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A survey and an extensive evaluation of popular
audio declipping methods

Pavel Záviška, Pavel Rajmic, Alexey Ozerov, and Lucas Rencker

Abstract—Dynamic range limitations in signal processing often
lead to clipping, or saturation, in signals. The task of audio
declipping is estimating the original audio signal, given its clipped
measurements, and has attracted much interest in recent years.
Audio declipping algorithms often make assumptions about the
underlying signal, such as sparsity or low-rankness, and about
the measurement system. In this paper, we provide an extensive
review of audio declipping algorithms proposed in the literature.
For each algorithm, we present assumptions that are made about
the audio signal, the modeling domain, and the optimization
algorithm. Furthermore, we provide an extensive numerical
evaluation of popular declipping algorithms, on real audio data.
We evaluate each algorithm in terms of the Signal-to-Distortion
Ratio, and also using perceptual metrics of sound quality. The
article is accompanied by a repository containing the evaluated
methods.

Index Terms—audio clipping, saturation, declipping, model,
sparsity, learning, optimization, evaluation, survey

I. INTRODUCTION

CLIPPING is a non-linear signal distortion usually appear-
ing when a signal exceeds its allowed dynamic range.

As a typical instance, an analog signal that is digitized can
be clipped in value when its original peak values go beyond
the largest (or lowest) digit representation. For this reason, the
effect is also called saturation.

Clipping in audio signals has a great negative effect on the
perceptual quality of audio [1], and it reduces the accuracy
of automatic speech recognition [2], [3] and other audio
analysis applications. To improve the perceived quality of
audio, a recovery of clipped samples can be made; this process
is usually termed declipping.

Many audio declipping methods are available today. They
are based on different modeling assumptions, tested on very
different audio datasets, and evaluated by different methodolo-
gies. The goal of the article is to survey the existing approaches
to audio declipping, categorize them and emphasize some
interconnections. A no less important goal of this contribu-
tion is the numerical evaluation of selected audio declipping
methods on a representative dataset and the provision of
a freely available MATLAB toolbox. The subset of methods
under consideration was selected based on our intention to
cover different reconstruction techniques, on the popularity
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of the methods, and on the availability—or reproducibility—
of their implementation (which go hand in hand in many
cases). It is worth saying that the reconstruction quality is the
primary focus in the evaluation, but comments on the speed
of computation are provided as well.

In the case of the hard clipping, which is the degradation
considered in this survey, the input signal exceeding the
prescribed dynamic range [−θc, θc] is limited in amplitude
such that

yn =

{
xn for |xn| < θc,

θc · sgn(xn) for |xn| ≥ θc,
(1)

where [x1, . . . , xN ] = x ∈ RN denotes the original (clean)
signal and [y1, . . . , yN ] = y ∈ RN the observed clipped
signal. The limiting constant θc is referred to as the clipping
threshold (this article supposes that clipping is symmetric,
without affecting generality). See Fig. 1 for an example of
a clipped signal (and its various reconstructions).

Drawing on the terminology used in audio source separation
[4] and machine learning in general [5], the audio declipping
methods can be cast in two main categories:
• unsupervised, or blind, where the signal is recovered

assuming some generic regularization (or modeling as-
sumption) on what a natural audio signal should be like,
but with no additional clean audio signals being involved,

• supervised, where signal recovery model parameters, or
a part of them, are trained on (estimated from) clean audio
examples, which should be similar to the audio sample
to be recovered (e.g., all signals are speech signals).

To date, the vast majority of state-of-the-art audio declipping
approaches are unsupervised, and thus, we limit this study
to those approaches. However, supervised approaches are
emerging as well, and they are mostly deep neural networks
(DNNs)-based, trained to declip speech signals [6], [7], [8].
Supervised approaches are more specialized (since they are
usually trained on particular classes of audio), and potentially
more powerful, simply because more relevant information
could be contained in the training set. As such, we believe
that supervised learning is one of the potential and promising
directions of evolution of research on audio declipping.

As for the unsupervised approaches, they often follow
a generic path:

1) A modeling domain (e.g., time, analysis or synthesis,
see Sec. II-A) is chosen.

2) A generic model regularizing an audio signal is speci-
fied in the chosen domain (e.g., autoregressive model,
sparsity, group sparsity or low-rank structure).
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3) Model parameters to be estimated from the clipped
signal are specified (e.g., decomposition coefficients,
coefficients and the dictionary, non-negative matrix fac-
torization parameters, etc.).

4) A criterion linking the model parameters and observa-
tions to be optimized is specified (though the criterion is
related to modeling, different choices are often possible;
for instance, sparsity-assisted methods may penalize
coefficients with the `0 or `1 norm). The criterion may
or may not include the following ingredients:
• Clipped part consistency: whether the clipping con-

straint in the missing part holds (see Sec. III).
• Reliable part consistency: whether the reconstructed

signal in the reliable part equals the observed
clipped signal (see Sec. III).

5) A suitable algorithm to optimize the model criterion is
chosen / constructed (e.g., orthogonal matching pursuit,
expectation maximization, etc.).

6) Once the algorithm has terminated (typically, a fixed
number of iterations are performed or a condition de-
signed to check convergence is satisfied), the final signal
is formed.

Most of state-of-the-art unsupervised audio declipping ap-
proaches characterized by the above-mentioned ingredients,
including the approaches evaluated in this paper, are summa-
rized in Table I.

In the case of multichannel audio (e.g., stereo) de-
clipping may exploit correlations between different audio
sources / objects in different channels, and this can improve
the result over a straightforward, dummy solution of applying
a single-channel declipping to each channel independently.
This was for the first time investigated in [9], and then studied
in [10] as well, though with a different approach. These
works have shown that using the inter-channel dependencies
can indeed improve the declipping performance. We do not
evaluate those methods in this article, though, since there are
only a few of them so far and such a task would require the
creation of a particular multichannel dataset.

Roadmap of the article. Section II formulates the problem
and prepares the notation used in further parts. A survey of
declipping methods is given in Section III, while the methods
selected for a thorough evaluation are described in more
detail in Section IV. Then, the experiment and evaluation
setup are explained in Section V, together with the results
and their discussion. Finally, a conclusion is given and some
perspectives for future research are indicated.

II. PROBLEM FORMULATION

In agreement with the clipping model (1), it is possible to
divide the signal samples into three disjoint sets of indexes
R,H,L such that R ∪H ∪ L = {1, . . . , N} and, correspond-
ingly, to distinguish the reliable samples (not influenced by
clipping), samples clipped from above to the high clipping
threshold θc and samples clipped from below to the low clip-
ping threshold (−θc), respectively. The respective projection
operators MR, MH and ML (masks) are used to select samples
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Fig. 1. Example of a clipped signal. Various recovery possibilities are de-
picted, showing different types of solution consistency (discussed in Sec. III).

from the corresponding set. With the mask operators, the
following feasible sets can be defined:

ΓR = {x̃ |MRx̃=MRy}, (2a)
ΓH = {x̃ |MHx̃≥θc}, ΓL = {x̃ |MLx̃≤−θc}, (2b)

Γ = ΓR ∩ ΓH ∩ ΓL, (2c)

where we use the tilde notation x̃ to represent arbitrary time-
domain signals, while avoiding the confusion with x, the clean
signal. Note that these sets depend on the observation y, since
the masks do so too, hence formally we should write Γ(y), for
example, but we omit the dependence on the signal at most
places for brevity.

The original dynamic range of the signal before clipping
is typically unknown. However, if it is known or can at least
be estimated, additional constraints like MHx̃ ≤ θmax and
MLx̃ ≥ −θmax can be appended to (2) to further restrict the
feasible set Γ. The scalars θmin and θmax represent the lower
and upper bounds for the value of the signal. For example,
[15] reports an improvement in signal recovery after such
a trick for heavily clipped signals.

The declipping task is clearly ill-posed, since there is
an infinite number of solutions that satisfy (2). Therefore,
considering some additional information about the signal is
crucial. That is where a signal model or statistical model
comes into play, which regularizes the inverse problem.

A. Preliminaries and some notation

Most of the declipping methods rely on signal processing in
a transformed domain. In such a context, A : RN → CP will
denote the analysis operator, and D : CP → RN the synthesis
operator. The operators are linear, it holds P ≥ N , and the
operators are connected through the relation D = A∗. The
asterisk ∗ denotes the adjoint operator. As an example, the
common Discrete Fourier Transform (DFT) can play the role
of A, while D is the inverse DFT. The DFT belongs to the
class of unitary transfroms, where it holds D = A−1.

Time-frequency audio processing, however, benefits from
cases where P > N . For computational reasons, authors often
restrict themselves to transforms referred to as the Parseval
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TABLE I
CATEGORIZATION OF EXISTING SINGLE-CHANNEL UNSUPERVISED DECLIPPING APPROACHES. METHODS TREATED IN DETAIL AND EVALUATED ARE

HIGHLIGHTED IN BOLD. TABLE ENTRIES THAT DID NOT FIT INTO A CLEAR CATEGORY ARE LEFT WITH THE “N/A” MARK.

Method Modeling
domain

Modeling
assumptions

Model
parameters

Optimization
criterion

Clipping
consistency

Rel. part
consistency

Optimization
algorithm

Janssen’86 [11] AR AR model AR params. ML no yes EM

Abel’91 [12] spectrum limited
bandwidth band limit several yes yes N/A

Fong’01 [13] N/A AR model N/A AR coefs &
correlation coefs N/A N/A Monte Carlo

Dahimene’08 [14] time AR model AR params. least squares no yes pseudoinverse
Adler’11 [15] synthesis sparsity transform coefs `0-min yes no OMP
Weinstein’11 [16] sparsity sparsity transform coefs reweighted `1-min yes yes CVX
Miura’11 [17] synthesis sparsity transform coefs `0-min no N/A RVP (MP)
Kitić’13 [18] synthesis sparsity transform coefs `0-min approximate approximate IHT

Defraene’13 [19] synthesis sparsity &
psychoacoust. transform coefs `1-min yes no CVX

Selesnick’13 [20] time smoothness signal samples regularized LS no no explicit formula
Siedenburg’14 [21] synthesis social sparsity transform coefs social shrinkage approximate approximate (F)ISTA
Kitić’14 [22] analysis sparsity transform coefs `0-min yes yes ADMM
Jonscher’14 [23] synthesis sparsity transform coefs N/A no N/A N/A
Bilen’15 [24] analysis low-rank NMF NMF params. ML yes yes EM

Kitić’15 [25] analysis &
synthesis sparsity transform coefs `0-min yes yes ADMM

Harvilla’15 [26] time smoothness signal samples regularized LS no no explicit formula
Takahashi’15 [27] N/A low rank signal samples quadratic yes yes custom
Elvander’17 [28] synthesis sparsity transform coefs atomic norm min yes yes SD

Rencker’18 [29] synthesis sparsity &
learned dict.

transform coefs &
dictionary `0-min approximate approximate alternate GD

Chantas’18 [30] synthesis sparsity transform coefs KL divergence no no variational Bayes

Gaultier’19 [31] analysis &
synthesis sparsity transform coefs `0-min yes yes ADMM

Záviška’19 [32] synthesis sparsity transform coefs `0-min yes yes ADMM

Záviška’19b [33] synthesis sparsity &
psychoacoust. transform coefs `1-min yes yes DR

Abbreviations: ADMM: Alternating Direction Method of Multipliers, AR: Autoregressive, CV: Condat–Vũ algorithm, CVX: convex opt. toolbox [34],
DR: Douglas–Rachford alg., EM: Expectation–Maximization, (F)ISTA: (Fast) Iterative Shrinkage Thresholding Alg., GD: Gradient Descent,

IHT: Iterative Hard Thresholding, KL: Kullback–Liebler, LS: Least Squares, ML: Maximum Likelihood, NMF: Nonnegative Matrix Factorization,
(O)MP: (Orthogonal) Matching Pursuit, RVP: Recursive Vector Projection, SD: Semidefinite programming

tight frames [35], i.e., operators for which DD∗ = A∗A = Id.
Here Id stands for the identity operator. Unitary operators are
clearly special cases of Parseval tight frames.

