resolution
analog-to-digital convertors (ADCs), which can strike a good bal-
ance between performance and circuit cost. Based on the linear
additive quantization noise model (AQNM), the effect of low-
resolution ADCs on the methods, such as Root-MUSIC method, is
analyzed. Also, the closed-form expression of Cramer-Rao lower
bound (CRLB) is derived to evaluate the performance loss caused
by the low-resolution ADCs. The simulation results show that
the Root-MUSIC methods can achieve the corresponding CRLB.
Furthermore, 2-3 bits are acceptable for most applications if the
1dB performance loss.

Index Terms—DOA, low-resolution ADCs, AQNM, CRLB

I. INTRODUCTION

DOA estimation is important due to its diverse applications,

including wireless communications, radar, navigation, and res-

cue and other emergency assistance devices [1], [2]. In recent

application, such as internet of things (IoT), angle of arrival

(AOA) localization [3], massive multiple-input multiple-output

(MIMO) and beyond so on [4], DOA estimation always plays

an indispensable role.

Recently, as the massive MIMO becomes very popular,

the DOA estimation using massive receive MIMO array

emerges [2]. In [5], the deep-learning method was considered

for the hybrid massive MIMO system with uniform circular

array. However, the massive MIMO requires a large number

of ADCs, which leads to a high circuit cost and energy

consumption. To solve this challenge, the electromagnetic

(EM) lens antenna was considered for the DOA estimation in

[6]. The proposed methods could achieve a good performance.

Adopting low-resolution ADCs is another promising solution.

Low-resolution ADCs have been used in many works [7]–

[9]. In [10], authors investigated the target detection and

localization with low-resolution ADCs. In [11], a generalized

sparse Bayesian learning algorithm was integrated into the

1-bit DOA estimation. In [12], the authors proved that the

MUSIC method can be straightforwardly applied without extra
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pre-processing and analysed the performance loss when the bit

length is 1.

To the best of our knowledge, although the DOA estimation

for the one-bit ADCs has been investigated, no research work

has been reported for the performance analysis of the ULA

with low-resolution ADCs. Thus, in this paper, we will derive

the expression of performance loss which depends on the bit

length of ADCs. By simulation, we will find the required

minimum number of bits for ADCs when the performance

loss is neglected. It has the instructive significance on the

practical applications. The main contributions of this paper

are summarized as follows:

1) First, the system model of the DOA estimation for the

low-resolution ADC structure is established by using the

linear additive quantization noise model (AQNM). Then,

based on this model, the effect of the low-resolution

ADCs on the practical applications is analyzed. The

Root-MUSIC is chosen as a representation of all related

DOA estimation methods.

2) To evaluate the performance of the system, we derive the

closed-form expression of the Cramer-Rao lower bound

(CRLB) for the low-resolution ADC structure. Then,

to concretize the performance loss caused by the low-

resolutions, a performance loss factor is firstly defined

by us. After Monte Carlo simulation, we find that ADCs

with 2-3 bits can significantly reduce the circuit cost

with a negligible performance loss, which is applied to

many future applications.

Notations: Throughout the paper, matrices, vectors, and

scalars are denoted by letters of bold upper case, bold lower

case, and lower case, respectively. Signs (·)T , (·)H , | · | and

‖ · ‖ represent transpose, conjugate transpose, modulus and

norm, respectively. IM denotes the M ×M identity matrix.

Tr(·) denotes matrix trace. E[·] represents the expectation.

diag(·) denotes the diagonal operator. arg(·) means the ar-

gument of a complex number.

II. SYSTEM MODEL

As shown in Fig. 1, the signal will impinge on the

uniformly-spaced linear array (ULA) which has M antenna

elements, and the different sensors will capture the same

signals from far emitters with different time delays which

depend on the DOAs. All signals are assumed as narrowband

with the same carrier frequency fc. Then, different from the

traditional structure, the signal is digitized by low-resolution

http://arxiv.org/abs/2011.00451v2
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Fig. 1. Architecture of receive array with low-resolution ADCs.

ADCs. The signals from far-field emitters are denoted by

sl(t), l = 1, 2, · · · , L. Thus, a single emitter from the DOA θ
can be modeled by

y(t) = a(θ)s(t) + w(t) (1)

where w(t) ∼ CN (0, σ2
wIM ) is the additive white Gaussian

noise (AWGN) vector and a(θ) is the so-called array manifold

defined by

a(θ) = [ej2πψθ(1), ej2πψθ(2), · · · , ej2πψθ(M)]T , (2)

where ψθ(m) is the phase shift of signal at the baseband

corresponding to the time delay from the source to antenna

elements. ψθ(m),m = 1, 2, · · · ,M , is given by

ψθ(m) =
dm sin θ

λ
,m = 1, 2, · · · ,M, (3)

where λ is the wavelength of the carrier frequency. dm is the

distance from a common reference point to the mth antenna.

