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Abstract—This paper presents a systematic online prediction adequate reservation of computation, storage, and batidwid
method (Social-Forecast) that is capable to accurately fecast the resources[[5], thereby ensuring smooth and robust content
popularity of videos promoted by social media. Social-Foreast  a|iery at low costs. For advertisers, accurate and timpely-
explicitly considers the dynamically changing and evolvig propa- - s . ' -
gation patterns of videos in social media when making populéy UIar'tY prediction provides a good revenue 'nd'c_"’.‘tor’_m
forecasts, thereby being situation and context aware. Saai €nabling targeted ads to be composed for specific videos and
Forecast aims to maximize the forecast reward, which is defed viewer demographics. For content producers and contriuto
as a tradeoff between the popularity prediction accuracy ad  attracting a high number of views is paramount for attragtin
the timeliness with which a prediction is issued. The forecsting potential revenue through micro-payment mechanisms.

is performed online and requires no training phase or a prioi Whil larit dicti . | lasti h
knowledge. We analytically bound the prediction performarce lile popularity prediction IS a long-lasting researc

loss of Social-Forecast as compared to that obtained by an topic [15] [14] [27] [28], understanding how social netwerk
omniscient oracle and prove that the bound is sublinear in te affect the popularity of the media content and using this
number of video arrivals, thereby guaranteeing its short-erm  ynderstanding to make better forecasts poses significant ne
performance as well as its asymptotic convergence to the dptal challenges. Conventional prediction tools have mostliedel

performance. In addition, we conduct extensive experimeist the hist f th t Vi X hich ked I
using real-world data traces collected from the videos shad on the history of the past view counts, which worked we

in RenRen, one of the largest online social networks in China When the popularity solely depended on the inherent aieact
These experiments show that our proposed method outperforsx  ness of the content and the recipients were generally gassiv
existing view-based approaches for popularity prediction(which |n contrast, social media users are proactive in terms of the
?é\tlav;%tscontext-aware) by more than 30% in terms of prediction  ¢qntent they watch and are heavily influenced by their social
' media interactions; for instance, the recipient of a certai
_Index Terms—Situational and contextual awareness, social me- media content may further forward it or not, depending on not

dia, onllne social .networks, popularity prediction, online learning, only its attractiveness, but also the situational and odng
forecasting algorithm . . . .

conditions in which this content was generated and propagat

through social media [16]. For example, the latest measure-

. INTRODUCTION ment on Twitter’'s Vine, a highly popular short mobile video

Networked services in the Web 2.0 era focus increasingi@/ing service, has suggested that the popularity of & shor
on the user participation in producing and interacting witkideo indeed depends less on the content itself, but moreeon t

fich media. The role of the Internet itself has evolved froff@ntributor’s position in the social network [17]. Henceirig

the original use as a communication infrastructure, whepduation-aware, e.g. considering the content initiatanfor-

users passively receive and consume media content tdngtion and the friendship network of Fhe sharers, can glearl
social ecosystem, where users equipped with mobile devid@®rove the accuracy of the popularity forecasts. However,
constantly generate media data through a variety of senspfdical new questions need to be answered: which situation
(cameras, GPS, accelerometers, etc.) and applications apprmation extracted from social media should be used, how
subsequently, share this acquired data through socialamed deal with dynamically changing and evolving situational

Hence, social media is recently being used to provide Sip_formation, and how to use this information efficiently to

uational awareness and inform predictions and decisions/fiProve the forecasts? . _ o

a variety of application domains, ranging from live or on- As sc_)C|aI med_la becomes |n.creasmgly more ublqwtpus and
demand event broadcasting, to security and surveillafge [Dfluential, the video propagation patterns and users'ispar

to health communicatiori]2], to disaster management [3], Rghavior dynamically change and evolve as well. Offline
economic forecasting[4]. In all these applications, fasting Prediction tools[[15]([1B][[19]([20] depend on specific triaig

the popularity of the content shared in a social network fi@tasets, which may be biased or outdated, and hence may
vital due to a variety of reasons. For network and clodCt accurately capture the real-world propagation paitern

service providers, accurate forecasting facilitates gioand Promoted by social media. Moreover, popularity forecgstn
a multi-stagerather than a single-stage task since each video
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too early a prediction may lead to a low accuracy that is lebsunds. Section VI discusses the experimental results and o
useful or even damaging (e.g. investment in videos that wilhdings. Section VIl concludes this paper.
not actually become popular). The timeliness of the préautict
has yet to be considered in existing works![14]}[Z0]I [Z7]][28 Il. RELATED WORKS
which solel)_/ focus on maximizing the accuracy. Hence, we In this section, we review the representative related works
strongly believe that developing a systematic methodofogy oy poh the application and the theoretical foundation pe
accurate and timely popularity forecasting is essential. spectives.

In this paper, we propose for the first time a systematic
methodology and associated online algorithm for forengkti . - .
popularity of videos promoted by social media. Our Sociaﬁ" Popularity Prediction for Online Content
Forecast algorithm is able to make predictions about thePopularity prediction of online content has been exten-
popularity of videos while jointly considering the accuyacsively studied in the literature. Early works have focused
and the timeliness of the prediction. We explicitly consittee 0on predicting the future popularity of content (e.g. video)
unigue situational conditions that affect the video pragag On conventional websites such as YouTube. Various solu-
in social media, and demonstrate how thimtext information tions are proposed based on time series models like ARMA
can be incorporated to improve the accuracy of the forecagutoregressive moving averagé) [6] [7] [8], regressiondmo

The unique features of Social-Forecast as well as our kel [9] [10] [11] and classification models| [9] [12] [13]. Tée
contributions are summarized below: methods are generally view-based, meaning that the piealict

. _ . ... of the future views is solely based on the early views, while
. We rlgoro_usly formulate the 0”"9‘? pOpUIar'ty_pred'cuo_rhisregarding the situational context during propagatieor.
as a multi-stage sequential decision and online Ieam'ﬂ%tance, it was found that a high correlation exists betwee

problem. Our solution, the Social-Forecast algorlthn?he number of video views on early days and later days

makes mgl_tl—level pop_ula_mty pr_ed|ct|on in an online faShE)n YouTube [[14]. By using the history of views within
ion, requiring noa priori training phase or dataset. It

_ ) - . ", _the past 10 days, the popularity of videos can be predicted
exploits Fhe dynamically changmg and e_volvmg v!de_% to 30 days ahead [15]. While these predictions methods
propagapo.n patterns through sqmal .med|a. to max'm'%)é)ovide satisfactory performance for YouTube-like acesss
the prediction reward. The algorithm is easily tunable

o [ f is | I t 16] wh li
enable tradeoffs between the accuracy and t|meI|nesst8?Ir performance is largely unacceptatilel [16] when agplie

the f t ired b ; licati o predicting popularity in the social media context. This
€ forecasts as required by various applications, €8ilitis pocayse in this case the popularity of videos evolves in
and/or deployment scenarios.