In synthesis-based signal models, one seeks for coefficients
z ∈ CP that follow some prescribed properties, both directly
in CP and after synthesizing the coefficients into the signal
Dz ∈ RN . In the analysis models, one seeks for a signal
x ∈ RN that satisfies some properties both in RN and after
the analysis of x into coefficients, Ax ∈ CP [36].

In finite-dimensional spaces (which is our case), the opera-
tors D and A can be identified with matrices. The matrix D
corresponding to the synthesis is often called the dictionary,
since its columns are the basic blocks in building the signal
via their linear combination [37].

Since the methods covered by this survey concern exclu-
sively audio, it is natural that the majority of the methods
use transforms that map the signal to the time-frequency (TF)
plane (and vice versa), such as the short-time Fourier transform
(STFT), often referred to as the discrete Gabor transform
(DGT) [35], [38]. Methods based on such time-frequency
transforms work with (possibly overlapping) blocks of the
signal. Such signal chunks are usually created by means of

time-domain windowing; note that this is the reason why we
will speak about signal windows, alternatively about signal
blocks, but not about the time frames of the signal, in order to
avoid confusion with the above-introduced concept of frames
in vector spaces. The TF coefficients are treated in the form
of the vector z from the mathematical point of view, but note
that for the user it is often more convenient to form a matrix
[zft] from z. Its rows represent frequencies and its columns
correspond to time-shifts of the windows. Such an arrangement
corresponds to how spectrograms of audiosignals are usually
visualized. The methods in Sections IV-I and IV-J will need
to explicitly refer to individual signal blocks. For this sake,
an additional index t will be used, such that, for instance, yt
will denote the t-th block of the clipped signal; in analogy to
this, appending t to the masking operators and to the feasible
sets will refer to their restriction in time, such as MRt or
Γ(yt) = Γt.

Norms of vectors will be denoted by ‖·‖, usually appended
with the lower index characterizing the particular type of the
norm. Using no index corresponds to the case of the operator
norm (i.e., the largest singular value of the operator).

Many methods are based on a concept known as ‘sparsity’,
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popularized in the last two decades [37], [39]. Exploiting spar-
sity means that within feasible declipping solutions, signals
Dz with a low number of nonzero elements of z are prioritized
(synthesis model) or signals x with a low number of nonzeros
in Ax are preferred (analysis model) [39]. Mathematically, the
‖ · ‖0 pseudo-norm is used to count the nonzeros of a vector.

Several methods presented below utilize the convex opti-
mization; typically a sum of convex functions has to be min-
imized. In line with the recent trend in convex optimization,
numerical solutions of such problems will be found using the
so-called proximal splitting algorithms [40], [41], [42]. These
are iterative schemes, usually with only a few principal—
but rather simple—computations in each iteration. Each such
computational step is related to the respective function in
the sum separately. We recall that the proximal operator of
a convex function f is the mapping

proxf (x) = arg min
z

1

2
‖x− z‖22 + f(z). (3)

The concept provides a generalization of the common projec-
tion operator [40].

B. Consistency of declipping and relation to inpainting
Whichever technique is employed, every declipping method

can be assigned to one of several classes, based on what is
called consistency. A fully consistent method seeks a solution
that is a member of the intersection Γ = ΓR ∩ ΓH ∩ ΓL, or
in other words, the recovered signal should equal the original
samples in the reliable part and, at the same time, it should lie
beyond the clipping thresholds in the clipped part. A solution
consistent in the reliable part belongs to ΓR, while a solution
consistent in the clipped part is a member of ΓH∩ΓL. A fully
inconsistent method does not require a strict membership of
the solution in any of the sets ΓR,ΓH,ΓL. Even in such
a case, a method either reflects the sets ΓH and ΓL (and
thus the thresholds θc and −θc are taken into account in
declipping) or these sets are completely ignored. Actually, if
a user (or a particular application) decides not to take ΓH

and ΓL into consideration, the declipping problem boils down
to the so-called audio inpainting problem. Inpainting treats
clipped samples simply as missing, hence ignoring potentially
useful information; indeed, some of the presented methods in
this survey are of this kind. Audio inpainting itself is an area,
see for example [50], [51], [52] and the references therein.
In our declipping experiment below, we included Janssen’s
method [11] as the representative of such methods (being
actually very successful in audio inpainting).

Fig. 1 shows examples of different types of solution consis-
tency. Consistent methods reflect the observed clipped signal
and the clipping model, but the solutions are usually quite
slow to compute. Inconsistency usually means a gain in speed
in exchange for only approximate solutions (which might still
be great for the human auditory system).

III.
DECLIPPING METHODS NOT SELECTED FOR EVALUATION

Apart from the detailed treatment of the methods selected
for further numerical evaluation, this section is devoted to

surveying the other declipping methods in the literature. We
remind the reader that the characterization of all declipping
methods is summarized in Table I.

Abel and Smith [12] discuss declipping of signals whose
spectral band is limited (more than at the Nyquist frequency).
This assumption is the key ingredient leading to a convex
optimization program. The recovery uses oversampling and
interpolation with sinc functions. The method is fully consis-
tent, apart from the “noisy” variant treated at the end of [12].

Fong and Godsill [13] approach the declipping problem
from the viewpoint of Bayesian statistical signal processing.
The main assumption is the autoregressive nature of the
signal, and to find the declipped samples, Monte Carlo particle
filtering is utilized. The experiment follows a very simplified
scenario (a single test on a very short speech sample).

Dahimene et al. [14] also start from the autoregressive (AR)
assumption imposed on the signal. The paper forms a system
of linear equations which is row-wise pruned in correspon-
dence to the positions of the clipped samples. Two means
of signal estimation are suggested: one based on ordinary
least squares and the other based on Kalman filtering. This
modeling does not guarantee any consistency in the clipped
part.

The method introduced by Miura et al. [17] is based on
a procedure coined recursive vector projection (RVP) by the
authors. It turns out that RVP is actually the classical matching
pursuit algorithm [43] restricted to reliable samples of the
signal. Thus, it is a synthesis approach, with the dictionary
described as the (possibly overcomplete) DFT. Since the
clipping constraints are not taken into consideration, [17] is
a method inconsistent in the clipped part, and its idea is
actually quite similar to filling the missing samples of audio
using the orthogonal matching pursuit in [44].

Jonscher et al. [23] introduce the Frequency Selective
Extrapolation method. The signal is processed block by block.
The clipped samples are treated as missing and their recon-
struction is performed sequentially. The model behind the
method can be understood as synthesis sparsity-based, with
an overcomplete Fourier dictionary. Tests were carried out on
speech signals only.

The method proposed by Takahashi et al. [45], [27] starts
from an interesting observation that when the Hankel matrix
is formed from a signal that follows the autoregressive (AR)
model, the rank of this matrix is identical to the order of
the respective AR process. Therefore, the approach aims at
estimating the unknown but clipped elements of the Hankel
matrix, whose rank is being minimized at the same time. After
a series of simplifications, the authors formulate a convex
optimization problem. The reported results look promising but
unfortunately no data or codes are available.

Harvilla and Stern [26] introduce the RBAR (Regularized
Blind Amplitude Reconstruction) method, which is reported
to run in real time. The declipping task is formulated as an
extended Tikhonov-regularized least squares problem, where
the main idea is to penalize large deviations in the second
difference of the signal, and at the same time to penalize
deviations from the clipping level in the clipped part. The
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experiments were carried out on speech signals, no codes are
available.

Selesnick [20, Sec. 8.6] uses a similar regularizer. He pro-
poses to minimize the energy of the the third difference of
the signal, encouraging the filled-in data to have the form of
a parabola. The numerical program is a least squares problem
and as such it has a closed-form solution. Selesnick’s method
is however presented as one of the examples of the utilization
of least squares and the paper does not provide any comparison
with other methods.

Chantas et al. [30] build their declipping algorithm upon
the Bayesian inference. They use a synthesis model, where
the discrete cosine transform (DCT) coefficients are modeled
as following the Student’s distribution, complying with the
assumption of their sparsity. No utilization of clipping con-
straints is involved. In addition, no computer implementation
is available, unfortunately.

Elvander et al. [28] introduce probably the first approach
that adapts the grid-less sparse recovery framework to the de-
clipping problem. In brief, grid-less means that the dictionary
does no longer contain countably many columns. In the case
of [28], the continuous range of frequencies is available as the
building blocks for the signal. A drawback of such an approach
is that the resulting minimization problem is a semidefinite
program, which can be computationally expensive.

In his PhD thesis, Gaultier [31] extends the idea of earlier
algorithms based on hard thresholding [18], [22], [25]. The
author works with the idea similar to the one published in
[21], and introduces coefficients neighborhoods such that the
TF coefficients are not processed individually (as is commonly
done) but group-wise. This is shown to be beneficial, espe-
cially for mild clipping. A comprehensive study based of such
an approach is contained in a recent article [46].

This survey considers only hard clipping governed by
Eq. (1) but let us shortly mention the existence of the soft
clipping (and the corresponding declipping methods). The
transfer function of the soft clipping does not break suddenly
at the points −θc and θc as in the case of hard clipping. Rather
a certain transition interval is present around these spots that
makes the transfer function smoother, resulting in less spectral
distortion of clipping. The recovery of signals that have been
soft-clipped is treated in [47], [48], [49], to name but a few.

IV. DECLIPPING METHODS SELECTED FOR EVALUATION

This section explains the principles of the methods that
have been selected for the evaluation procedure. Each method
comes with the algorithm in pseudocode (software implemen-
tation is addressed later in Section V). Some of the existing
methods based on the synthesis sparsity are quite easily
adaptable to the respective analysis counterpart; we include
such unpublished variants in several cases to cover a wider
range of methods. The order of the methods in this Section
is chosen such that the `0-based are covered first, then the
`1-based (optionally including psychoacoustics) are presented,
then methods that can adapt to the signal, and as the last one
the simple Janssen method [11] serving as the “anchor”.

A. Constrained Orthogonal Matching Pursuit (C-OMP)

The approach to audio declipping proposed by Adler et
al. [15] follows the same idea as the article [44] devoted to
inpainting. The Orthogonal Matching Pursuit (OMP) is a well-
known greedy-type algorithm [53], [54] used here as the first
part of the procedure that approximates sparse coefficients in
the NP-hard problem

arg min
z
‖z‖0 s.t.

{
‖MRy −MRDz‖2 ≤ ε,
Dz ∈ ΓH ∩ ΓL.

