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Abstract—This paper presents a systematic online prediction
method (Social-Forecast) that is capable to accurately forecast the
popularity of videos promoted by social media. Social-Forecast
explicitly considers the dynamically changing and evolving propa-
gation patterns of videos in social media when making popularity
forecasts, thereby being situation and context aware. Social-
Forecast aims to maximize the forecast reward, which is defined
as a tradeoff between the popularity prediction accuracy and
the timeliness with which a prediction is issued. The forecasting
is performed online and requires no training phase or a priori
knowledge. We analytically bound the prediction performance
loss of Social-Forecast as compared to that obtained by an
omniscient oracle and prove that the bound is sublinear in the
number of video arrivals, thereby guaranteeing its short-term
performance as well as its asymptotic convergence to the optimal
performance. In addition, we conduct extensive experiments
using real-world data traces collected from the videos shared
in RenRen, one of the largest online social networks in China.
These experiments show that our proposed method outperforms
existing view-based approaches for popularity prediction(which
are not context-aware) by more than 30% in terms of prediction
rewards.

Index Terms—Situational and contextual awareness, social me-
dia, online social networks, popularity prediction, online learning,
forecasting algorithm

I. I NTRODUCTION

Networked services in the Web 2.0 era focus increasingly
on the user participation in producing and interacting with
rich media. The role of the Internet itself has evolved from
the original use as a communication infrastructure, where
users passively receive and consume media content to a
social ecosystem, where users equipped with mobile devices
constantly generate media data through a variety of sensors
(cameras, GPS, accelerometers, etc.) and applications and,
subsequently, share this acquired data through social media.
Hence, social media is recently being used to provide sit-
uational awareness and inform predictions and decisions in
a variety of application domains, ranging from live or on-
demand event broadcasting, to security and surveillance [1],
to health communication [2], to disaster management [3], to
economic forecasting [4]. In all these applications, forecasting
the popularity of the content shared in a social network is
vital due to a variety of reasons. For network and cloud
service providers, accurate forecasting facilitates prompt and
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adequate reservation of computation, storage, and bandwidth
resources [5], thereby ensuring smooth and robust content
delivery at low costs. For advertisers, accurate and timelypop-
ularity prediction provides a good revenue indicator, thereby
enabling targeted ads to be composed for specific videos and
viewer demographics. For content producers and contributors,
attracting a high number of views is paramount for attracting
potential revenue through micro-payment mechanisms.

While popularity prediction is a long-lasting research
topic [15] [14] [27] [28], understanding how social networks
affect the popularity of the media content and using this
understanding to make better forecasts poses significant new
challenges. Conventional prediction tools have mostly relied
on the history of the past view counts, which worked well
when the popularity solely depended on the inherent attractive-
ness of the content and the recipients were generally passive.
In contrast, social media users are proactive in terms of the
content they watch and are heavily influenced by their social
media interactions; for instance, the recipient of a certain
media content may further forward it or not, depending on not
only its attractiveness, but also the situational and contextual
conditions in which this content was generated and propagated
through social media [16]. For example, the latest measure-
ment on Twitter’s Vine, a highly popular short mobile video
sharing service, has suggested that the popularity of a short
video indeed depends less on the content itself, but more on the
contributor’s position in the social network [17]. Hence, being
situation-aware, e.g. considering the content initiator’s infor-
mation and the friendship network of the sharers, can clearly
improve the accuracy of the popularity forecasts. However,
critical new questions need to be answered: which situational
information extracted from social media should be used, how
to deal with dynamically changing and evolving situational
information, and how to use this information efficiently to
improve the forecasts?

As social media becomes increasingly more ubiquitous and
influential, the video propagation patterns and users’ sharing
behavior dynamically change and evolve as well. Offline
prediction tools [15] [18] [19] [20] depend on specific training
datasets, which may be biased or outdated, and hence may
not accurately capture the real-world propagation patterns
promoted by social media. Moreover, popularity forecasting is
a multi-stagerather than a single-stage task since each video
may be propagated through a cascaded social network for a
relatively long time and thus, the forecast can be made at any
time while the video is being propagated. A fast prediction
has important economic and technological benefits; however,
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too early a prediction may lead to a low accuracy that is less
useful or even damaging (e.g. investment in videos that will
not actually become popular). The timeliness of the prediction
has yet to be considered in existing works [14]-[20] [27] [28]
which solely focus on maximizing the accuracy. Hence, we
strongly believe that developing a systematic methodologyfor
accurate and timely popularity forecasting is essential.