In this letter, we choose the center of the array as the reference

point. Thus, dm =
(

m− M
2

)

d. d is is half of the wavelength

as usual, (i.e., d = λ/2). Let consider a more common

assumption that there are L(L < M) emitters and their signals

are uncorrelated. Then, the received M dimensional vector y

can be expressed as

y(t) =

L
∑

l=1

a(θl)sl(t) + w(t) (4)

Now, we follow the general assumption that the all received

signals sl(t) are independent Gaussian distributed and the

quantization noise is the worst case of Gaussian distribution.

According to the widely used AQNM [13], [14], which is

TABLE I
DISTORTION FACTOR β FOR DIFFERENT b-BIT ADCS

b 1 2 3 4 5

β 0.3634 0.1175 0.03454 0.009497 0.002499

able to convert the nonlinear quantization into the linear

quantization gain with a additive quantization noise, the output

signal vector of the low-resolution ADCs is given by

yq(n) = Q{y(t)} = α
L
∑

l=1

a(θl)sl(t) + αw(n) + wq(n),

n = 1, 2, · · · , N, (5)

where Q{·} is the quantization function, N is the number

of snapshots, α = 1 − β is the linear quantization gain,

where β =
E[‖y−yq‖2]

E[‖y‖2] denotes the distortion factor caused

by low-resolution ADCs [13], and wq(n) is the quantization

noise uncorrelated with y. We assume that the input of ADCs

is Gaussian. Then, for the distortion-minimizing scalar non-

uniform quantization, the values of β for b ≤ 5 are listed in

Table I and the other values of β can be approximated by

β =
√
3π
2 · 2−2b, b ≥ 6. [7].

For a fixed channel realization, the covariance matrix of

wq(n) is expressed by

Rwq
= αβdiag(

L
∑

l=1

σ2
s,la(θl)Rla(θl)

H + σ2
wIM ), (6)

where σ2
s,l = E[sl(t)

∗sl(t)] is the power of the lth signal and

Rl, l = 1, 2, · · · , L is the lth normalized signal covariance

matrix, so Rl = IM , l = 1, 2, · · · , L and (6) can be given by

Rwq
= αβdiag

(

L
∑

l=1

σ2
s,la(θl)a(θl)

H + σ2
wIM

)

= αβdiag

((

L
∑

l=1

σ2
s,l + σ2

w

)

IM

)

. (7)

For tractable analysis according to [14], wq(n) can be mod-

elled as wq(n) ∼ CN (0,Rwq
).

III. ANALYSIS OF ROOT-MUSIC FOR LOW-RESOLUTION

ADC STRUCTURE

In this section, we analyze the impact of the low-resolution

ADCs on the algorithms. As one of the most famous DOA

methods, Root-MUSIC is chosen to be reviewed and analyzed.

The covariance matrix of the signal vector after quantization

is given by

Ryqyq
= E[yqyHq ]

=

L
∑

l=1

α2σ2
s,la(θl)a(θl)

H + σ2
LIM , (8)

where

σ2
L = α2σ2

w + αβ(
L
∑

l=1

σ2
s,l + σ2

w) (9)
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Let

Ryqyq
= [US UN ]Λ[US UN ]H (10)

be the eigenvalue decomposition of the (8) and

Λ = diag(α2σ2
s,1 + σ2

L, · · · , α
2σ2
s,l + σ2

L, σ
2
L, · · · , σ

2
L) (11)

where M×L matrix US denotes the L column vectors consist-

ing of the singular vector corresponding to the largest singular

values and the matrix UN contains the (M − L) singular

vectors corresponding to the (M−L) smallest singular values.

Then, we can compute

S(θ) = ‖UHNa(θ)‖−2
2 (12)

which will have peaks at the emitters’ directions. The covari-

ance matrix Ryqyq
is estimated from the available data by

R̂yqyq
=

1

N

N
∑

n=1

yq(n)yq(n)
H (13)

To obtain the emitter direction by maximizing (12), Root-

MUSIC has low-complexity and near analytic solution without

linear search. Root-MUSIC suggests to solve the following

rooting polynomial

froot(z) = p(z)HUNUHNp(z)

= zM−1
p
T (z−1)UNUHNp(z) = 0, (14)

where p(z) = [1, z, · · · , zM−1]T . The equation has 2(M − 1)
roots and L pairs of roots that lie closest to the unit circle,

where zl = ej2π
d sin θl

λ , l = 1, 2, · · · , L and a(θl) = p(zl), l =
1, 2, · · · , L. The DOA can be estimated by

θ̂l = arcsin

(

λ

2πd
arg zl

)

, l = 1, 2, · · · , L. (15)

Throughout the analysis above, we can conclude that the

effect of low-resolution ADCs on the Root-MUSIC can be

regarded as a reduction of the SNR. Thus, low-resolution

ADCs will not affect the algorithm itself. In other words,

computational complexity of the method is invariant for dif-

ferent quantization bits. Furthermore, this conclusion could be

extended to other methods, such as ESPRIT.