(4)

It is clear that (4) is a synthesis-based signal model and that
it is clip-consistent, but inconsistent in the reliable part. The
authors of [15] use an overcomplete discrete cosine transform
in the role of the synthesis operator D.

The signal is cut into overlapping windows first, and the
OMP is applied in each window separately. In the course of
the OMP iterations, an increasing number of significant coef-
ficients with respect to D are picked in a greedy fashion. Once
such a subset of coefficients fulfils ‖MRy −MRDz‖2 ≤ ε,
where ε > 0 is the user-set precision required for the reliable
part, the OMP stops. Notice that doing this is effectively
performing the audio inpainting using OMP, i.e., ignoring the
second condition in (4). However, as the very last step of
the estimation, the current solution is updated using convex
optimization. This makes the approach very slow, since it
requires an iterative algorithm. The authors of [15] rely in
this step on the CVX toolbox [34] in which (the subset of)
D is handled in the matrix form, which deccelerates the
computations even more. After the algorithm is finished, the
coefficients are synthesized using D. Individual blocks of the
declipped signal are then put together in the time domain,
using the common overlap–add procedure. The algorithm for
a single window is summarized in Alg. 1.

Algorithm 1: Constrained OMP declipping [15] (C-OMP)

Input: D, y ∈ RN , R, H, L
Parameters: ε > 0

1 Using OMP, find an approximate solution, ẑ, to problem
arg minz ‖z‖0 s.t. ‖MRy −MRDwz‖2 ≤ ε

2 Fix the support Ω ⊆ {1, . . . , P} of ẑ

3 Solve the constrained convex program
ẑΩ = arg minzΩ

‖MR(y−DΩzΩ)‖2 s.t. DΩzΩ ∈ ΓH ∩ ΓL

4 return DΩẑΩ

Some remarks should be made here: First, consider D as
a matrix for the moment; the OMP requires that the columns
of D have the same energy, i.e., the same `2 norm—this kind
of normalization guarantees a fair selection of coefficients,
at least for oscillatory signals, such as audio. To preserve
such a condition, the problem on line 1 of Alg. 1 needs to
weight the columns of D, which arises from the fact that the
column subvectors used for estimation, MRD, do not contain
the same energy. We denote this weighted synthesis Dw. For
more details, see the original paper [15] or the discussion on
different types of weighting in [55].
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Second, Alg. 1 uses the notation DΩ for the synthesis
operator restricted just to its columns contained in the set Ω,
and, by analogy, for the restricted vector of coefficients zΩ.
There is in fact no need to weight the columns of DΩ for the
purpose of solving the problem on line 3.

Third, notice that the condition ‖MRy − MRDz‖2 ≤ ε
is in general violated after the update at line 3 because there
might be no solution to the convex program that would satisfy
it. Furthermore, hand in hand with this, notice that while
D is usually chosen as a frame in RN , the restriction DΩ

does not have to inherit this property anymore, and this fact
naturally applies to MRDΩ as well. In turn, when OMP finds
Ω ⊂ {1, . . . , P}, there is no guarantee of the existence of any
solution to the convex program. We will return to this issue
in the experimental part since it will serve as an explanation
of the strange numerical behavior of the C-OMP in some rare
cases.

B. A-SPADE

The A-SPADE (Analysis SPArse DEclipper) was introduced
by Kitić et al. in [25]. It is a natural successor to similar
sparsity-based approaches [18] and [22], which are outper-
formed by A-SPADE [25].

The A-SPADE algorithm belongs to the `0-based family
and it approximates the solution of the following NP-hard
regularized inverse problem

min
x,z
‖z‖0 s.t. x ∈ Γ(y) and ‖Ax− z‖2 ≤ ε. (5)

Here, x ∈ RN stands for the unknown signal in the time
domain, and z ∈ CP contains the (also unknown) coefficients.

Parseval tight frames [35], i.e., DD∗ = A∗A = Id, are
considered. The processing of the signal is sequential, window
by window. Due to the overlaps of windows, it suffices to use
a simple TF transform like the DFT or the DCT (both possibly
oversampled) which are Parseval tight frames.

The optimal solution to (5) in each window is approximated
by means of the alternating direction method of mutipliers
(ADMM). The resulting algorithm is in Alg. 2; for a detailed
derivation and discussion, see [56]. The computational cost of
the A-SPADE is dominated by the signal transformations; the
algorithm requires one synthesis and one analysis per iteration.
The hard thresholding H is a trivial operation. The projection
on line 3 seeks for the signal x ∈ Γ whose analysis Ax is
the closest to z̄(i+1) − u(i). For tight frames, this task can be
translated to an elementwise mapping in the time domain [56],(

projΓ(u)
)
n

=

 yn for n ∈ R,
max(θc, un) for n ∈ H,
min(−θc, un) for n ∈ L,

(6)

(u)n denoting the nth element of the vector, i.e., (u)n = un.
Compared with most available algorithms, it is fairly easy

to tune the parameters. The variable k directly represents the
number of selected coefficients in the hard-thresholding step.
This number is growing in the course of iterations, driven by
the parameters s and r (every r-th iteration, k is increased
by s). The algorithm works really well with the basic setting,
where k increases by one (i.e., s = r = 1).

Algorithm 2: A-SPADE algorithm [25]

Input: A, y ∈ RN , R, H, L, ε > 0

Parameters: s, r ∈ N
Initialization: x̂(0) ∈ RN , u(0) ∈ CP , k = s

1 for i = 0, 1, . . . until ‖Ax− z‖2 ≤ ε do
2 z̄(i+1) = Hk

(
Ax̂(i) + u(i)

)
3 x̂(i+1) = arg minx‖Ax− z̄(i+1) +u(i)‖22 s.t. x ∈ Γ

4 u(i+1) = u(i) +Ax̂(i+1) − z̄(i+1)

5 if (i+ 1) mod r = 0 then k = k + s

6 return x̂(i+1)

C. S-SPADE

Similarly to A-SPADE, Kitić et al. [25] also introduce a syn-
thesis-based formulation,

min
x,z
‖z‖0 s.t. x ∈ Γ(y) and ‖x−Dz‖2 ≤ ε. (7)

However, the S-SPADE algorithm from [25] has been shown in
[32], [56] as actually solving a different optimization problem
than (7). The same publications suggested a new version of
the S-SPADE as the true counterpart of the A-SPADE, and
showed its superiority in performance. Such an algorithm is
in Alg. 3.

The computational complexity of Algs. 2 and 3 is the same:
one synthesis, one analysis, the hard thresholding and an
elementwise mapping per iteration is employed.

Algorithm 3: S-SPADE algorithm according to [32]

Input: D, y ∈ RN , R, H, L, ε > 0

Parameters: s, r ∈ N
Initialization: x̂(0) ∈ RN , u(0) ∈ RN , k = s

1 for i = 0, 1, . . . until ‖x−Dz‖2 ≤ ε do
2 z̄(i+1) = Hk

(
D∗(x̂(i) − u(i))

)
3 x̂(i+1) = arg minx‖Dz̄(i+1)−x+u(i)‖22 s.t. x ∈ Γ

4 u(i+1) = u(i) +Dz̄(i+1) − x̂(i+1)

5 if (i+ 1) mod r = 0 then k = k + s

6 return x̂(i+1)

D. Declipping using weighted `1 minimization

The above methods are based on the `0 approach. Now
we present several methods that rely on what is known as
convex relaxation: their idea is to substitute the non-convex
`0 pseudonorm with the “closest” convex norm, which is the
`1 [37], [57]. The two declipping formulations in this section
are quite basic, but to our knowledge they are treated only in
[59] and [33]. In this article, they are included in the evaluation
in their simple form but they also serve as the building block
for algorithms from further sections.

Let us start with the simple synthesis-based task

arg min
z
‖w � z‖1 s.t. Dz ∈ Γ, (8)
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where D is the synthesis operator and � denotes the elemen-
twise product of two vectors. The vector w > 0 is the vector
of weights that can be set to all ones when no coefficients
should be prioritized, but the larger an element of w is, the
more penalized the corresponding coefficient in z is in the
optimization. Due to the strict requirement Dz ∈ Γ, the
approach based on (8) is fully consistent.

To find an appropriate algorithm to solve (8), it is convenient
to rewrite it in an unconstrained form:

arg min
z
‖w � z‖1 + ιΓ(Dz), (9)

where the hard constraint from (8) has equivalently been
replaced by the indicator function ι,

ιC(u) =

{
0 for u ∈ C,
+∞ for u /∈ C. (10)

Next, the observation is used that ιΓ(Dz) = (ιΓ ◦ D)(z) =
ιΓ∗(z), with Γ∗ being the set of coefficients consistent with
the clipping model, i.e., Γ∗ = {z̃ | Dz̃ ∈ Γ}; see also the
definitions (2). The Douglas–Rachford algorithm (DR) [58] is
able to find the minimizer of a sum of two convex functions
of our type. The algorithm is presented in Alg. 4.

Algorithm 4: Douglas–Rachford (DR) alg. solving (8) [59]

Input: D, y ∈ RN , w ∈ RP , R, H, L
Parameters: λ = 1, γ > 0

Initialization: z(0) ∈ CP

1 for i = 0, 1, . . . until convergence do
2 z̃(i) = projΓ∗z

(i) % using (11)
3 z(i+1) = z(i) + λ

(
softγw(2z̃(i) − z(i))− z̃(i)

)
4 return Dz(i+1)

The algorithm iterates over two principal steps: The first is
the projection onto Γ∗, which corresponds to the proximal
operator of ιΓ∗ (recall the definition of prox in (3)). This
projection is nontrivial and an explicit formula exists only
in the case when DD∗ is diagonal. According to [59], for
Parseval tight frames it holds

projΓ∗(z) = z−D∗ (Dz− projΓ(Dz)) , (11)

where projΓ is a trivial, elementwise time-domain mapping.
The second step involves the soft thresholding softτw with the
vector of thresholds τw, which coincides with the proximal
operator of the weighted `1-norm. The soft thresholding is an
elementwise mapping defined by

softτw(z) = z�max

(
1− τw � 1

|z|
, 0

)
. (12)

The analysis counterpart of (8) reads

arg min
x

‖w �Ax‖1 s.t. x ∈ Γ, (13)

where A is the analysis operator. Unfortunately, the presence
of A inside the weighted `1 norm prevents using the DR
algorithm as above. The Chambolle–Pock (CP) algorithm [60]
is able to cope with problems including a general linear

operator. Its particular form for signal declipping is shown
in Alg. 5. There, clip is the Fenchel–Rockafellar conjugate of

Algorithm 5: Chambolle–Pock (CP) algorithm solving (13)

Input: A, y ∈ RN , w ∈ RP , R, H, L
Parameters: ζ, σ > 0 and ρ ∈ [0, 1]

Initialization: x(0) ∈ RN , v(0) ∈ CP

1 for i = 0, 1, . . . until convergence do
2 v(i+1) = clipw(v(i) + σAx̄(i))

3 x(i+1) = projΓ(x(i) − ζA∗v(i+1))

4 x̄(i+1) = x(i+1) + ρ(x(i+1) − x(i))

5 return x̄(i+1)

the soft thresholding, defined as

clipw(x) = (Id− softw)(x). (14)

For ρ = 1, the CP algorithm converges if ζσ‖A‖2 < 1.
Looking at Algorithms 4 and 5, one recognizes that both

have identical cost per iteration. The dominant operations are
the transformations A and D.