In this paper, we propose for the first time a systematic
methodology and associated online algorithm for forecastingl
popularity of videos promoted by social media. Our Social-
Forecast algorithm is able to make predictions about the
popularity of videos while jointly considering the accuracy
and the timeliness of the prediction. We explicitly consider the
unique situational conditions that affect the video propagated
in social media, and demonstrate how thiscontext information
can be incorporated to improve the accuracy of the forecasts.
The unique features of Social-Forecast as well as our key
contributions are summarized below:

• We rigorously formulate the online popularity prediction
as a multi-stage sequential decision and online learning
problem. Our solution, the Social-Forecast algorithm,
makes multi-level popularity prediction in an online fash-
ion, requiring noa priori training phase or dataset. It
exploits the dynamically changing and evolving video
propagation patterns through social media to maximize
the prediction reward. The algorithm is easily tunable to
enable tradeoffs between the accuracy and timeliness of
the forecasts as required by various applications, entities
and/or deployment scenarios.

• We analytically quantify the regret of Social-Forecast,
that is, the performance gap between its expected reward
and that of the best prediction policy which can be
only obtained by an omniscient oracle having complete
knowledge of the video popularity trends. We prove that
the regret is sublinear in the number of video arrivals,
which implies that the expected prediction reward asymp-
totically converges to the optimal expected reward. The
upper bound on regret also gives a lower bound on the
convergence rate to the optimal average reward.

• We validate Social-Forecast’s performance through ex-
tensive experiments with real-world data traces from
RenRen (the largest Facebook-like online social net-
work in China). The results show that significant im-
provement can be achieved by exploiting the situational
and contextual meta-data associated with the video and
its propagation through the social media. Specifically,
the Social-Forecast algorithm outperforms existing view-
based approaches by more than 30% in terms of predic-
tion rewards.

The rest of the paper is organized as follows. Section II
discusses related works. In Section III, we describe the system
model and rigorously formulate the online popularity predic-
tion problem. Section IV presents a systematic methodology
for determining the optimal prediction policy with complete
prior knowledge of the video propagation pattern. In Section
V, we propose the online learning algorithm for the optimal
prediction policy and prove that it achieves sublinear regret

bounds. Section VI discusses the experimental results and our
findings. Section VII concludes this paper.

II. RELATED WORKS

In this section, we review the representative related works
from both the application and the theoretical foundation per-
spectives.

A. Popularity Prediction for Online Content

Popularity prediction of online content has been exten-
sively studied in the literature. Early works have focused
on predicting the future popularity of content (e.g. video)
on conventional websites such as YouTube. Various solu-
tions are proposed based on time series models like ARMA
(Autoregressive moving average) [6] [7] [8], regression mod-
els [9] [10] [11] and classification models [9] [12] [13]. These
methods are generally view-based, meaning that the prediction
of the future views is solely based on the early views, while
disregarding the situational context during propagation.For
instance, it was found that a high correlation exists between
the number of video views on early days and later days
on YouTube [14]. By using the history of views within
the past 10 days, the popularity of videos can be predicted
up to 30 days ahead [15]. While these predictions methods
provide satisfactory performance for YouTube-like accesses,
their performance is largely unacceptable [16] when applied
to predicting popularity in the social media context. This
is because in this case the popularity of videos evolves in
a significantly different manner which is highly influenced
by the situational and contextual characteristics of the social
networks in which the video has propagated [21].

Recently, there have been numerous studies aiming to accu-
rately predicting the popularity of content promoted by social
media [2] [3] [23]-[26]. For instance, a propagation model is
proposed in [18] to predict which users are likely to mention
which URLs on Twitter. In [19], the retweets prediction on
Twitter is modeled as a classification problem, and a variety
of context-aware features are investigated. For predicting the
popularity of news in Digg, such aspects as website design
have been incorporated [20], and for predicting the popularity
of short messages, the structural characteristics of social media
have been used [22]. For video sharing in social media, our
earlier work [16] has identified a series of context-aware
factors which influence the propagation patterns.