a significantly different manner which is highly influenced

. We gnalyncally quantify the regret Of Somal-Forecasbly the situational and contextual characteristics of thaaso
that is, the performance gap b_etween_ its expected rew?]&works in which the video has propagated [21].
an:j thba:t .Of dthbe best pl‘?dI.CtIOtn polllcthk_nch can Ibe Recently, there have been numerous studies aiming to accu-
only obtain€d by an omnisciént oracle having comp e‘%tely predicting the popularity of content promoted byiabc
knowledge_of the y|deo _populanty trends. We prove th%edia [2] [3] [23]-26]. For instance, a propagation model i
the regret is sublinear in the number of video arrival roposed in[[18] to predict which users are likely to mention

which implies that the expected prediction reward asym jhich URLs on Twitter. In[[10], the retweets prediction on

totically converges to the optlmal expected reward. Thﬁ/vitter is modeled as a classification problem, and a variety
upper bound on regret also_ gives a lower bound on t%?’ context-aware features are investigated. For predjdfie
convergence rate_ o the optlr’nal average reward. opularity of news in Digg, such aspects as website design
. We yahdate S_omal-For_ecasts performance through e%?ave been incorporated [20], and for predicting the pojitylar
tensive experiments with real-wqud dat_a trace_s frorgr short messages, the structural characteristics of lsneidia
RenRen (the largest Facebook-like online social nglz, o ey used [22]. For video sharing in social media, our

work in China). The r_esults show tha}t S|gn|f|c_ant Maarlier work [16] has identified a series of context-aware
provement can be achieved by exploiting the sltuatlon%fl

q textual meta-dat ated with the vid %ors which influence the propagation patterns.
and contextual meta-data associated with € VIAeo anty 4y i this paper is motivated by these studies, but it
its propagation through the social media. SpemﬁcallyS fi

. . L : rst systematic solution for forecasting the video paypity
the Social-Forecast algorithm outperforms existing view;, y 9 P

based hes b than 30% in t f ored sed on the situational and contextual characteristiss@al
tisﬁerevegﬁjrgac €s by more than o I terms of predifadia. First, existing works are mostly measurement-based

and their solutions generally work offline, requiring eiigt
The rest of the paper is organized as follows. Section thaining data sets. Instead, Social-Forecast operateelgnt
discusses related works. In Section Ill, we describe theesys online and does not require any a priori gathered training
model and rigorously formulate the online popularity poedi data set. Second, Social-Forecast is situation-aware amckh
tion problem. Section IV presents a systematic methodologycan inherently adapt on-the-fly to the underlying social
for determining the optimal prediction policy with commet network structure and user sharing behavior. Last but not
prior knowledge of the video propagation pattern. In Sectideast, unlike the early empirical studies which employ only
V, we propose the online learning algorithm for the optimaimulations to validate the performance of their preditsiove
prediction policy and prove that it achieves sublinear eegrcan rigorously prove performance bounds for Social-Fa@teca



Importantly, our Social-Forecast can be easily extended |to Siuational ngé”;ﬂ?m”e p,frfno"}%gcnc Multi-stage T'g:gg?c‘;f;,"f
predict other trends in social media (such as predicting Wl1oEV>6i()SrtL29 No/Partially |  Offline No No No
are the key influencers in social networks, which tweets anghis paper|  ves Online Yes Yes Yes
news items may become viral, which content may become
popular or relevant etc.) by exploiting contextual and sit- TABLE |

Uational awareness. For instance, beSideS popularity'alsc)CCOMPARISONWITH EXISTING WORKS ON POPULARITY PREDICTION FOR

media has been playing an increasingly important role in

predicting present or near future events. Early studiesvsho

that the volume and the frequency of Twitter posts can be

used to forecast box-office revenues for movies [23] andctietgomputed and updated even for actions that are not selected.
earthquakes_[3]. Sentiment detection is investigated By [2n particular, we update the reward of an action as if it was
by exploring characteristics of how tweets are written angklected. Therefore, exploration becomes virtual in thesee
meta-information of the words that compose these messagfist explicit explorations are not needed and hence, in each
In [2], Google Trends uses search engine data to forecggkiod, actions with the best estimated rewards can always b

near-term values of economic indicators, such as automohjklected, thereby improving the learning performance.
sales, unemployment claims, travel destination plannamg,

consumer confidence. Social-Forecast can be easily adapted
for deployment in these applications as well.

Table [1 provides a comprehensive comparison betwe@n Sharing Propagation and Popularity Evolution
existing works on popularity prediction and Social-Fostca
highlighting their differences.

ONLINE CONTENT.

IIl. SYSTEM MODEL

We consider a generic Web 2.0 information sharing system
in which videos are shared by users through social media
(see Figurd]l for a system diagram). We assign each video
B. Quickest Detection and Contextual Bandits Learning  With an indexk € {1,2,... K} according to the absolute

. . __time t¥ ., when it is initiatefl. Once a video is initiated, it

In our problem formulation, for each video, the algorltthYi" be propagated through the social media for some time

can choose to make a prediction decision using the curreniyation. We assume a discrete time model where a period
observed context information or wait to make this predittio

| th iod. wh inf s _--can be minutes, hours, days, or any suitable time duration. A
until the next period, when more context information arsive, i yo5 is said to have an age of € {1,2,...} periods if it

This introduces a tradeoff between accuracy and delay whigh. oo . - -

) X ; propagated through the social mediaxfperiods.
relgtes_ to the Ilteratur_e on quickest detecu-_ [30] [31213 In each period, the video is further shared and viewed by
which is concerned with the problem of detecting the change ., depending on the sharing and viewing status of the

in the underlying state (which has already occurred in t::sﬁevious : : o :
. period. The propagation characteristics of videp
past). For example, authors in_[32] study how to detect t agen are captured by a,,-dimensional vectort € X,

presence of primary users by taking channel sensing samp|@S-h, includes information such as the total number of views

n cognltg/elradlo SySt_eF“S]; n thﬁ considered pr_oblemietheénd other situational and contextual information such as th
'(;5 no un ITr y';:g state; mda(;]t, the bsltate k;S contmufousg Al haracteristics of the social network over which the vides w
ynamically changing, and the problem becomes OrecaSt'BQ)pagated. The specific characteristics that we use in this

how it will evolve and which event will occur in the future. aper will be discussed in Section VI. In this section, wepkee

Moreover, many quickest detection solutions assume pr@i in an abstract form and call it succinctly tleentext (and

knowledge of the hypothesed [32] while this knowledge ]

K T bl d 4s 1o be di éuational) informationat agen.
unknown a priori in our problem and Needs 1o be dISCOVeredge,q g points regarding the context information are note-
over time to make accurate forecasts.