E. Declipping in Sparseland (R`1CC)

Weinstein and Wakin [16] present four approaches to de-
clipping, all based on sparsity. The basic synthesis model (8)
is actually covered by the article under the acronym BPCC
(Basis Pursuit with Clipping Constraints). In this section, we
review the most successful method of [16] with coefficient
reweighting, referred to as R`1CC (Reweighted `1 with Clip-
ping Constraints) by the authors. It is again a fully consistent
approach.

R`1CC follows up on a well-known idea from the field of
sparse recovery / compressed sensing: To enhance the sparsity
of the solution, a standard iterative program is performed, but
repeatedly. During the repetitions, the actual weights w are
being adapted based on the current temporary solution [61] and
since each weight is inversely proportional to the magnitude
of the respective coefficients, large coefficients are penalized
less and less during the course of runs. For tiny coefficients,
the opposite is true, leading to a sharper final sparsity and, in
effect, to a significantly better bias of the solution [62], [63].
The described effect, however, is not achieved automatically;
in some applications, the improvement can be large compared
with the non-adaptive case [64], but sometimes it does not
improve much [65] or even fails. It is worth noticing that it is
not correct to say that R`1CC solves (8), see the discussion in
[61].

To be more specific, R`1CC starts by solving the problem
(8) with weights set to w = 1. Based on the solution,
w is recomputed and (8) is solved again, and again, until
a reasonable convergence criterion is fulfilled. The authors of
[16], however, provide no algorithm to solve (8).1 We know
from Sec. IV-D that the DR algorithm can be used. In turn,
R`1CC is presented in Alg. 6, with reweighting performed

1Codes from https://github.com/aweinstein/declipping rely on CVX [34].

https://github.com/aweinstein/declipping
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in step 4. Note that in practice, the number of outer loop
repetitions should be controlled in order to avoid drop in
performance; see the discussion in the evaluation part.

Algorithm 6: R`1CC using the Douglas–Rachford alg.

Input: D, y ∈ RN , R, H, L
Parameters: ε > 0

Initialization: z(0) ∈ CP , w(0) = 1

1 for i = 0, 1, . . . until convergence do
2 Solve (8) using Alg. 4 with w(i) % returns z(i+1)

3 w(i+1) = 1

|z(i+1)|+ε % update weights elementwise

4 return Dz(i+1)

For this survey, we found it interesting to also include the
analysis variant that was not considered in [16]. The procedure
is analogous to the one just presented: Problem (13) is solved
repeatedly, now by the CP algorithm, and the weights w
are adapted depending on the last available solution, similar
to how it is done in Alg. 6. However, the difference is that
the solution of the CP algorithm is a time-domain signal;
recomputing the weights thus requires the application of an
additional analysis operator.

F. Social Sparsity

Siedenburg et al. [21] utilize for audio declipping the
concept of the so-called ‘social sparsity’ [66], [67]. The plain
sparsity induced by the `1 norm as the regularizer, used in
the above sections, resulted in the soft thresholding of each
coefficient individually in the respective algorithms. The social
sparsity approach is more general: it allows the shrinkage of
a coefficient, based also on the values of other coefficients,
typically the coefficients in a kind of “neighborhood”.

The particular design of the neighborhood depends heavily
on the task to solve. For declipping, i.e., reverting a time-
domain damage, TF neighborhoods that correspond to spread-
ing in the direction of time are beneficial, since they help to
share and leak information in the time direction. Such neigh-
borhoods promote persistence in time, since with clipping, it
makes more sense to focus on harmonic structures in audio
than on transients.

Mathematically, the problem to solve is

min
z

{
1

2
‖MRDz−MRy‖22 +

1

2
‖h(MHDz−MHθc1)‖22 +

+
1

2
‖h(−MLDz−MLθc1)‖22 + λR(z)

}
. (15)

It is a synthesis model and it allows inconsistency of the
reliable part (see the first term). The terms with h penalize
the distance of the solution Dz from the feasible set Γ in the
clipped part; function h, called hinge, acts elementwise such
that for each element of its input,

h(u) =

{
u for u < 0

0 otherwise.
(16)

The bold symbol 1 represents the vector of ones which is as
long as the signal. Since the use of h in (15) does not guarantee
that Dz stays above and below the clipping thresholds, the
method [21] is also inconsistent in the clipped part.

The first three terms in (15) are clearly differentiable, even
with the Lipschitz-continuous gradient. Therefore, (15) can be
treated as a sum of two functions, the second of them, R, being
possibly non-smooth. This observation makes it possible to use
standard optimization algorithms such as ISTA or FISTA [68],
[69], [40], as outlined in Alg. 7.

Algorithm 7: ISTA-type Social sparsity declipper [21]

Input: y ∈ RN , λ > 0, R, H, L, D; the shrinkage
operator S (L / WGL / EW / PEW)

Parameters: γ ∈ R, δ = ‖DD∗‖
Initialization: ẑ(0), z(0) ∈ CP

1 for i = 0, 1, . . . until convergence do
2 g1 = D∗M∗R(MRDz(i) −MRy) % gradients
3 g2 = D∗M∗H h(MHDz(i) −MHθc1)

4 g3 = D∗M∗L h(−MLDz(i) −MLθc1)

5 ẑ(i+1) = Sλ/δ
(
z(i)− 1

δ (g1 + g2 + g3)
)

% step, shrink
6 z(i+1) = ẑ(i+1) + γ (ẑ(i+1) − ẑ(i)) % extrapolate

7 return Dẑ(i+1)

In step 5 of Alg. 7, the gradients are added. Looking at
the structure of the particular gradients on lines 2–4 reveals
that in practical implementation, a much more effective way
of computing g1 + g2 + g3 is possible, containing a single
application of D and D∗. Another important trick that is
not included in Alg. 7 for clarity of presentation is the warm
start/adaptive restart strategy [70]: the authors of [21] found
out that the overall convergence is significantly accelerated if
ISTA is first run for a large λ for a few hundred iterations,
then λ is decreased and so on, until the target value of λ from
(15) is reached.

In Alg. 7, the shrinkage operator S plays the role of the
proximal operator of R. The regularizer R should promote the
expected structure of the TF coefficients of the signal. Paper
[21] suggests using four types of social shrinkage of the TF
coefficients z, indexed by t (in time) and f (in frequency):

• LASSO (L): Sλ(zft) = zft ·max
(

1− λ
|zft| , 0

)
.

• Windowed Group LASSO (WGL):
Sλ(zft) = zft ·max

(
1− λ

‖N (zft)‖ , 0
)

,
where N (zft) denotes a vector formed from coefficients
in the neighborhood of TF position ft.

• Empirical Wiener (EW):
Sλ(zft) = zft ·max

(
1− λ2

|zft|2
, 0
)

.

• Persistent Empirical Wiener (PEW):
Sλ(zft) = zft ·max

(
1− λ2

‖N (zft)‖2 , 0
)

.

Simple LASSO shrinkage is identical to soft thresholding and
corresponds to the proximal operator of R = ‖ · ‖1. The
Empirical Wiener, also known as the non-negative garrote [71],
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is better than LASSO in terms of bias [63] but it still operates
on coefficients individually. EW is the proximal operator of
a function R that has no explicit form, see for instance [72,
Sec. 3.2] for more details. In contrast to LASSO and EW,
both WGL and PEW involve TF neighborhoods, such that
the resulting value of the processed coefficient zft depends
on the energy contained in N (zft). Again, the difference is
only the second power used by the PEW. It is interesting to
note that the study [73] proves that neither WGL nor PEW
are proximal operators of any penalty R; in other words, the
respective shrinkages are purely heuristic. Hand in hand with
this, there are guarantees of convergence of Alg. 7 for LASSO
and the Empirical Wiener if the extrapolation parameter γ is
set properly [21], [40], while setting it in the case of WGL
and PEW requires trial tuning.

The experiments in [21] give evidence that out of the four
choices, only PEW and EW are well-performing and they
outperform both the OMP [15] and C-IHT [18] approaches.

G. Perceptual Compressed Sensing

The approach by Defraene et al. [19] was for a long time
the only one to include psychoacoustics in declipping (both in
the model itself and in the evaluation). Although the approach
is not quite related to the compressed sensing, we refer to
the method using the same name as the authors coined. The
following optimization problem is solved:

min
z

{
1

2
‖MRDz−MRy‖22 + λ‖w � z‖1

}
s.t. Dz∈ΓH∩ΓL.

(17)
This might look like just another variation of the synthesis-
based declipping, but the main difference from the other
methods is that the weights w are computed based on a human
perception model. Note that with respect to our terminology,
this method is consistent in the clipped part.

To be more specific about the method, the signal is pro-
cessed window-by-window. Ignoring the introduction of cor-
rect notation, task (17) is solved independently for the signal
chunks given by windowing. The recovered signal is obtained
by the application of the synthesis D to the found coefficients,
and by reusing the reliable samples at positions given by the
set R. Once all the windows are processed this way, the final
signal is obtained via the overlap–add procedure.

The psychoacoustic model enters the task through w. The
authors of [19] rely on the MPEG-1 Layer 1 psychoacoustic
model 1 [74], [75], which computes the instantaneous masking
curve based on the incoming signal and on the absolute
threshold of hearing. In short, such a curve informs us about
the spectral components in the signal that will not be perceived
when other strong components are present. This effect is
commonly known as the instantaneous masking or frequency
masking. Inspired by this effect, w is set as the inverse of this
curve (the curve in dB is non-negative, which justifies such an
approach from the mathematical point of view). Application
of such weights can be interpreted as discouraging the intro-
duction of distinctively audible new spectral components that
are not present in the original signal. On the other hand, the

introduction of less audible or inaudible spectral components
is tolerated to a greater extent [19].

Worth noticing is that a correctly treated masking curve:
1) should be computed based on the original signal, not
available in practice, 2) should be applied to the very current
window of the signal. The authors of [19] cope with both the
issues in such a way that they recurrently use the just declipped
window as the base for calculating the masking curve, which
is then applied in declipping the subsequent window.

In terms of the numerical treatment of (17), [19] proposes
an algorithm termed PCSL1. Its core, optimization part, refers
to the CVX toolbox [34], but no particular codes for PCSL1
are available, unfortunately. After several unsuccessful trials
with CVX, we decided to solve the problem with the so-called
generic proximal algorithm introduced by Condat and Vũ [41],
[76]. Such an algorithm, in the following abbreviated as the
CV algorithm, is able to solve convex problems with more than
two terms, possibly even containing linear operators. This is
the case of (17), indeed. Alg. 8 presents the particular shape of
the CV algorithm for declipping. The projection onto ΓH∩ΓL

is done using the second and third lines of (6). Algorithm 8
is guaranteed to converge if σ < τ−1 − 1/2.