Our work in this paper is motivated by these studies, but it
is first systematic solution for forecasting the video popularity
based on the situational and contextual characteristics ofsocial
media. First, existing works are mostly measurement-based
and their solutions generally work offline, requiring existing
training data sets. Instead, Social-Forecast operates entirely
online and does not require any a priori gathered training
data set. Second, Social-Forecast is situation-aware and hence
it can inherently adapt on-the-fly to the underlying social
network structure and user sharing behavior. Last but not
least, unlike the early empirical studies which employ only
simulations to validate the performance of their predictions, we
can rigorously prove performance bounds for Social-Forecast.
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Importantly, our Social-Forecast can be easily extended to
predict other trends in social media (such as predicting who
are the key influencers in social networks, which tweets and
news items may become viral, which content may become
popular or relevant etc.) by exploiting contextual and sit-
uational awareness. For instance, besides popularity, social
media has been playing an increasingly important role in
predicting present or near future events. Early studies show
that the volume and the frequency of Twitter posts can be
used to forecast box-office revenues for movies [23] and detect
earthquakes [3]. Sentiment detection is investigated in [29]
by exploring characteristics of how tweets are written and
meta-information of the words that compose these messages.
In [2], Google Trends uses search engine data to forecast
near-term values of economic indicators, such as automobile
sales, unemployment claims, travel destination planning,and
consumer confidence. Social-Forecast can be easily adapted
for deployment in these applications as well.

Table I provides a comprehensive comparison between
existing works on popularity prediction and Social-Forecast,
highlighting their differences.

B. Quickest Detection and Contextual Bandits Learning

In our problem formulation, for each video, the algorithm
can choose to make a prediction decision using the currently
observed context information or wait to make this prediction
until the next period, when more context information arrives.
This introduces a tradeoff between accuracy and delay which
relates to the literature on quickest detection [30] [31] [32]
which is concerned with the problem of detecting the change
in the underlying state (which has already occurred in the
past). For example, authors in [32] study how to detect the
presence of primary users by taking channel sensing samples
in cognitive radio systems. In the considered problem, there
is no underlying state; in fact, the state is continuously and
dynamically changing, and the problem becomes forecasting
how it will evolve and which event will occur in the future.
Moreover, many quickest detection solutions assume prior
knowledge of the hypotheses [32] while this knowledge is
unknown a priori in our problem and needs to be discovered
over time to make accurate forecasts.

Our forecasting algorithm is based on the contextual bandits
framework [33]-[37] but with significant innovations aimedat
tackling the unique features of the online prediction problem.
First, most of the prior work [34]-[37] on contextual bandits is
focused on an agent making a single-stage decision based on
the provided context information for each incoming instance.
In this paper, for each incoming video instance, the agent needs
to make a sequence of decisions at multiple stages. The context
information is stage-dependent and is revealed only when that
stage takes place. Importantly, the reward obtained by selecting
an action at one stage depends on the actions chosen at other
stages and thus, rewards and actions at different stages are
coupled. Second, in existing works [33]-[37], the estimated
rewards of an action can be updated only after the action is
selected. In our problem, because the prediction action does
not affect the underlying popularity evolution, rewards can be

 

 Situational 
awareness 

Online/offline 
algorithm 

Analytic 
performance 

Multi -stage 
decision 

Timeliness of 
prediction 

Existing 
works No/Partially Offline No No No 

This paper Yes Online Yes Yes Yes 

 
TABLE I

COMPARISON WITH EXISTING WORKS ON POPULARITY PREDICTION FOR
ONLINE CONTENT.

computed and updated even for actions that are not selected.
In particular, we update the reward of an action as if it was
selected. Therefore, exploration becomes virtual in the sense
that explicit explorations are not needed and hence, in each
period, actions with the best estimated rewards can always be
selected, thereby improving the learning performance.

III. SYSTEM MODEL

A. Sharing Propagation and Popularity Evolution

We consider a generic Web 2.0 information sharing system
in which videos are shared by users through social media
(see Figure 1 for a system diagram). We assign each video
with an indexk ∈ {1, 2, ...,K} according to the absolute
time tkinit when it is initiated1. Once a video is initiated, it
will be propagated through the social media for some time
duration. We assume a discrete time model where a period
can be minutes, hours, days, or any suitable time duration. A
video is said to have an age ofn ∈ {1, 2, ...} periods if it
has been propagated through the social media forn periods.
In each period, the video is further shared and viewed by
users depending on the sharing and viewing status of the
previous period. The propagation characteristics of videok up
to agen are captured by adn-dimensional vectorxk