. . . worthy. First, the context spacg, can be different at different
Our forecasting algorithm is based on the contextual bandg y pact,

L . . X gesn. In particular,z® can include all history information
frarlrgl_eworrlf m]-l[ﬂ]fbut with S:cg?]'f'car}f[ mnovzét_lor_ws a|matz: of video k’s propagation characteristics up to ageand
tackling the unique features of the online prediction peat hence z* includes all information ofz® ,vm < n (See

First, most of the prior Worm4]Z|_37] on contextu_all barsis igure[2). Thus the type of contextual/situational infotim
focused on an agent making a single-stage decision base d

h ided inf ion 1 hi S Iso age-dependent. Second, can be taken from a large
the provided context information for each incoming 'nsmncspace, e.g. a finite space with a large number of values or

In th|skpaper, for each :cndcom|_ng video lr;s_talmce, the a?:nrﬂﬂe even an infinite space. For example, some dimensions’of
_tofma €a se_zquence((j) ECIjlons a:jmu tlpeslta(ljgesl. re:hpnég.g. the Sharing Rate used in Section VI) take values from
information is stage-depencent and Is revealed only w % continuous value space and may include all the past

stage takes place. Importantly, the reward obtained by tede propagation characteristics (e«f, € ¥, Vm < n). Third, at

an action at one stage depends on the actions chosen at of &7, 25 Vm > n are not yet revealed since they represent

e realized. Hence, given the context informatich at age
rewards of an action can be updated only after the action is g i g

selected. In our probllem, becau;e the predlctlon actiors doey; g easy to assign unique identifiers if multiplel videos iovh are
not affect the underlying popularity evolution, rewards ¢ generated/initiated at the same time.
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, does not require this assumption to hold.
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Stuational < o gt For each vided:, at each age. = 1, ..., N, we can make a

< > prediction decisiom” € SU{Wait}. If % € S, we predicta®
as the popularity status by agé. If a* = Wait, we choose
to wait for the next period context information to decide (i.
predict a popularity status or wait again). For each video
at the end of ageV, given the decision action vectar*, we
n, the future context informatiom:* ,vVm > n are random define theage-dependent reward: at agen as follows,

variables. _{ U(ak,s* n), ifak eS

Fig. 2. Anillustration of context information taking theskory characteris-
tics.

We are interested in predicting the future popularity statu rk = A i ok — Wait (1)
of the video by the end of a pre-determined ageand we 1o " an =Wl
aim to make the prediction as soon as possible. The choigRere U (a*, s*,n) is a reward function depending on the
of V depends on the specific requirements of the contescuracy of the prediction (determined &l and the realized
provider, the advertiser and the web hosts. In this papeiie popularity status®) and the timeliness of the prediction
we will treat N as giveE. Thus, the context information (determined by the age when the prediction is made).
for video & during its lifetime of V' periods is collected in  The specific form ofU(ak, s*,n) depends on how the

ah = (xf, @5, ...,z}). For expositional simplicity, we also reward is derived based on the popularity prediction based
definez,+ = (zynt1,..,ZN), T, = (Z1,...,@n—1) @nd  on various economical and technological factors. For imesta
Ton = (Tp—, Tp+). the reward can the ad revenue derived from placing proper ads

Let S be the popularity status space, which is assumesk potential popular videos or the cost spent for adequatel
to be finite. For instanceS can be either a binary spaceplanning computation, storage, and bandwidth resources to
{Popular, Unpopuldr or a more refined space containingnsure the robust operation of the video streaming setvices
multiple levels of popularity such gd.ow Popularity, Medium Even though our framework allows any general form of the
Popularity, High Popularity or any such refinement. We letreward function, in our experiments (Section VI), we will
s* denote the popularity status of vidéo by the end of yse a reward function that takes the formidfa’, s*, n) =
age N. Sinces* is realized only at the end oV periods, 0(ak,s*) + Mp(n) wheref(a¥,s*) measures the prediction
it is a random variable at all previous ages. However, thgcuracy,y)(n) accounts for the prediction timeliness and
conditional distribution ofs* will vary at different ages since \ ~ 0 is a trade-off parameter that controls the relative
they are conditioned on different context information. Iany  importance of accuracy and timeliness.
scenarios, the conditional distribution at a higher agés Let n* be the first age at which the action is not “Wait”
more informative for the future popularity status since enofj.e. the first time a forecast is issued). Téneerall prediction

o o o o reward is defined as the* = rk.. According to equation
This assumption is generally valid given that the video isigeevents have

daily and weekly patterns, and the active lifespans of mbatexl videos @)' when the action is “Wait” at age, the reward is t.he
through social media are quite limiteld [21] same as that at age+ 1. Thusr¥ = r§ = ... = rk.. This



agen age n+1

The expected prediction reward of a poligyis therefore,

Vi(m) = / _rlnf @) @)

Note that the age- policy =, will only use the context
information«,, rather thanz to make predictions since,, +
@:ak — Wait @; & € S U {Wait} has not bgen.real_lzed at age . _ .
" " Our objective is to determine the optimal policy’?
o - A
Fig. 3. An illustration for the multi-stage decision makinthe firstn — 1 that maximizes the expected predlctlon reward, &€ =

action is “Wait'. If the agen action is “Wait’, then- = %, | which depends A8 Max V(m). In the following sections, we will propose a
on later actions. If the age-action is not “Wait’, thenr;; # 7% ., andr*  systematic methodology and associated algorithms that find
does not depend on later actions. However, we can“stlll_ ’I'dmrreward of the optimal policy for the case Whef‘(m) is known or un-
action at agen + 1 as if all actions beforer + 1 were “Wait”. . .
known, which are referred to as the complete and incomplete
information scenarios, respectively.

suggests that the overall prediction reward is the sameeas th

age-dependent reward at age 1, i:e.= r¥. For agen > IV. " WHY ONLINE LEARNING IS IMPORTANT?

n*, the actiona and the age-dependent rewarfl do not In this section, we consider the optimal policy design prob-

affect the realized overall prediction result since a preolh  lem with the complete information of the context distrilouti

has already been made. However, we still select actions afez) and compute the optimal poliey’”. In the next section

compute the age-dependent reward since it helps learnag i which f(x) is unknown, we will learn this optimal policy

best action and the best reward for this agevhich in turn 7°?* online and hence, the solution that we derive in this

will help decide whether or not we should wait at an earlgection will serve as the benchmark. Even when having the

age. Figurd13 provides an illustration on how the actions edmplete information, determining the optimal predictjuoi-

different ages determine the overall prediction reward. icy faces great challenges: first, the prediction rewarceddp
Remark The prediction action itself does not generaten all decision actions aall ages; and second, when making

rewards. It is the action (e.g. online ad investment) taksngs the decision at age, the actions for ages larger thanare

the prediction results that is rewarding. In many scenatios not known since the corresponding context information has

action can only be taken once and cannot be altered afteswartbt been realized yet.