Algorithm 8: Condat–Vũ (CV) algorithm solving (17)

Input: D, y ∈ RN , w ∈ RP , λ > 0, R, H, L

Parameters: σ, τ > 0 and ρ ∈ (0, 1]

Initialization: z(0) ∈ CP , u(0) ∈ RN

1 for i = 0, 1, . . . until convergence do
2 z̃(i+1) =

softτλw
(
z(i)−τD∗

[
M∗RMR(Dz(i)−y)+u(i)

])
3 z(i+1) = ρz̃(i+1) + (1− ρ)z(i)

4 p(i+1) = u(i) + σD(2z̃(i+1) − z(i)) % auxiliary
5 ũ(i+1) = p(i+1) − σ projΓH∩ΓL

(
p(i+1)/σ

)
6 u(i+1) = ρũ(i+1) + (1− ρ)u(i)

7 return Dz(i+1)

H. Psychoacoustically motivated `1 minimization

The second method that involves psychoacoustics, by
Záviška et al. [33], is similar to the above (Section IV-G), but
it is designed as completely consistent. Recall that this means
that the declipped signal should belong to the set Γ defined
in (2). The problem solved in [33] is actually identical to (8),
but the weights are now derived from the human perception
model. It is a synthesis-based signal model, and again, the
Douglas–Rachford algorithm presented in Alg. 4 can be used
to find the numerical solution (with the efficient projection
onto Γ∗ in the case that D is a tight frame).

Unlike [19], the paper [33] discusses multiple ways of
choosing the weights w. Besides the basic inversion, there
are several other options of “inverting” the masking curve
that have been introduced and evaluated. Surprisingly, the best
declipping results were obtained using weights which simply
grow quadratically with frequency! Such an option is not



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 10

psychoacoustically inspired at all, but its success might be
explained by the fact that signals after clipping have a very
rich spectrum, while the spectra of original signals decay with
increasing frequency. In other words, regularizing the spectrum
in such a way (in addition to sparsity) seems to be more
powerful than modeling delicate perceptual effects. For the
experiments in Sec. V, just this “parabola” option was selected.

Motivated by such an interesting observation, we also
employed these quadratic weights w in the method from
Sec. IV-G. See more in the evaluation part of the article.

I. Dictionary Learning approach

In the next two sections, we consider T windows y1, . . . ,yT
of the clipped signal y, and their corresponding consistency
sets Γt = Γ(yt).

Sparsity-based methods reviewed so far use fixed and known
synthesis operators, such as the DCT or Gabor transforms.
However, another approach consists in adapting D to the
observed data. Learning the dictionary (we prefer the term
dictionary since D will be treated in its matrix form from
now on), rather than using an off-the-shelf one, has shown
improvements in inverse problems such as denoising or in-
painting [77], [39]. Dictionary learning (DL) from clipped
observations has been formulated by Rencker et al. [78], [29].
Given a collection of T clipped signals y1, . . . ,yT (typically
corresponding to T overlapping time windows extracted from
a signal), dictionary learning from clipped observations can be
formulated as:

min
zt,D

T∑
i=1

d(Dzt,Γt)
2 s.t. ‖zt‖0 ≤ K, t = 1, . . . , T, (18)

where d(Dzt,Γt) is the Euclidean distance of Dzt to the set
Γt, and Γt is the feasibility set corresponding to the signal
yt (as defined in (2)). Note that using the notation in Sec. II,
d(·,Γt)2 is equivalent to the data-fidelity term in (15), and
is convex, differentiable with Lipschitz gradient thanks to the
convexity of Γt. DL algorithms typically alternate between
optimizing z1, . . . , zT with D fixed (sparse coding step),
and optimizing D with z1, . . . , zT fixed (dictionary update
step) [39].

The sparse coding step solves, for each t independently:

min
zt

d(Dzt,Γt)
2 s.t. ‖zt‖0 ≤ K, (19)

which can be aproximated using consistent Iterative Hard
Thresholding (IHT). Consistent IHT, proposed in [18], is
a simple algorithm that iterates:

zt ← HK(zt + µD>(Dz− projΓt
(Dzt)), (20)

which corresponds to a gradient descent step (with the param-
eter µ), followed by the hard thresholding. The `0 constraint
in (18) can also be relaxed into an `1 constraint, in which
case the sparse coding step would correspond to an ISTA-type
algorithm in Alg. 7.

The dictionary update step is formulated as:

min
D∈D

T∑
t=1

d(Dzt,Γt)
2, (21)

which can be solved using (accelerated) gradient descent.
Note that D is constrained to belong to D = {D =
[d1, . . . ,dP ] | ‖dp‖2 ≤ 1 for p = 1, . . . , P} in order to
avoid scaling ambiguity.

The overall dictionary learning algorithm is presented in
Algorithm 9. When y1, . . . ,yT correspond to overlapping
windows extracted from a given signal, each window can
be recovered using the estimated dictionary and sparse co-
efficients as D̂ẑ1, . . . , D̂ẑT . The overall signal can then be
estimated using overlap–add.

Algorithm 9: Dictionary learning algorithm for declipping
[29]
Input: y1, . . . ,yT ∈ RN , R, H, L
Parameters: K, P
Initialization: z

(0)
1 , . . . , z

(0)
T ∈ RP , D(0) ∈ RN×P

1 for i = 0, 1, . . . until convergence do
2 Solve for t = 1, . . . , T , using e.g., consistent IHT:

z
(i+1)
t = arg minzt

d(D(i)zt,Γt)
2 s.t. ‖zt‖0 ≤ K

3 Solve using, e.g., accelerated gradient descent:
D(i+1) = arg minD

∑T
t=1 d(Dz

(i+1)
t ,Γt)

2

4 return D(i+1)z
(i+1)
1 , . . . , D(i+1)z

(i+1)
T

J. Nonnegative Matrix Factorization

Another approach proposed recently by Bilen et al. [24],
[79] is based on the nonnegative matrix factorization (NMF).
This is a dictionary learning approach too, but instead of
learning a dictionary of the waveform, it learns a nonnegative
dictionary together with nonnegative decomposition coeffi-
cients to approximate the unknown power spectrogram of
the original signal. This corresponds to the assumption that
the power spectrogram is approximately low-rank. Given that
the power spectrogram is a phase-free representation, this
modeling is phase-invariant, thus allowing using a dictionary
of a considerably smaller size than the dictionary size in the
approach presented in Section IV-I.

NMF modeling is defined on the latent clean signal power
spectrogram obtained from the analysis short-time Fourier
transform (STFT) coefficients. Note that it is also possible to
decompose power spectrograms of synthesis coefficients, as in
[80], though this has not yet been done for audio declipping
but for a related problem of compressed sensing recovery [80].
More specifically, the analysis NMF approach assumes that the
power spectrogram nonnegative matrix P = [pft]

F,T
f,t=1 (with

pft = |zft|2, and zft being clean signal STFT coefficients) is
approximated as

P ≈ V = WH, (22)

with W ∈ RF×K+ and H ∈ RK×T+ nonnegative matrices,
and K > 0 usually chosen much smaller than F and T ,
K � min(F, T ). The matrix W can be understood as the
power spectrum dictionary (columns of W being character-
istic spectral patterns), while H contains the corresponding
nonnegative decomposition (activation) coefficients.
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Note that the modeling in (22) is not yet well defined,
since the approximation is not specified mathematically and
the power spectrogram P is unknown. To specify it properly,
it is proposed in [24], [79] to resort to the maximum likelihood
(ML) optimization under a probabilistic Gaussian formulation
of Itakura Saito (IS) NMF [81]. To simplify the formulation
here, let all signals be considered either in the time domain
(windowed, with overlap) or in the frequency domain, while
the two domains are related by the DFT for each time block
separately. The DFT, denoted A here, A : CF → CF , is
unitary, and the number of frequency channels F is identical
to the number of time-domain samples. Let Y = [y1, . . . ,yT ]
and X = [x1, . . . ,xT ] denote the windowed versions of
the clipped and original (unknown) signals, respectively, and
Z = [z1, . . . , zT ] the STFT of the original signal (zt = Axt).
It is assumed that the coefficients in Z are all mutually
independent, and each coefficient zft follows a complex
circular zero-mean Gaussian distribution zft ∼ Nc(0, vft)
with V = [vft]f,t being a low-rank power spectrogram
approximation specified in (22). NMF model parameters are
estimated optimizing the ML criterion (see [24] for details)

(W,H) = arg max
W′,H′

p(Y|W′,H′) (23)

via the generalized expectation–maximization (GEM) algo-
rithm [82] with multiplicative update (MU) rules [81]. The fi-
nal windowed signal block estimate X̂ is recovered via Wiener
filtering, see (24).2 This is altogether summarized in Alg. 10,
where MRt denotes the restriction of the operator MR to block
t, and all operators (e.g., MRt or A∗), when applied to ma-
trices, are applied column-wise. It should be highlighted that,
though the NMF modeling (22) is defined on the signal power
spectrogram, the signal is reconstructed with both amplitude
and phase since the Wiener filtering (24) with a complex-
valued Wiener gain (matrix Σ∗MRtytzt

Σ−1
MRtytMRtyt

) maps
from the time domain to the complex-valued STFT domain.

Note that the consistency in the clipped part is not satisfied
in Algorithm 10, and it is difficult to satisfy it properly since
with this constraint the posterior distribution of xt (given the
observations and the NMF model) is not Gaussian any more.
To take the constraint into account, an ad hoc strategy has been
proposed in [24], [79]. This strategy consists in checking in
step 4 whether the clipping constraint is satisfied. If not, the
samples of those blocks x̂t for which it is not satisfied are pro-
jected on the corresponding clipping thresholds, dynamically
added to the reliable set, and for those blocks the steps 3 and
4 are repeated again, and, if necessary, iterated till clipping
constraint is completely satisfied in step 4. Whenever the
iteration of the main algorithm starts over again, the reliable
set is re-initialized (see [24], [79]).

K. Janssen’s autoregressive interpolation

The Janssen method [11] published back in 1986 and thor-
oughly discussed recently in [83] relies on the autoregressive
(AR) signal model. It assumes that a particular signal sample

2Estimating windowed signal blocks results in a problem relaxation [79]
since the overlapping frames are clearly not independent, but those dependen-
cies are not exploited during estimation.

Algorithm 10: NMF GEM algorithm [24]

Input: y1, . . . ,yT ∈ RF , R, H, L
Parameters: K > 0

Initialization: W(0) ∈ RF×K+ , H(0) ∈ RK×T+ (random)
1 V(0) = W(0)H(0)

2 for i = 0, 1, . . . until convergence do
3 Estimate posterior power spectrogram P = [pft]:

p̂ft = |ẑ(i+1)
ft |2 + Σ̂ztzt(f, f),

where (f, f) picks the f -th diagonal matrix entry and

ẑ
(i+1)
t = Σ∗MRtytzt

Σ−1
MRtytMRtyt

MRtyt, (24)

Σ̂ztzt = Σztzt −Σ∗MRtytzt
Σ−1
MRtytMRtyt

ΣMRtytzt ,
with
Σztzt

= diag
(

[v
(i)
ft ]f

)
, ΣMRtytzt

= MRtA
∗Σztzt

,
ΣMRtytMRtyt

= MRtA
∗Σ∗MRtytzt

.
4 Compute: x̂

(i+1)
1 = A∗ẑ

(i+1)
1 , . . . , x̂

(i+1)
T = A∗ẑ

(i+1)
T

5 Update NMF parameters using MU rules:

W(i+1) = W(i) �
(
[W(i)H(i)]

.−2�P̂
)
(H(i))

>

[W(i)H(i)]
.−1

(H(i))
> ,

H(i+1) = H(i) �
(W(i+1))

>(
[W(i+1)H(i)]

.−2�P̂
)

(W(i+1))
>

[W(i+1)H(i)]
.−1 ,

with � and [·].b denoting element-wise matrix
product and power, all divisions being element-wise
as well, and [·]> denoting the transpose.