IV. DERIVATION OF CRLB

The Cramer-Rao Lower bound (CRLB) for low-resolution

ADC structure is derived in the following to evaluate the

estimation performance of the array with b-bit ADCs. Firstly,

the Fisher Information Matrix (FIM) can be expressed by

Fq = Tr

{

R−1
yq

∂Ryq

∂θ
R−1

yq

∂Ryq

∂θ

}

, (16)

where Ryq
can be given by

Ryq
= E[yqyHq ] = α2σ2

sa(θ)a(θ)H + σ2
1IM , (17)

where, similar to the (9), σ2
1 = α2σ2

w + αβ(σ2
s + σ2

w). Given

N independent measurements, the CRLB is given by

CRLBb =
1

N
F−1
q . (18)

TABLE II
SIMULATION PARAMETERS

θ 15
◦

M 128

d λ

2

N 32

Nt 8000

Then, similar to [1],

Fq = 2γyq
(2π/λ)2 cos2 θd2

Mγyq

Mγyq
+ 1

≈ 2γyq
(2π/λ)2 cos2 θd2. (19)

Thus, the CRLB can be derived by

CRLBb ≈
1

2Nγyq
(2π/λ)2 cos2 θd2

, (20)

where

γyq
=

ασ2
s

βσ2
s + σ2

w

(21)

and

d2 =

M
∑

m=1

d2m. (22)

Now, let us define the performance loss factor in dB

ηb(γ) = 10 log10
CRLBb
CRLB∞

= 10 log10
1 + βγ

α
(23)

where γ = σ2
s/σ

2
w is the input SNR of ADCs and CRLB∞

denotes the CRLB with high-resolution ADCs. From (23), it

is obvious that the CRLB performance loss factor ηb(γ) is a

monotonically increasing function of γ for a fixed b.

V. SIMULATION AND DISCUSSION

In this section, we present simulation results to find how

many bits of ADCs to achieve an acceptable or omitted perfor-

mance loss. The performance loss factor is calculated by (23),

and the RMSE is given by RMSE =
√

1
Nt

∑Nt

nt=1(θ̂nt
− θ)2.

All results are averaged over 8000 Monte Carlo realizations.

Simulation parameters are chosen as shown in Table II.

Fig. 2 illustrates the performance loss factor ηb versus the

bit length for the different SNR γ: −20dB, −10dB, 0dB, 10dB

and 20dB. It is clear that the performance loss will be trivial,

which means ηb < 1dB, at the low and medium SNR when

b = 2. As SNR decreases, the associated required minimum

bit length reduced accordingly. Conversely, as SNR increases,

the required bit length will increase gradually.

Fig. 3 demonstrates the curves of performance loss factor

versus SNR with different b. From this figure, it can be seen

that the performance loss factor ηb increases as the SNR

increases with a fixed bit length. It is hard to accept that

a performance loss with b = 1 is higher than 2dB for all

SNR. In addition, at low SNR (γ < 0dB), 2-bit ADCs

are satisfactory. b = 3 is a better choice at medium SNR

(0 < γ < 10dB). ADCs with 4-bits or 5-bits are more suitable
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Fig. 2. Performance loss factor versus bit length with N = 32, M = 128

for different SNR.
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Fig. 3. Performance loss factor versus the SNR with N = 32, M = 128 for
different b.

for high SNR (γ > 10dB). However, for most applications, the

SNR is not high. Thus, 2-3 bits are sufficient. ADCs with more

quantization bits could be adopted for ultra high precision

requirements or applications at high SNR.

Fig. 4 plots the RMSE versus SNR of the Root-MUSIC and

ESPRIT for b = 2 and b = 3, with CRLB as a performance

benchmark. Both the analytical and simulated results are

presented. Herein, γ ranges from −10dB to 20dB. Observing

Fig. 4, we find that all simulated results of the Root-MUSIC

and ESPRIT can achieve the associated analytical values at

middle and high SNRs. As SNR increases, the gaps between

the analytical and simulated curves become gradually large.

This may be caused by the AQNM, because the AQNM is

accurate enough at low and medium SNRs. In addition, the

Root-MUSIC has better performance, which could achieve the

corresponding CRLB.

VI. CONCLUSION

In this paper, a low-cost framework, combining low-

resolution ADCs and large-scale received MIMO, was pro-

posed for DOA estimation to make a good balance between
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Fig. 4. RMSE versus SNR for Root-MUSIC and ESPRIT.

performance and circuit cost. The impact of low-resolution

ADCs on the CRLB of DOA estimation was derived to

show that the performance loss of variance of DOA estimate

increases as SNR increases. More importantly, the results have

shown that 2-3 bits are sufficient for most applications. More

bits should be adopted to achieve a better performance at

medium and high SNRs.
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