This motivates the above overall reward function formolati  Given policies7_,,, we define the expected reward when

in which the overall prediction reward is determined by thtaking actiona,, for x,, as follows,

first non-“Wait” action. Nevertheless, our framework cascal

be easily extended to account for more general overall gwar £n (%5 |T—n, an) = / Iz, =) T (®|T—n, an) f(x)dz  (3)

functions which may depend on all non-“Wait” actions. For *

instance, the action may be revised when a more accur

later prediction is made. In this case, the reward functi

U(ak,s* n) in @ wil depend on not only the current

no

prediction actiom:® € S but also all non-“Wait” actions after

ere I, —/ is an indicator function which takes value

when the ager context information isx/, and value O
otherwise. The optimak*(7_,) given w_,, thus can be
determined by

agen. We will use the reward function ifJ(1) because of its T (x| 7)) = argmax (@, |7 _p, a), VI, (4)
simplicity for the exposition but our analysis also holds fo @
general reward functions. and in which we break ties deterministically. Equatidh (4)

defines a best response function from a policy to a new
policy F' : 1T — II wherell is the space of all policies.
In order to compute the optimal policy°??, we iteratively

In this paper, we focus on prediction policies that depend aise the best response function [ih (4) using the output policy
the current contextual information. Lef, : X,, — SU{Wait} computed in the previous iteration as the input for the new
denote the prediction policy for a video link of ageand iteration. Note that a computation iteration is differerdri a
m = (m,...,mn) be the complete prediction policy. Hence, d@me period. “Period” is used to describe the time unit of the
prediction policyr prescribes actions for all possible contexdiscrete time model of the video propagation. A period can
information at all ages. For expositional simplicity, wes@l be a miniute, an hour or any suitable time duration. In each
define7,+ = (mn41,...,mn) a@s the policy vector for agesperiod, the sharing and viewing statistics ospecificvideo
greater tham, =r,- = (m1,...,m,—1) as the policy vector for may change. “Iteration” is used for the (offline) computatio
ages smaller than andn_,, = (m,-,m,+). For a video with method for the optimal policy (which prescribes actions for
context informatiore®, the prediction policyr determines the all possible context information imll periods). Given the
prediction action at each age and hence the overall predictcomplete statistical information (i.e. the video propamat
reward, denoted by-(z|r), as well as the age-dependentharacteristics distributiorf(x)) of videos, a new policy is
rewardsr, (z|r),vn = 1,...,N. Let f(x) be the probability computed using best response update in each iteration.
distribution function of the video context information, ieh We prove the convergence and optimality of this best
also gives information of the popularity evaluation patter response update as follows.

C. Prediction Policy



Lemma 1. 7} (x,|7_,) is independent ofr,,,Vm < n, i.e. will provide not only asymptotic convergence results bisbal
T (T |T—r) = T8 (Tn |0t ). prediction performance bounds during the learning process

Proof: By the definition of age-dependent reward, th@ | earning Regret
prediction actions before age does not affect the age-

: : . In this subsection, we define the performance metric of
reward. Hence, the optimal policy depends only on the astion . . ) )
after agen. our learning algorithm. Let,, be a learning algorithm of,,

: . : which takes actiom” (x¥) at instancet. We will use learning
Lemma 1 shows that the optimal poliey, at agen is fully regret to evaluate the performance of a learning algorithm
determined by the policies for ages larger tharbut does 9 P gag '

. . _~ Since we focus om,,, we will use simplified notations in this

not depend on the policies for ages less tharlUsing this : : . .
: section by neglectingr_,,. However, keep in mind that the
result, we can show the best response algorithm converges

: : L - : en prediction reward depends on actions at all later ages
to the optimal policy within a finite number of computation gen pre per 9
terations a,+ besidesa,, whena, = Wait. Let yu,(x,|a,) denote the

expected reward when ageeontext information ise,, and the
Theorem 1. Starting with any initial policy=?, the best algorithm takes the actiom, € SU{Wait}. We make a widely
response update converges to a unique peinin N compu- adopted assumption [B4] [B5] [B6] that the expected reward
tation iterations. Moreoverr* = 1P, of an action is similar for similar contextual and situatbn
information; we formalize this in terms of (uniform) Lipsth

Proof: Given the context distributiory (x) which also .
condition.

implies the popularity evolution, the optimal agé-policy
can be determined in the first iteration. Since we break ti@ssumption. (Lipschitz) For eacha, € S U {Wait}, there
deterministicaly when rewards are the same, the policy éxistsL > 0, > 0 such that for allz,,,z), € X,,, we have
unique. Given this, in the second iteration, the optimal-aggi(x,|an) — p(x) |an)| < Lijx,, x),||*.

(N — 1) policy can be determined according {d (4) and is
also unique. By induction, the best response update deneemia*
the unique optimal age-policy after N + 1 — n iterations.
Therefore, the complete policy is found N iterations and

th|_T_hpoI|cy me|m|zes metoverall prEd'Ct'OT r?;/]vard. i .I be the maximum reward difference between the optimal action
eorem 1 proves thal we can compute the optimal preg q 1o non-optimal action over all context € X,,. Finally,

diction policy using a simple iterative algorithm_ as long 886 et ro(xk|o%) be the realized age-reward for videok
we _hav_e complete I_mowle_dg_e of the_ po_pulanty evolutig y using the learning algorithmr. The expected regret by
distribution. In practice, this information is unknown an dopting a learning algorithm, is defined as

extremely difficult to obtain, if not possible. One way to
estimate this information is based on a training set. Sihee t
context space is usually very large (which usually involves
infinite number of values), a very large volume of training) se

is required to obtain a reasonably good estimation. Mongove ; . .
9 Y9 © rewards by selecting different actions and then choose the

existing training sets may be biased and outdated as soma‘ﬁons with best estimates based on past experience. One
media evolves. Hence, prediction policies developed usifl e P exp o
y to do this is to record the reward estimates without

existing training sets may be highly inefficient [38]. In the sing the context/situational information. However, tbdgild

following section, we develop learning algorithms to Iearﬁe orv inefficient since for different contexts. the oofima
the optimal policy in an online fashion, requiring no initia Very Inetrict n ' =XIS, - op
actions can be very different. Another way is to maintain the

knowledge of the popularity evolution patterns. reward estimates for each individual contexi and select
the action only based on these estimates. However, since
the context space&’, can be very large, for a finite number
K of video instances, the number of videos with the same
In this section, we develop a learning algorithm to deteemireontext z,, is very small. Hence it is difficult to select the
the optimal prediction policy without any prior knowledge opest action with high confidence. Our learning algorithm wil
the underlying context distributiorf(x). In the considered exploit the similarity information of contexts, partitiothe
scenario, videos arrive to the system in sequéraied we context space into smaller subspaces and learn the optimal
will make popularity prediction based on past experienges Bction within each subspace. The key challenge is how and
exploiting the similarity information of videos. when to partition the subspace in an efficient way. Next, we
Since we have shown in the last section that we c@fiopose an algorithm that adaptively partitions the cantex

determine the complete policy using a simple iterative space according the arrival process of contexts.
algorithm, we now focus mainly on learning, for one age

by fixing the policiesw_,, for other ages. Importantly, we B. Online Popularity Prediction with Adaptive Partition

e _ _ _ _ In this subsection, we propose the online prediction algo-
To simplify our analysis, we will assume that one video @siat one

time. Nevertheless, our framework can be easily extendededoarios where r_ithm With. f’jldaptive partition (Adaptive-Partition) thadap-
multiple videos arrive at the same time. tively partitions the context space according to the cantex

The optimal action given a contexk, is therefore,
(x,) = argmax,, tn,(x,|a,) (with ties broken deter-
ministically) and the optimal expected rewardi§(x,) =
tn(Tnlat). Let A = maxg, cx, {1 (xn) — pin(Tn]an, # ak)}

K K
Ry(K) =E{)_pi(@k) = ra(aflol)}  (5)
k=1 k=1

Our online learning algorithm will estimate the prediction

V. LEARNING THE OPTIMAL FORECASTINGPOLICY WITH
INCOMPLETEINFORMATION



Realized Algorithm 1 Adaptive-Partition Algorithm

Reward reward Reward S
. > evalution » update Initialize Ay = Py, Mc(0) =0, 7, (0) = 0,Va,VC € P.
. for each video instanck do
Selected action .
T’“es':;’&‘;'a”ty DetermineC € A;, such thatzc® € C.
Selecta,, = arg max 7, c (k).
. ' . L2 . .
A Virtual | After the prediction reward is realized, updatec (k +

Reward | reward Reward f I
evaluation "l update | 1) for all a.