6 Update: V(i+1) = W(i+1)H(i+1)

7 return x̂
(i+1)
1 , . . . , x̂

(i+1)
T after applying the corresponding

synthesis window and overlap–add to get the signal in
time domain.

can be induced via a fixed linear combination of preceding
samples. The coefficients in such a combination are the AR
coefficients and their total number is called the order of the
AR model. The model can be alternatively interpreted such
that the audio signal is generated by a Gaussian white noise
filtered by an all-pole filter.

In practice, the AR model can be successfully applied to
signals containing harmonic components. The Janssen method
cannot handle the clipping constraints; hence in declipping, it
is only possible to use it in order to replace the clipped samples
by the values linearly estimated from the reliable samples. In
that regard, the Janssen method actually belongs to the audio
inpainting methods.

Despite its simplicity and age, the algorithm is a strong
competitor of the most recent audio inpainting methods, [50].
That is why we decided to consider it within our evaluation.

V. EVALUATION

This section compares the selected audio declipping meth-
ods from the previous section in terms of the quality of
reconstruction. First, the design of the experiments is de-
scribed, along with the characterization of the audio dataset.
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The evaluation metrics used to objectively assess the quality
of reconstruction are presented then. Subsection V-C contains
details about the algorithms from the practical viewpoint, such
as settings of the parameters and comments on the behavior of
the algorithms. Finally, the results are presented and discussed.

A. Experiment design and the dataset

The audio database used for the evaluation consists of
10 musical excerpts in mono, sampled at 44.1 kHz, with an
approximate duration of 7 seconds. They were extracted from
the EBU SQAM database.3 The excerpts were thoroughly
selected to cover a wide range of audio signal characteristics.
Since a significant number of the methods are based on signal
sparsity, the selection took care that different levels of sparsity
were included in the signals (w.r.t. the Gabor transform). We
have selected the sounds of the violin, clarinet, basson, harp,
glockenspiel, celesta, accordion, guitar, piano, and the wind
ensemble.

To the best of our knowledge, the only declipping ex-
periments including audio sampled at 44.1 kHz were carried
in [19] and [33], while the others used audio at 16 kHz at
the most. This survey thus provides the very first large-scale
experiment for a high-quality sampled audio.

The input data were clipped in agreement with the model
in Eq. (1), using clipping levels that were chosen to lead to 7
different input signal-to-distortion ratios (SDR). The SDR for
two signals u and v is defined as

SDR(u,v) = 20 log10

‖u‖2
‖u− v‖2

. (25)

Recall that x denotes the original and y the clipped signal;
hence, the input SDR is computed as SDR(x,y).

With respect to the human perception of clipping severity,
the SDR is more meaningful than treating signals according to
the clipping levels or according to the percentage of clipped
samples [31]. The particular input SDR levels are chosen to
cover the range from very harsh clipping to mild but still no-
ticeable clipping. The specific values along with the respective
percentages of clipped samples are visualized in Fig. 2. Since
the input SDR is used, there is no need to peak-normalize the
audio samples before processing because the number of the
clipped samples remains the same, independently of scaling.

All the data have been processed and evaluated using MAT-
LAB in double precision, and therefore there is no additional
distortion caused by quantization during the process.

B. Evaluation metrics

To evaluate the reconstruction quality, we use several met-
rics.

1) Signal-to-Distortion Ratio: Firstly, we utilize the signal-
to-distortion ratio (SDR), which is one of the simplest,
nonetheless, one of the most used methods. It expresses the
physical quality of reconstruction, i.e., how (numerically) close
to the ground truth x the recovered signal x̂ is.

3https://tech.ebu.ch/publications/sqamcd
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Fig. 2. Percentages of the clipped samples for the selected input SDRs.

The restored signal x̂ is evaluated using the output SDR,
which is computed as SDR(x, ŷ) using (25). Note that evalu-
ating the SDR on the whole signal may handicap the methods
that produce signals inconsistent in the reliable part. (Some
of such methods may include replacing the reliable samples
with the reliable samples from the input clipped signal y as
the final step of the reconstruction.) Therefore, as for example
in [21], we compute the SDR on the clipped part only, SDRc,
as

SDRc(x, x̂) = 20 log10

∥∥∥[MH

ML

]
x
∥∥∥

2∥∥∥[MH

ML

]
x−

[
MH

ML

]
x̂
∥∥∥

2

. (26)

Since this article aims at signal reconstruction, we will rather
use the SDR improvement, i.e., the difference between the
SDR of the restored and the clipped signal, formally defined
as

∆SDRc = SDRc(x, x̂)− SDRc(x,y), (27)

and similarly for ∆SDR. Note that this criterion does not take
into consideration whether a method is or is not consistent in
the clipped part, since (26) does not either. Note also that in the
case of consistency in the reliable part, the ∆SDR produces
the same values, no matter whether the SDR is computed on
the whole signal or on the clipped samples only, and ∆SDR
and ∆SDRc simply coincide.

2) PEAQ: A good quality assessment should correspond
as much as possible to perceptual experience. From this point
of view, the SDR is not the best metric, since the physical
similarity with the original signal does not automatically imply
perceptual similarity and quality. Hence, an evaluation metric
involving the human perceptual system should be used.

PEAQ—Perceptual Evaluation of Audio Quality, which
became the ITU-R recommendation (BS 1387) in 1999, is
considered standard for audio quality evaluation. The final
output of PEAQ is the Objective Difference Grade (ODG)
rating the perceived difference between the clean and the
degraded signal. The ODG score is shown in Table II.

For the experiments, we used the MATLAB implementa-
tion,4 implemented according to the revised version of PEAQ
(BS.1387-1) and available with a detailed review of this

4http://www-mmsp.ece.mcgill.ca/Documents/Software/

http://www-mmsp.ece.mcgill.ca/Documents/Software/


IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 13

method [84]. Unfortunately, this implementation is suited only
for signals with the 48 kHz sampling frequency. Since the
audio database used is sampled at 44.1 kHz, we upsample the
signals in order to compute the PEAQ ODG.

TABLE II
OBJECTIVE DIFFERENCE GRADE

ODG Impairment description

0.0 Imperceptible
−1.0 Perceptible, but not annoying
−2.0 Slightly annoying
−3.0 Annoying
−4.0 Very annoying

3) PEMO-Q: As another evaluation metric taking into
account the human auditory system we use the PEMO-Q
method published in [85]. The Matlab implementation5 is
freely available for academic use and research. PEMO-Q
computes the perceptual similarity measure (PSM), which can
be mapped to the ODG score (see Table II). The mapping
to ODG is available only for signals with 44.1 kHz sampling
frequency but since this is the case of the database used, no
additional resampling is required.

4) Rnonlin: Even though PEMO-Q and PEAQ provide
a reasonable prediction of perceptual evaluation and are often
used in restoration studies, they were actually designed for the
evaluation of bit-rate reduction systems in audio coding. For
this reason, we also include the Rnonlin metric [86], designed
specifically for evaluating nonlinear distortions.

The Rnonlin metric can be used to predict the perceived
quality of nonlinearly distorted signals. The prediction, which
is a value on a scale from 0 to 1 (worst to best), is based
on the weighted cross-correlation of the output of an array of
gammatone filters. The Matlab implementation is available at
Matlab central.6

C. Algorithms and settings

Parameter fine-tuning is a necessary part of the experiment,
as the overall results depend highly on the parameter selection.
In our experiments, we attempted to tune the parameters
of each algorithm such that it produces the best possible
reconstruction result in terms of the SDR.

Several above-presented algorithms employ a time-
frequency (TF) transform and / or processing by blocks. For
such cases, we tried to unify the related setting across the al-
gorithms to ensure a fair comparison. The optimal way would
be to tune the parameters for every input SDR separately (for
instance, harsh clipping with a great number of clipped sam-
ples benefits from the use of longer windows compared to mild
clipping). For simplicity, we stick to a compromise among
all the cases, and the parameters of each method stay fixed
for all test signals and all clipping levels. Specifically, if the
algorithm processes the signal block-by-block, 8192-sample-
long (∼186 ms) blocks are used. If the algorithm utilizes the
DGT, we use the 8192-sample-long Hann window with 75%

5https://www.hoertech.de/de/f-e-produkte/pemo-q.html
6https://www.mathworks.com/matlabcentral/fileexchange/50230-rnonlin

calc

overlap and 16384 frequency channels. Unfortunately, such
a setting could not be used in C-OMP, NMF and DL due to
the high computational complexity of these algorithms. For
C-OMP and DL, we use windows of 1024 samples, with 75%
overlap, and twice-redundant dictionaries of size P = 2048.
The NMF algorithm use windows of size 2048, with 2048
frequency channels.

The implementation of the TF transforms is handled by the
LTFAT toolbox [38] in most of the methods.

As for the termination criterion, we resort to using just
a simple maximum number of iterations. This number has been
empirically set for each algorithm independently to make sure
that the algorithm fully converged. The only exception is the
SPADE algorithms that have the ε parameter involved straight
in the problem formulation, see (5) and (7), and ε is thus
naturally used as the termination threshold.

If an algorithm produces a signal inconsistent in the reliable
part, we do not replace that part with the original reliable
samples before the evaluation. Naturally, such a replacement
increases the overall output SDR, as discussed in Sec. V-B.
In terms of perceptual metrics, evidence suggests that doing
this replacement is not beneficial for signals with low input
SDR. This is probably due to the fact that the replacement of
the samples creates discontinuities in the waveform, leading to
the introduction of artificial higher harmonics that in the end
degrade the reconstruction quality. The advantage of matching
the reliable samples is, however, pronounced in the high input
SDR regime, where there is only a small number of clipped
samples and the effect of new discontinuities is negligible.
Note that these additional variants are excluded from the
comparison for clarity; however, the supplementary repository
presents the described effect in the form of graphs.

1) Constrained OMP: C-OMP was tested using the im-
plementation provided by the authors of [15], [44] in the
SMALLbox MATLAB toolbox.7 We have used the DGT-based
implementation with min-constraint, as we have found that
it provided a reasonable trade-off between performance and
computational complexity. Note that when the clipping level is
low (many samples missing), the constrained optimization (the
final step of Alg. 1) often failed to converge. We believe this
is because the support set Ω estimated with the OMP (without
any clipping constraint) is often suboptimal, leading to a signal
that is clipping-inconsistent. As a result, a signal that belongs
to the range space of DΩ and the clipping consistency set
ΓH ∩ ΓL might not exist or have a very large amplitude,
thus making the constraint DΩzΩ ∈ ΓH ∩ ΓL unfeasible. In
that scenario, following the guidelines by the authors in [44]
(implemented in the accompanying code), we simply return
the output of the (unconstrained) OMP as a solution.

2) SPADE: Although we have the original implementation
of A-SPADE, we use our own implementation, which is
slightly improved compared to the original version. The main
differences are the means by which the signal is windowed
and the hard-thresholding step, where we take into account the
complex conjugate structure of the DFT and always process
pairs of coefficients (hence producing purely real signals with

7http://small.inria.fr/software-data/smallbox/

https://www.hoertech.de/de/f-e-produkte/pemo-q.html
https://www.mathworks.com/matlabcentral/fileexchange/50230-rnonlin_calc
https://www.mathworks.com/matlabcentral/fileexchange/50230-rnonlin_calc
http://small.inria.fr/software-data/smallbox/
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the inverse DFT). The above also applies to the S-SPADE
implementation.

Both SPADE algorithms process the signal by overlapping
blocks. Each block is processed separately and the blocks are
folded back using the standard overlap–add (OLA) procedure.
The frequency representation in each block is computed using
a twice redundant DFT (forming a Parseval frame). The
parameters of S-SPADE and A-SPADE are identical and they
correspond to the description in Sec. IV-B. It is fairly easy
and intuitive to tune them. The algorithm works very well
with default parameters (s = 1, r = 1). During testing, we
found out that for the most extreme clipping (input SDR =
1 dB) it helps to increase the number of iterations slower, by
incrementing k every even iteration, i.e., r = 2. This option
lifted the average output SDR by 1.2 dB.

The termination criterion is based on the residue being
minimized, i.e., on Ax − z for A-SPADE and on x − Dz
for S-SPADE. The algorithms run until the `2 norm of the
residue is smaller than ε. We use the default ε = 0.1 used
in the original papers. Decreasing ε may increase the number
of iterations but does not improve the overall reconstruction
quality (in none of the considered quality measures).

3) Plain `1 minimization: The algorithms based on `1
relaxation described in Sec. IV-D are designed to process
the input signal all at once using the DGT, with the DGT
parameters specified above in this section.

The synthesis variant was computed using the DR algorithm
(Alg. 4) and the analysis variant was solved by the CP algo-
rithm (Alg. 5). It was quite difficult to tune the parameters
in these algorithms, since each test sound required a slightly
different setting to obtain reasonable convergence. It also
happened sometimes that the output SDR started to drop after
reaching its peak, and then it stabilized at a lower value.
Nevertheless, we kept the algorithms running for the full
number of iterations, since usually the values of the objective
metrics still got increased even after this SDR peak point.

In such a case, we let the algorithm reach the maximum
number of iterations and we take the result from the final itera-
tion. Note that the just-described behavior is more common for
methods below that employ the same DR and CP algorithms
but use coefficient weighting, i.e., w 6= 1. Because of these
issues, we set all the parameters to unity, which turns out to
be a compromise covering all the cases; we set λ = γ = 1 for
the DR algorithm and ζ = σ = ρ = 1 for the CP algorithm.

In both algorithms, the convergence criterion was set strictly
to 3000 iterations, where it was certain that the algorithms
reached the minimum with sufficient accuracy.

4) Declipping in Sparseland R`1CC: The original codes of
the R`1CC method rely on the CVX, whose disadvantage is
that the transforms are handled only in the form of a matrix;
this prevents CVX from using longer window lengths. There-
fore, we re-implemented the original approach using the DR
algorithm, as described in Alg. 6. We no longer used matrices
but fast operator-based transforms. For the DR algorithm,
we used the same setting as in the non-weighted case, i.e.,
λ = γ = 1, but the maximum number of the DR iterations
was set to 1000. The original paper [16] used 10 outer-cycle
iterations of the R`1CC algorithm, but our implementation

used only 6, since after the sixth iteration the performance
starts to decrease rapidly.

Concerning the operators, we used the DGT instead of
the DFT used for toy examples in [16]. The parameter ε
used for updating the weights was set to 0.0001. Besides
that, we introduced another parameter, δ; the inner cycle is
terminated if the relative change of the DGT coefficients
between two subsequent iterations drops below δ. The specific
value used in the tests was δ = 0.01. This modification was
used just to speed up the computations and has no effect on
the reconstruction quality.

On top of that, we also include the analysis variant using the
CP algorithm (with ζ = σ = ρ = 1 and 1000 inner iterations).
Also in case of the analysis variant, the reconstruction quality
starts to decrease with the seventh outer iteration.

5) Social Sparsity: For the experiments, we used the imple-
mentation of the algorithm kindly provided by the authors of
[21]. For clarity, only the best performing variants are included
in the evaluation, i.e., Empirical Wiener (EW) and Persistent
EW (PEW). In the case of the PEW, one needs to specify the
size of the coefficient neighborhood in the TF plane. For our
test case (audio at 44.1 kHz and the DGT), the best-performing
size of the neighborhood was 3× 7 (i.e., 3 coefficients in the
direction of frequency and 7 coefficients in time).

One needs to carefully tune the number of inner and outer
iterations and the distribution of the parameter λ during the
course of iterations (see Sec. IV-F). In the final algorithm, we
used 500 inner and 20 outer iterations with λ logarithmically
decreasing from 10−1 to 10−4.

As for the step size, the authors of [21] report using γ = 0.9,
leading to fast convergence. Following the codes provided by
the authors, our γ rather develops according to the formula
k−1
k+5 , where k is the iteration counter. Such an approach
corresponds to acceleration in FISTA [69].

Sometimes it happens that the optimization gets stuck
(especially in the first couple of outer iterations) and starts
to converge again with the next outer iteration (i.e., when
λ is decreased). For this reason, we slightly modified the
implementation by adding the δ threshold, used to break the
outer iteration even if the maximum number of inner iterations
has not been reached. The `2 norm of the difference between
the time-domain solutions of the current and previous iteration
is compared with δ, whose value was set to 0.001.

Even though the algorithm does not produce signals consis-
tent in any earlier defined sense, the result of social sparsity
approaches is usually not too far from the set Γ.

6) Perceptual Compressed Sensing: We were able to obtain
neither the implementation of this method nor any example of
output signals, unfortunately. The authors say that it relies on
CVX, which is not quite practical for our experiment. Since the
scores reported in [19] looked promising, we re-implemented
the method using the Condat-Vũ algorithm, which mimics the
algorithmic scheme suggested in [19]. The signal is processed
block by block as in the SPADE algorithms.

Our experiment includes the non-weighted variant, CSL1,
the perceptually-weighted variant, PCSL1, and, inspired by
very good results of quadratic weights in [33], an additional
parabola-weighted variant, referred to as PWCSL1.



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 15

The parameters of the CV algorithm were set to γ = 0.01,
σ = 1, τ ≈ 0.0186, and ρ = 0.99 for all three mentioned
variants. The maximum number of iterations was set to 500
for CSL1 and PCSL1 and 5000 for PWCSL1 (convergence is
significantly slower in the latter case).

In contrast to the original article, the “official” implemen-
tation of MPEG PM 1 could not be used because it is strictly
limited to 512-sample-long windows. In this survey, our goal
is to compare algorithms with the best possible settings and
with the same DGT settings across all methods. Therefore, we
wanted to work with a Hann window 8192 samples long with
75 % overlap and 16384 frequency channels. Hence, instead
of the official implementation, we had to switch to a slightly
modified and simplified version of MPEG Layer 1 PM 1,
which is not restricted in terms of the block length.

The PCSL1 algorithm places the original reliable samples
at the reliable positions at the very end of processing. This
leads to some ODG gain for mild clipping levels. However, as
discussed earlier, we present results without such a replace-
ment.

7) Psychoacoustically motivated `1 minimization: The al-
gorithms used here are the same as in the case of the plain
`1 minimization (Sec. V-C3), but the weights are now per-
ceptually motivated. The original paper [33] presented several
ways of implementing the psychoacoustical information into
the declipping process (only for the synthesis case). The best
option turned out to be simple weights that grow quadratically
with frequency.

In the experiments, we present only this “parabola-
weighted” option, but we newly include the analysis variant
as well. All the parameters and the maximum number of
iterations for both DR and CP are identical to the plain case.

8) Dictionary Learning approach: For the dictionary learn-
ing algorithm, each signal is first decomposed into T overlap-
ping windows y1, . . . ,yT of size 1024, for a total of approxi-
mately T = 1200 windows per signal. These are directly used
as inputs to the algorithm, such that the dictionary is learned
and evaluated on the same signal.

As the optimal sparsity parameter K depends on the signal
as well as on the clipping level, we adopt here an adaptive
sparsity strategy. In the first sparse coding step (20), we first
iterate (20) with K = 1, then sequentially increase K every
few iterations, until an error threshold ε is reached. The result-
ing sparsity level K̂ is then fixed throughout the rest of the
algorithm. The dictionary algorithm is initialized with a real
DCT dictionary of size P = 2048. We perform 20 iterations of
sparse coding and dictionary update steps. The sparse coding
steps (apart from the first one, which uses an adaptive sparsity
strategy) are computed using 20 iterations of consistent IHT.
The dictionary update step is computed using 20 steps of
accelerated gradient descent. To improve the convergence,
the sparse coefficients and dictionary are always initialized
using estimates from the previous iteration. Using the learned
dictionary D̂ and sparse coefficients ẑ1, . . . , ẑT , each of the
individual windows is reconstructed as D̂ẑ1, . . . , D̂ẑT , and the
estimated signal is then recovered using the overlap–add.

9) NMF: As for the NMF-based declipping, we used the
STFT with the sine window of size F = 2048 samples with

50% overlap. The NMF model order was set to K = 20.
The GEM algorithm 10 was run for 50 iterations. These
choices follow those used in the corresponding paper [24]
except for the STFT window size, which was 64 ms (1024
samples for 16kHz-sampled signals) in [24] and is 46.4 ms
(2048 samples for 44.1kHz-sampled signals) here. Note that
the computational load of the NMF approach grows drastically
with increasing window length. This is due to matrix inversion
in Wiener filtering (24) and to the iterative ad hoc clipping con-
straint management strategy described at the end of Sec. IV-J.
As such, even with the 2048-sample-long window, declipping
some sequences took more than 8 hours. This is why we have
not chosen a longer window size for experiments.

10) Janssen: For the evaluation of the Janssen algorithm,
we have adapted the codes published in the SMALLbox. The
signal is processed block by block. The order of the AR filter
does not play a significant role in the quality of declipping;
it turns out that the number of iterations is significantly more
important. The ∆SDR increases with the number of iterations,
but from a certain point, the algorithm starts to diverge wildly.
The reason is probably that the algorithm does not have
enough reliable data to fit reasonable AR parameters to the
known signal. This point of change differs among the test
signals and it is highly influenced by the input SDR (the
smaller the input SDR, the sooner the divergence appears).
In our experiments, the order of the filter is set to 512 and
we run 3 iterations. Using 5 iterations produces slightly better
results, but for one of the test signals at 1 dB input SDR the
divergence appears, devaluating the average score.

D. Computational cost

Though the survey concentrates primarily on the recon-
struction quality, some remarks on the computational cost
of the methods are valuable. Below we quote the rough
computational time needed to process one second of audio
(i.e., 44100 samples). No parallel computing is considered, and
the time spent by tuning the parameters is not included. The
overall time needed to completely recompute our experiments
is estimated at one month when performed on a common PC.

1) C-OMP: It takes 5 to 10 minutes to declip one second
of the signal.

2) SPADE: The clipping threshold determines the
performance—the higher the input SDR, the longer it
takes for the SPADE algorithms to converge. Processing
one second of audio takes from 22 up to 64 seconds
for A-SPADE and 14 up to 52 seconds for S-SPADE.

3) Plain `1: Computational time is roughly 20 seconds for
both the DR and CP algorithms, independent of the
clipping threshold.