Unselected action(s) SetMc(k) < Mc(k—1) + 1.

Virtual reward update | if Mc(k) > A2P! then
SetAyi1 = (Ae\C) UP1(C)
Fig. 4. lllustration for virtual reward update in Adaptiveition. end if
end for

arrivals. This will be the key module of the Social-Forecast

algorithm. For analysis simplicity, we normalize the cowte context space, with minimum distance between any two dontex
space to bet, = [0,1]%. We call ad-dimensional hypercube samples being< ~/¢, and the best-case arrival processf
which has sides of length~' a level I hypercube. Denote ,k C,Vk for some level (log,(K)/p] + 1 hypercubeC.

the partition of X,, generated by level hypercubes byp;. . o .

We have|P;| = 2/4. Let P := U2 P; denote the set of In Theorem 2, we d_etermm_e_ the f|n|te_ time, uniform regret
all possible hypercubes. Note thRb contains only a single bound for the Adaptive-Partition algorithm. The complete
hypercube which isY,, itself. For each instance arrival, the'e€gret analysis and proofs can be found in the appendix.
algorithm keeps a set of hypercubes that cover the contgfeorem 2. .« For the worst case arrival process, jf =
space which are mutually exclusive. We call these hypercube dta/2+v/9a28ad/2

active hypercubes, and denote the set of active hypercubes at 222274894 then R, (K) = O(K a+s/2+Voa2isad/2),
instancek by Ay. Clearly, we haveJoc 4, = A,,. Denote the  « For the best case arrival process, jf = 3a, then
active hypercube that containg by Cy. Let M, (k) be the Ry (K) = O(K*/®).

number of times context arrives to hyperculig by instance
k. Once activated, a levélhypercubeC will stay active until
the first instancé such thatV/, (k) > A2P! wherep > 0 and
A > 0 are algorithm design parameters. When a hypercybe

of Ievgll becomes inactive, the hypercubes of I_eA/ell that algorithm makes the optimal predictions as sufficiently ynan

constituteC, denot]?d bYPl“(C’“)’_ are then act|va.ted. _videos instances have been seen. More importantly, thetregr
When a contextr, arrives, we first check to which activey,, 4 tells how much reward would be lost by running our

hypercubeC; & Ay it belongs. Then we choose the actiofeaing algorithm for any finite numbét of videos arrivals.

with the highest reward estimaie, = argmax7ac,(k). Hence, it provides a rigorous characterization on the lagrn

where7, ¢, (k) is the sample mean of the rewards collectegheed of the algorithm.

from action a in C; which is an activated hypercube at

instancek. When the prediction reward is realized for instance ) )

k (i.e. at the end of agéV), we perform avirtual updatefor C- Learning the Complete Policy

the reward estimates for all actions (see Fidgure 4). Theoreas In the previous subsection, we proposed the Adaptive-

why we can perform such a virtual update for actions whidpartition algorithm to learn the optimal policy; (7_,) by

are not selected is because the context transition overi§meixing 7_,,. We now present in Algorithiin] 2 the Social-Forecast

independent of our prediction actions and hence, the rewaiigorithm that learns the complete policy.

by choosing any action can still be computed even though it

Proof: See Appendix. |
The regret bounds proved in Theorem 2 are sublinedf in
which guarantee convergence in terms of the average reward,
i.e. limg o E[R,(K)]/K = 0. Thus our online prediction

is not realized. Algorithm 2 Social-Forecast Algorithm
Algorithm[J provides a formal description for the Adaptive-" for each video instance do
Partition algorithm. Figur&]5 illustrates the adaptivetitian for each ager = 1 to N do
process of Adaptive-Partition algorithm. Next, we bound th Get context informationc® .
regret by running the Adaptive-Partition algorithm. Selecta® according to Agaptive-partition_
In order to get the regret bound of the Adaptive-Partition Perform context partition using Adaptive-Partition.
algorithm, we need to consider how many hypercubes of end for
each level is formed by the algorithm up to instanke Popularity status” is realized.
The number of such hypercubes explicitly depends on the for each ager=1to N do
context arrival process. Therefore, we investigate theeteg Compute the age-dependent rewafd
for different context arrival scenarios. Update reward estimates using Adaptive-Partition.
end for

Definition. We call the context arrival process tlige worst-

case arrival processif it is uniformly distributed inside the end for




instance arrival  Active hypercube Context space

‘ Estimated partitioning
° Rewards If there have
° () been enoygh °
context arrivals [
o ) Action ) Reward . .. .. >
Selection Update
L Selected the action Update estimated L4
° with the highest rewards for both actions PY
reward estimate

Context space Context space

Fig. 5. The context space partitioning of the Adaptive-tart algorithm.

Social-Forecast learns all age-dependent policigsvn algorithm. Our experiments are based on the dataset that
simultaneously. For a given age sincer_,, is not fixed to be tracks the propagation process of videos shared on RenRen
the optimal policy;r"_”,f during the learning process, the learnedmww. r enr en. com), which is one of the largest Facebook-
policy 7, may not be the global optimat??*. However, as like online social networks in China. We set one period to be
we have shown in Section IV, in order to determing’®, 2 hours and are interested in predicting the video popuylarit
only the policies for ages greater than i.e. wfff need to by 100 periods (8.3 days) after its initiation. In most of our
be determined. Thus even though we are learningvn experiments, we will consider a binary popularity statuacep
simultaneously, the learning problem afy is not affected {Popular, Unpopuldrwhere “Popular” is defined for videos
and hence;r%’t will be learned with high probability after whose total number of views exceeds 10000. However, we
a sufficient number of video arrivals. On@éif’t is learned also conduct experiments on a more refined popularity status
with high probability, 737 , can also be learned with highspace in Section VI(F).
probability after an additional number of video arrivalsy B The prediction reward function that we use is
this induction, such a simultaneous learning algorithmstdh U (ak, s, n) = 6(a*,s*) + \(n). For the case of binary
learn the global optimal complete policy with high probéil popularity status space, the accuracy reward functiois
In the experiments we will show the performance of thishosen as follows

algorithm in practice. 1, if a¥ = s* = Unpopular
O(ak,s*) =< w, if ok = s* = Popular (6)
D. Complexity of Social-Forecast 0, if ak # sk