4) Reweighted `1: It takes 66 seconds for the DR algorithm
and 56 seconds for the CP algorithm.

5) Social Sparsity: Slightly less than 2 minutes for EW and
slightly more than 2 minutes in the case of PEW.

6) Perceptual Compressed Sensing: CSL1 & PCSL1:
Roughly 20 seconds, PWCSL1 below three minutes.

7) PW`1: Same as for Plain `1.
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8) Dictionary Learning: 1 to 2 minutes depending on the
clipping level, the algorithm generally converging a bit
faster when the clipping level is low.

9) NMF: Average computation time is 30 minutes per one
second of audio. The particular time depends on the
input SDR—for the lowest, the cost can rise up to 1 hour.

10) Janssen: Depends heavily on the input SDR; the dura-
tions differ by two orders of magnitude: for 1 dB input
SDR Janssen takes about 16 minutes per second of
audio, and for 20 dB input SDR it is done in 5–15 s.

E. Results and discussion

Results of the declipping in terms of performance are
presented and commented on in this section. Recall that the
comparison is done in terms of four objective metrics—
∆SDRc, PEAQ, PEMO-Q and Rnonlin. In the bar graphs that
follow, algorithms coming from the same family share the
same color. If a method was examined in both the analysis and
the synthesis variant, the analysis variant is graphically distin-
guished via hatching. Other variants (e.g., multiple shrinkage
operators in the SS algorithms or different weights within the
CSL family) use gray stippling. The abbreviations used in the
legends are used all over the text, but also summarized in
Table III.

The ∆SDRc results are presented in Fig. 3, PEAQ ODG
values in Fig. 4, PEMO-Q ODG values in Fig. 5, and Rnonlin

values in Fig. 6. The reader can easily draw a number of con-
clusions by studying the plots; however, we try to summarize
the most important and interesting facts inferred from these
results. We concentrate more on the ODG score designed to
reflect properties of the human auditory system.

First of all, note that the SDR scores correlate with the ODG
scores to a certain degree. There are exceptions, however—
compare, for example, R`1CC CP and R`1CC DR, which
behave just the opposite way (SDR versus ODG).8 Note
also that the ODG values of PEMO-Q are uniformly worse
than those of PEAQ, but the relation between scores of the
individual methods is retained. An exception is the family of
CSL1, PCSL1, PWCSL1, where we observe a difference.

The main messages can be summarized as follows:
• Both variants of the SPADE algorithm perform similarly

and very well in terms of all the four metrics and across
all levels of degradation, while the analysis variant is
slightly preferred.

• Using social sparsity leads to very good results. In partic-
ular, the SS PEW method (which assumes persistence of
frequencies in time) performs overall best in terms of the
SDR and is one of the best few in terms of the perceptual
measures.

• In the medium to mild clipping regime, NMF is the clear
winner in terms of ODG and it also performs very good in
SDR. With more severe clipping (1 and 3 dB) it behaves
worse but is still very competitive.

• Despite its simplicity, the results of the parabola-weighted
`1 minimization are uniformly very good, in terms of all

8This corresponds to our experience with reweighting in audio inpainting,
see [64], but we do not have an explanation for this effect unfortunately.

the metrics. Its SDR values more or less correspond to
those of SPADE, and the ODG scores show that for wild
clipping, PW`1 is even the best declipping method.

• Introduction of reweighting improves the plain `1 min-
imization, especially for the analysis variant, but this
observation only holds for the SDR. In terms of ODG,
the effect is reversed. In fact, the performance of plain `1
can be found surprisingly satisfactory in the PEAQ ODG
graph.

• The family of psychoacoustically weighted optimizations
(CSL1) failed. The best results are achieved using the
parabolic weights, which are in fact not psychoacous-
tically motivated. These observations are especially in-
teresting since the original article [19] reported a better
declipping quality (but on a different dataset).

• The low scores of dictionary learning may be probably
attributed to the fact that it uses the IHT algorithm in its
sparse coding step (see Alg. 9), which has been recently
surpassed by its successor, SPADE, for example. Another
factor could be that the initial dictionary is the real-valued
DCT and that the iterates of Alg. 9 remain in the real
domain, causing phase-related artifacts.

• The Janssen method performs well only in the very high
input SDR regime, otherwise it fails due to the lack
of reliable samples. Recall that Janssen was included
in the study since it performs on par with state-of-
the-art methods in audio inpainting (of compact signal
gaps). Clearly, the hypothesis that it could be similarly
successful also in declipping is not validated.

Besides the reconstruction quality, which is the main con-
cern of the article, other factors can also be taken into consid-
eration. For example, consider the rough cost of computation
that has been reported in Sec. V-D. According to these values,
the NMF is 90-times slower than the PW`1 algorithms, while
producing results of almost identical quality for most clipping
levels. On the other hand, some methods require painful
parameter tuning to achieve good results. In that regard, NMF
or SPADE in particular can be seen as advantageous.

F. Software and data

Besides the numerical evaluation, the intention of the article
is to collect implementations of the examined methods and
to make them publicly available, both for the reproducibility
purposes and to stimulate future research in this area. The
webpage

https://rajmic.github.io/declipping2020/

contains the link to the MATLAB implementation (except the
NMF, which is not publicly available). The tests have been
performed in MATLAB version 2019b.

This article provides an objective evaluation through PEAQ
and PEMO-Q, which pursue being as close as possible to
human perception. Individual subjective assessment, which
is always the most decisive, can be made via the supplied
webpage, where all sound examples are directly playable (or
downloadable).
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Fig. 3. Average ∆SDRc results. The abbreviations from the legend are summarized in Table III.
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Fig. 4. Average PEAQ ODG results. The PEAQ ODG of the clipped signal is depicted in gray.
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Fig. 5. Average PEMO-Q ODG Results.
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TABLE III
TABLE OF EXAMINED ALGORITHMS AND THEIR ABBREVIATIONS AND REFERENCES. SOME OF THE ALGORITHMS WERE PROPOSED IN THIS ARTICLE IN

ORDER TO MAKE IT AS COMPLETE AS POSSIBLE. TWO ALGORITHMS ARE NOT PRESENTED.
Abbreviation Full name Algorithm utilized Reference

C-OMP Constrained Orthogonal Matching Pursuit Alg. 1 Adler’11 [15]
S-SPADE Synthesis SParse Audio DEclipper Alg. 3 Záviška’19 [32]
A-SPADE Analysis SParse Audio DEclipper Alg. 2 Kitić’15 [25]
`1 DR `1 minimization using Douglas–Rachford (synthesis) Alg. 4 Rajmic’19 [59]
`1 CP `1 minimization using Chambolle–Pock (analysis) Alg. 5 analysis variant of [59]
R`1CC DR Reweighted `1 min. with Clipping Constraints using Douglas–Rachford (synthesis) Alg. 6 Weinstein’11 [16]
R`1CC CP Reweighted `1 min. with Clipping Constraints using Chambolle–Pock (analysis) — analysis variant of [16]
SS EW Social Sparsity with Empirical Wiener Alg. 7 Siedenburg’14 [21]
SS PEW Social Sparsity with Persistent Empirical Wiener Alg. 7 Siedenburg’14 [21]
CSL1 Compressed Sensing method minimizing `1 norm Alg. 8 Defraene’13 [19]
PCSL1 Perceptual Compressed Sensing method minimizing `1 norm Alg. 8 Defraene’13 [19]
PWCSL1 Parabola-Weighted Compressed Sensing method minimizing `1 norm Alg. 8 variant of [19]
PW`1 DR Parabola-Weighted `1 minimization using Douglas–Rachford (synthesis) Alg. 4 Záviška’19b [33]
PW`1 CP Parabola-Weighted `1 minimization using Chambolle–Pock (analysis) Alg. 5 analysis variant of [33]
DL Dictionary Learning approach Alg. 9 Rencker’18 [29]
NMF Nonnegative Matrix Factorization Alg. 10 Bilen’15 [24]
Janssen Janssen method for inpainting — Janssen’86 [11]

VI. CONCLUSION AND PERSPECTIVES

The article presented the declipping problem and an
overview of methods used to solve it. Besides such a survey,
several popular declipping methods of different kinds were
selected for deeper evaluation. This is the first time so many
methods are compared based on the same audio dataset
(moreover sampled at 44.1 kHz). The main focus of the article
is on the reconstruction quality, which is reported in terms of
four metrics. However, other factors like the computation cost
and complexity in tuning parameters are also discussed.

The algorithms studied and compared in this paper exhibit
various performances and computational times. Some algo-
rithms perform better at low clipping levels, while others per-
form better at high clipping levels. The choice of an algorithm
thus depends on the input data. Nevertheless, the methods
based on social shrinkage, nonnegative matrix factorization,
weighting the transform coefficients and, last but not least, the
SPADE seem to yield results that make them preferred choices;
in most conditions, they scored significantly better than the
majority of other methods in terms of the perceptual metrics.
Depending on the application, the computational time of each
algorithm and the time-consuming tuning of parameters might
also be a decisive selection criterion. From these viewpoints,
variants of the SPADE are attractive.

Directions for future research may include combining strate-
gies and modeling assumptions of the various algorithms
presented in this paper. For instance, the social sparsity
regularizer of [21] or the perceptual weights of [19] could
be combined with S-SPADE or other algorithms. Dictio-
nary learning could be combined with S-SPADE or social
sparsity. Most algorithms discussed here use the synthesis
model, whiledeveloping their analysis counterpart could also
be a promising idea. We could also imagine assigning weights,
in order to favor clipping consistency. Finally, we have focused
in this paper on unsupervised techniques, which do not rely
on a training set with clean data. However, the success of
supervised techniques, and in particular deep learning based

techniques, in tackling many other problems in computer vi-
sion, speech recognition, and audio analysis, motivates further
study of supervised techniques in audio declipping. Recent
deep learning approaches to audio declipping have shown
promising results in the context of speech declipping [6],
[7], [8]. A potential research direction would be to combine
the power of supervised techniques with signal assumptions,
modeling and algorithms discussed in this article. One of such
directions could be the recent finding that artificial networks
that bear the structure of unfolded proximal algorithms are able
to join the signal modeling and learning from data, possibly
keeping advantages of both distinct worlds, see for example
[87] in the context of image processing.

Note that this survey and the papers under consideration
only investigate declipping of signals that are clipped in the
digital domain. However, when clipping occurs in the analog
domain, it is different since before the A/D conversion, a low-
pass filter is applied to avoid aliasing. Since the clipping
distortion is wide-band, clipping aliasing [88], quite an un-
pleasant distortion, is present in the latter case. This effect
is well-known to audio engineers, and a digital aliasing-free
clipping or compression of dynamics is often performed via
upsampling [89]. For example, [90] addresses the aliasing re-
duction in digitally-clipped signals, though without declipping
itself. While the methods covered by this survey reduce both
aliasing and the remaining narrow-band clipping distortion,
if the clipping is carried out in the analog domain or in a
particular aliasing-free manner (e.g., via upsampling [89]),
different new declipping algorithms should be developed and
applied, simply because the clipping process is different in
that case.
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[47] F. R. Ávila, M. P. Tcheou, and L. W. P. Biscainho, “Audio soft
declipping based on constrained weighted least squares,” IEEE Signal
Processing Letters, vol. 24, no. 9, pp. 1348–1352, 2017.
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