For each age of one video instance arrival, Social-Forecagdterew > 0 is fixed reward for correctly predicting popular
needs to do one comparison operation and one update op@eos and hence controls the relative importance of true
ation on the estimated reward of each forecast action. d¢t alsositive and true negative. The timeliness reward function
needs to update the counting of context arrivals to the nuirrés simply taken as)(n) = N — n. Recall that the prediction
context subspace and perform context space partitioningréfvard function is a combination of the two and we use 0
necessary. In sum, the time complexity has the o€@g&|N) to trade-off accuracy and timeliness. In the experiments, w
for each video instance ar@d(|S|NK) for K video arrivals. will vary both w and X to investigate their impacts on the
Since the maximum ageéV of interest and the popularity prediction performance. Note that we use these specificrlewa
status space is given, the time complexity is linear in thHenctions in this experiment but other reward functions can
number of video arrivalg<. The Social-Forecast algorithmeasily be adopted in our algorithm.
maintains for eactactive context subspace reward estimates
of all forecast actions. Each partitioning crea®ds— 1 more A. Video propagation characteristics
active context subspaces and the number of partitioning is alpy RenRen user can post a link to a video taken by

most K/A. Tr:ius thzspa_ce cohmplexny fac wdeg_ arrlva_\ls him/herself or from an external video sharing website such
is at mostO(2VK/A). Since the context space dimensién as Youtube. The user, referred to asinitiators [16], then

and the algorithm parameter are given and fixed, the SPaCE;arts the sharing process. The friends of these initiatars

;gmplexny is at most linear in the number of video arrivalg this_vid_eo in their “News Feed”. Some of _them may
: watch this video and some may re-share the video to their
own friends. We call the users who watched the shared video
VI. EXPERIMENTS viewersand those who re-shared the vidspreaders Since
In this section we evaluate the performance of the prepreaders generally watched the video before re-shared it,
posed Social-Forecast algorithm. We will first examine thmost of them are also viewers. In the experiment, we will
unigue propagation characteristics of videos shared girowse two characteristics of videos promoted by social media
social media. Then we will use these as the context (amd the context (and situational) information for our algori.
situational) information for our proposed online predicti The first is the initiator'sBranching Factor (BrF) which is
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Fig. 6. Popularity evolution of 3 representative videos.

the number of viewers who directly follow the initiator. The
second is theShare Rate (ShR)which is the ratio of the
viewers that re-share the video after watching it. Figure 6
shows the evolution of the number of views, the BrF and tr}f
ShR for three representative videos over 100 periods. Among

o All Popular (AP). The second benchmark is another

naive scheme which makes the prediction at age 1 that
the video will become popular in the future. This is
equivalent to take the actiosf = PopularVk.

View-based Prediction (VP) The third benchmark is

a conventional view-based prediction algorithm based
on [1B]. It uses training sets to establish log-linear
correlations between the early number of views and
the later number of views. Since this algorithm does
not explicitly consider timeliness in prediction, we will
investigate different versions that make predictions at
different ages. Intuitively, the time when the prediction
is made has oppositive affects on the prediction accuracy
and timeliness. A later prediction predicts the video with
higher confidence but is less timely.

Perfect Prediction. The last benchmark provides the best
prediction results: for each unpopular video, it predicts
unpopular at age 1; for each popular video, it predicts
popular at age 1. Since this benchmark generates the
highest possible prediction reward, we normalize the
rewards achieved by other algorithms with respect to this
reward.

Performance comparison

these three videos, video 1 is an unpopular video while video! this subsection, we compare the prediction performance
2 and video 3 are popular videos, which become popular &t Our proposed algorithm with the benchmarks. This set of
age 37 and age 51, respectively. We analyze the differen€&@€riments are carried out on a set of 10000 video links,

between popular and unpopular videos as follows.

among which 10% are popular videos. The videos were
Video 1 vs Video ZThe ShRs of both videos are simiIar.:(mtl"ﬂlecilJI n Sf%”eﬁge and thgs’ |n|t|al:y we dol not have any
The BrF of video 2 is much larger than that of vide nowledge of t € Videos orvideo popu amy evolution patte
L . o %or the VP algorithm, we use three versions, labeled as VP-
1. This indicates that video 1 may be initiated by use VP-50, VP-75, in which the prediction is made at age 25
with a large number of friends, e.g. celebrities and pubjc;’ 75 reépective’Iy '
ac;:](_)unts. Thlljs,_tv@ef[)hs V]\c"tth larger Brf= potentially wil TablefTl records the normalized prediction rewards obtine
achieve popuarity in e future. by our proposed algorithm and the benchmarksXet 0.010

Video 1 vs Video 3The BrFs of both videos are IOWandw = 5,10, 15. The trade-off parametex for accuracy and

(at least before video 3 l_:)ecomes p_opula_lr). Video 3 hasti%eliness is set to be small because the lifetivids large.
much larger ShR than video 1. This indicates that videq . o .ial-Forecast algorithm is labeled by SF

3 is being shared with high probability and thus, videos « For AU and AP, even though their accuracy is expected to

with larger ShR will potentially become popular in the
future.

The above analysis shows that BrF and ShR are good situa-
tional metrics for videos promoted by social media. Thenefo
we will use these two metrics in addition to the total and
per-period numbers of views as the context information for
our proposed online prediction algorithms. Nevertheless,
algorithms are general enough to take other situationalicset
to further improve the prediction performance, e.g. thetgp
the videos, the number of spreaders, the propagation tgpolo
etc.

B. Benchmarks

We will compare the performance of our online prediction
algorithm with four benchmarks.

o All Unpopular (AU) . The first benchmark is a naive
scheme which predicts that all videos are not popular
at age 1. This is equivalent @ = UnpopularVvk.

be bad, they will obtain full timeliness rewards because
they make the predictions at the first age for each
video. However, since their prediction accuracy is low,
their overall prediction rewards are the lowest among all
algorithms. The reward achieved by AU is decreasing in
w and the reward achieved by AP is increasinguin
This is because a larger assigns higher importance to
correct prediction for popular videos and the fact that AP
predicts all popular videos correctly and AU predicts all
unpopular videos correctly.

VP algorithms achieve better prediction rewards than AU
and AP. As can be seen from the table, an early prediction
generates higher rewards because a large portion of the
reward is derived from the timeliness of the prediction.
The reward achieved by VP-25 is decreasinguinvhile
those achieved by VP-50 and VP-75 are increasing in
w. This implies that VP-25 has a better performance
on predicting unpopular videos than predicting popular
videos.
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TABLE Il
COMPARISON OF NORMALIZED PREDICTION REWARD WITH VARYINGw 1

AU AP VP-25 | VP-50 | VP-75 SF

w=>5 0.795| 0.622 | 0.831 | 0.763 | 0.643 | 0.986
w=10 | 0.663 | 0.685| 0.823 | 0.803 | 0.671 | 0.983
w=15 | 0549 | 0.740 | 0.814 | 0.837 | 0.691 | 0.981

0.95¢

TABLE IlI
COMPARISON OF NORMALIZED PREDICTION REWARD WITH VARYINGA

0.91

AU AP VP-25 | VP-50 | VP-75 SF

A=0.005 | 0.601| 0.612 | 0.835 | 0.862 | 0.757 | 0.980
A=0.010 | 0.663 | 0.685| 0.823 | 0.803 | 0.671 | 0.983
A=0.015 | 0.701| 0.737 | 0.816 | 0.762 | 0.613 | 0.983

normalized prediction reward

0.85 1 1 1 1
2000 4000 6000 8000 10000

number of videos
o The proposed algorithm Social-Forecast generates sig-
nificantly higher prediction rewards than all benchmarkd- 7- Prediction performance during the learning process
algorithms. Its performance is not sensitive to the specific
value of w which implies that it is able to predict both

popular and unpopular videos very accurately and in[z)a' Learning performa.nce . _ _
timely manner. Our proposed Social-Forecast algorithm is an online al-

gorithm and does not require any prior knowledge of the
video popularity evolution patterns. Hence, it is impottan
%o investigate the prediction performance during the ligarn
process. Our analytic results have already provided sednlin
bounds on the prediction performance for any given number
o The rewards obtained by both and AU and AP aref video instances which guarantee the convergence to the
increasing in\. This is because both benchmarks deriveptimal prediction policy. Now, we show how much prediction
full reward from the timeliness prediction since they makeeward that we can achieve during the learning process in
prediction at the first age for all videos. experiments. Figurg 7 shows the normalized prediction rewa
o The rewards obtained by all three versions of VP am Social-Forecast as the number of videos instances isesea
decreasing in\. This suggests the rewards are mainhAs more video instances arrive, our algorithm learns better
derived from prediction accuracy but the VP algorithmthe optimal prediction policy and hence, the predictionamiv
are not able to make the prediction in a timely manneimproves with the number of video instances. In particular,
« Our proposed Social-Forecast algorithm significantly outhe proposed prediction algorithm is able to achieve maaa th
performs all other benchmark algorithms and achie80% of the best possible reward even with a relatively small
close-to-optimal rewards for all values af number of video instances.

Next, we fixw and vary\. TableIll records the normalized
prediction rewards obtained by our proposed algorithm haed
benchmarks foi# = 10 and\ = 0.005, 0.010, 0.015. Several
points are worth discussing:

We also investigate the achieved predication accuracy in
terms of true positive rate and true negative rate. We defiie Choices of lifetimeV

the true positive rate as the ratio of correctly predictetbos 5o far in our analysis, we treated the prediction reference
among all popular videos and the true negative rate as e N as fixed. In practice, this is a parameter that can be
ratio of correctly predicted videos among all unpopulaedsl.  set by the content providers, the advertisers and the wets hos
Table[lﬂ illustrates the true pOSitive rates and true negatidepending on their Specific requirements_ In this exper[men
rates achieved by different algorithms. As can be seen fh@m {ye show the performance of our algorithm for different
table, in general prediction at a later age for the VP alpot#  choices of N. Table[W provides the prediction rewards ob-
improves the accuracy. However, it is not always the caggned by different algorithms fotv = 60, 70, 80, 90, 100
since the true negative rate achieved by VP-75 is low. Thighend = 0.010 andw = 10. In all experiments, the proposed
suggests that the correlation used by VP-75 for unpopulggorithm achieves significant higher prediction rewatunt
videos does not accurately reflect the true popularity eimiu the benchmarks. This shows that our methodology and asso-

trend. Instead, our proposed Social-Forecast is able tie\aeh ciated algorithm is general and applicable for problemd wit
both a high true positive rate and a high true negative rate,dfifferent requirements.

the same time predicting in a timely manner.

F. More refined popularity prediction

TABLE IV In the previous experiments, we considered a binary pop-

TRUEPOSITIVE AND TRUE NEGATIVE. ularity status space. Nevertheless, our proposed populari

AU T AP | VP25 [ VP50 | VP75 | SE prediction methodology and associated algorithm can also

True Positive | 0 1 | 0.918 | 0.917 | 0.995 | 0.983 be applied to predict popularity in a more refined space.
True Negative] 1 [ O [ 0804 | 0.994 | 0.789 | 0.972 In this experiment, we consider a refined popularity status
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TABLE V

IMPACT OF REFERENCE AGEN advertisers, content producers and web hosts) who havesacce
to multiple different social medias or different sections o
AU | AP | VP-25 | SF one social media. In such scenarios, significant improvémen
%zgg 8:222 8:222 8:;5% g:ggg is expected by enabling cooperative learning among the dis-
N =280 | 0.645| 0657 | 0.814 | 0.989 tributed learners[[39]. The challenges in these scenaries a
N =90 | 0.642| 0.678 | 0.816 | 0.986 how to design efficient cooperative learning algorithmshwit
N =100 | 0.663] 0.685] 0.823 | 0.983 low communication complexity [40] and, when the distrilmite

TABLE VI learners are self-interested and have conflicting goals; ho

PERFORMANCE COMPARISON FOR REFINED POPULARITY SPACE to incentiVilze them to.participate _in the cooperatiye |mn
process using, e.g. rating mechanisms [41] [42]. Finallyijav

R \éi'g? \(/)Pégf \(/)'36'275 059';8 this paper has studied the specific problem of online predic-

S —0.010 [ 0493 0580 0578 | 0.928 _tlon of y|deo popularity based on contexf[ual and 5|Fual1|0na

X =0.015 | 0492 | 0558 | 0.545 | 0.920 information, our methodology and associated algorithm can

be easily adapted to predict other trends in social medigh(su
as identifying key influencers in social networks, the ptgn
space{High Popularity, Medium Popularity, Low Popularjty for becoming viral of contents or tweets, identifying pogul
where “High Popularity” is defined for videos with more tharPr relevant content, providing recommendations for sotial
10000 views, “Medium Popularity” for videos with viewsetc.).
between 2000 and 10000, and “Low Popularity” for videos
with views below 2000. The portions of High, Medium and APPENDIX
Low videos are 10%, 30% and 60%, respectively. We setIn this appendix, we analyze the learning regret of the
rewards for correctly predicting High, Medium, Low videodAdaptive-Partition algorithm. To facilitate the analysise
to be 10, 5 and 1, respectively. The proposed Social-Farecasificially create two learning steps in the algorithms:éach
algorithm is compared against the view-based algorithm \Vipstancek, it belongs to either airtual explorationstep or a
performed at different prediction ages. Tablel VI illustsat Virtual exploitationstep. LetMq (k) be the number of context
the normalized rewards obtained by different algorithms f@rrivals in C' by video instancet. Given a contextel: € C,
A = 0.005,0.010,0.015. As can been seen from the tablewhich step the instandebelongs to depends aW¢ (k) and a
the rewards obtained by all algorithms decrease compafé@ferministic functionD (k). If Mc (k) < D(k), thenitisin a
with the binary popularity status case since prediction bgirtual exploration step; otherwise, itis in a virtual eajsation
comes more difficult. However, the performance improvemestiep. Notice that these steps are only used in the analysis; i
of Social-Forecast against VP becomes even larger. TH implementation of the algorithm, these different steps
suggests that our algorithm, which explicitly considers thot exist and are not needed.
situational/contextual information, is able to achieveigher ~ We introduce some notations here. %gtc (k) be the set of
performance gain against view-based approaches for mégwards collected from actiom by instancek for hypercube
refined popularity prediction. C. For each hypercub€' let a*(C) be the action which
is optimal for the center context of that hypercube, and let
fla,c = SUPgec p(x|a) and By o = infzec p(xla). For a
level | hypercubeC, the set of suboptimal action is given by
In this paper, we have proposed a novel, systematic and B /2o —lon
highly-efficient online popularity forecasting algorithfior Leus =A{a: Koo o = Hac > BLd*/?271} @
videos promoted by social media. We have shown that Byhere B > 0 is a constant.
incorporating situational and contextual informatiorgrsi- The regret can be written as a sum of three components:
icantly better prediction performance can be achieved than
existing approaches which disregard this information and R(K) = E[Re(K)] + E[R(K)] + E[R. (K)] (®)
only consider the number of times that videos have bearereR.(K) is the regret due to virtual exploration steps by
viewed so far. The proposed Social-Forecast algorithm ddestance K, Rs(K) is the regret due to sub-optimal action
not require prior knowledge of popularity evolution or aelection in virtual exploitation steps by instanéé and
training set and hence can operate easily and successfiilly(K) is the regret due to near-optimal action selections in
in online, dynamically-changing environments such asaociirtual exploitation steps by instand€. The following series
media. We have systematically proven sublinear regret éd®urof lemmas bound each of these terms separately.
on the performance loss incurred by our algorithm due toWe start with a simple lemma which gives an upper bound
online learning. Thus Social-Forecast guarantees both-sh@n the highest level hypercube that is active at any instance
term performance as yvell as Its asymptotic convergencesto E]emma 2. All the active hypercubesl; at instancek have
optimal performance in the long term. t most a level oflog, k) /p + 1
This paper considered a single learner who observes t%e S20)/P T -
propagation patterns of videos promoted by one social media Proof: Let [ + 1 be the level of the highest level active

. ; R . h _
One important future vyork d.|re(_:t|on is to extend to Scenﬂr'%ypercube. We must havg® 4277 < k, otherwise the highest
where there are multiple distributed learners (e.g. mieltip S=1

VII. CONCLUSIONS ANDFUTURE WORK
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level active hypercube will be less thdn- 1. We have for 2)Ld®/?2=*k~=/P, For H, = k~*/2, 2 > 2a/p and B =

k/A>1, W+2, the last term i$). By using a Chernoff-Hoeffding
op(I+1)-1 i log, (k) bound, for anya € Lc, B, since on the evenWce(k),
1 < k= 2P < 1 i < 282 (9) Mc(k) > k*logk, we have
- p
m Py (M (k) > fia,c + Hi, We (k)
The next three lemmas bound the regrets for any lével <p—2(H)?K logk L
hypercube. . =¢ = k2
Lemma 3. If D(k) = k¥ log k. Then, for any level hypercube and
the regret due to virtual explorations by instancés bounded wors
abovegbyA(k:Z logk + 1). P ’ P(rar et (M (k) < By o = Hi, Wo (k)
_ 212 log 1
Proof: Since the instancé belongs to a virtual explo- e 2R logk < 72
ration step if and only ifMq (k) < D(k), up to instancex,
there can be at mo$t* log k] virtual exploration steps for one Therefore E[Re (K)] < 2/3,. u

hypercube. Therefore, the regret is bounded\o¥* log k+1). | emma 5. Let B — s + 2. 1 p > 0,2a/p <
B <1, D(k) = k*logk, then for any level hypercubeC,
Lemma 4. LetB= —2_— +2. If p>0,2a/p <z < 1, the regret due to choosing near optimal actions in virtual
. a/29—a . I = 1 . . . -
D(k) = k* log k, then for any level hypercubeC, the regret epr0|tat|/02n(sEe§)ls, .eE[Ro,n(K)], is bounded above by
due to choosing suboptimal actions in virtual eproitatioRABLd 2T,
steps, i.eE[Rc,s(K)], is bounded above by3,. Proof: The one-step regret of any near optimal action
Proof: Let 2 denote the space of all possible outcome$ boundled bVZBLda{szla- SinceC' remains active for at
andw be a sample path. The event that the algorithm virtual oSt A2”" context arrivals, we have
exploits inC' at instancek is given by E[Ren(K)] < 2ABLd*/?2(p—) (10)

We (k) := {w: Mc(k) > D(k),zk € C,C € Ax}

We will bound the probability that the algorithm chooses a Now we are ready to prove Theorem 2.

suboptimal arm in an virtual exploitation step @ and then Proof: We let B = W + 2.

bound the expected number of times a suboptimal action isConsider the worst-case. It can be shown that in the
chosen by the algorithm. Recall that loss in every step iswbrst case the highest level hypercube has level at most
most1. LetV, ¢ (k) be the event that a suboptimal action i2 + log,,+« K. The total number of hypercubes is bounded
chosen. Then by

K 1+1ogyp+a K
E[Rcs(K)] <Y > PWVac(k),We(k)) Y ol <o a1)
k=lacLlc, B 1=0 N

For anya, we have We can calculate the regret from choosing near optimal

WVa,c(k), We (k) } action as
C{fa,C(k) > /ja,C + Hk, Wc(k)} 1+log,pta K
UiTar.c(k) < pr,.. o = Hi, We (k) E[R.(K)] < 2ABLd*> 3" 20=o  (12)
- 1=0
U {fa,C(k) > Fa*yc(k), fa_’c(k) < flg,c t+ Hi., SQABLdO‘/222(d+P*OC)Kd§i;Q (13)

Tar,0(F) > B o = He, Wo(k)}

. _d_
for someH,, > 0. This implies Since the number of hypercubesi§ K #+»), regret due to

virtual explorations isO(Kd;ip“ log K'), while regret due to

PVa,c(k), We(k)) suboptimal selection i§ (K 755 +%), for z > 22 These three
<P(eH(Mco(k)) > fia,c + Hi + Ld*?27 We (k) terms are balanced when= 2a/p and 77 = S+ =,
—I—P(leu*orgt(]\/fc(k)) < Ha*_c — Hj, — Ld/a/22—la’ WC(/C)) Solvmg forp we get
LR (Mo(k)) > 720t (M (k). ,_ 30+ V0a7 8o w

Tott (Mc(k)) < fia,c + Hy, 2
fzugrcst(MC(k)) S Hy, We (k) Substituting these parameters and summing up all the terms

we get the regret bound.
Consider the last term in the above equation. In orderConsider the best case, the number of activated hypercubes
to make the right-hand side to be 0, we neé@d/;, < is upper bounded byog, K/p + 1, and by the property of
(B — 2)Ld*/?27'>, This holds when2H, < (B — context arrivals all the activated hypercubes have differe
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levels. We calculate the regret from choosing near optimab] R. Yan, J. Tang, X. Liu, D. Shan, and X. Li. “Citation cdyprediction:

arm as
1+log, K/p
E[R,(K)| < 2ABLd*/* Y 20721 (15)
1=0
22(p—a) .
<2ABLA™? = ——K 7 (16)
The terms are balanced by setting= 2«/p, p = 3a. ]
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