n ∈ Xn

which includes information such as the total number of views
and other situational and contextual information such as the
characteristics of the social network over which the video was
propagated. The specific characteristics that we use in this
paper will be discussed in Section VI. In this section, we keep
x
k
n in an abstract form and call it succinctly thecontext (and

situational) informationat agen.
Several points regarding the context information are note-

worthy. First, the context spaceXn can be different at different
agesn. In particular,xk

n can include all history information
of video k’s propagation characteristics up to agen and
hencex

k
n includes all information ofxk

m, ∀m < n (See
Figure 2). Thus the type of contextual/situational information
is also age-dependent. Second,x

k
n can be taken from a large

space, e.g. a finite space with a large number of values or
even an infinite space. For example, some dimensions ofx

k
n

(e.g. the Sharing Rate used in Section VI) take values from
a continuous value space andxk

n may include all the past
propagation characteristics (e.g.x

k
m ∈ x

k
n, ∀m < n). Third, at

agen, xk
m, ∀m > n are not yet revealed since they represent

future situational and contextual information which is yetto
be realized. Hence, given the context informationx

k
n at age

1It is easy to assign unique identifiers if multiplel videos which are
generated/initiated at the same time.



4

Social 

Media

��� �
���	�
	

��� �
���	�
	

���
 ���


. . .

Social-Forecast Algorithm

������������

����������

�����������

���	��	� 

!" ��#� 

$��%� 

Popularity 

Prediction Engine

&��'�(����

)�*���

)����+�'

,��� &�-������.

��� /
���	�
	

01234�5


6237�4
�18

935:;


<�
:�
�18�;=>18
3?
:�;

@8A12B�
�18

623C�1:5 6237�4
�18

93D�275

6237�4
�18

EC�;:�
�18

&��'�(����

)�F��'

Fig. 1. System diagram.

GHIJK

LMNONPQJOHRQHPR

SJOHKI T SJOHKI U SJOHKI V SJOHKI W

LKXQJYQZN[\

]HQZNQHKXN[

^X_KO`NQHKX

a
b

c

d
b

c

e
b

c

f
g

h

i i i

Fig. 2. An illustration of context information taking the history characteris-
tics.

n, the future context informationxk
m, ∀m > n are random

variables.
We are interested in predicting the future popularity status

of the video by the end of a pre-determined ageN , and we
aim to make the prediction as soon as possible. The choice
of N depends on the specific requirements of the content
provider, the advertiser and the web hosts. In this paper,
we will treat N as given2. Thus, the context information
for video k during its lifetime ofN periods is collected in
x
k = (xk

1 ,x
k
2 , ...,x

k
N ). For expositional simplicity, we also

define xn+ = (xn+1, ...,xN ), xn− = (x1, ...,xn−1) and
x−n = (xn− ,xn+).

Let S be the popularity status space, which is assumed
to be finite. For instance,S can be either a binary space
{Popular, Unpopular} or a more refined space containing
multiple levels of popularity such as{Low Popularity, Medium
Popularity, High Popularity} or any such refinement. We let
sk denote the popularity status of videok by the end of
ageN . Since sk is realized only at the end ofN periods,
it is a random variable at all previous ages. However, the
conditional distribution ofsk will vary at different ages since
they are conditioned on different context information. In many
scenarios, the conditional distribution at a higher agen is
more informative for the future popularity status since more

2This assumption is generally valid given that the video sharing events have
daily and weekly patterns, and the active lifespans of most shared videos
through social media are quite limited [21]

contextual information has arrived. Nevertheless, our model
does not require this assumption to hold.

B. Prediction Reward

For each videok, at each agen = 1, ..., N , we can make a
prediction decisionakn ∈ S∪{Wait}. If akn ∈ S, we predictakn
as the popularity status by ageN . If akn = Wait, we choose
to wait for the next period context information to decide (i.e.
predict a popularity status or wait again). For each videok,
at the end of ageN , given the decision action vectorak, we
define theage-dependent rewardrkn at agen as follows,

rkn =

{

U(akn, s
k, n), if akn ∈ S

rkn+1, if akn = Wait
(1)

where U(akn, s
k, n) is a reward function depending on the

accuracy of the prediction (determined byakn and the realized
true popularity statussk) and the timeliness of the prediction
(determined by the agen when the prediction is made).

The specific form ofU(akn, s
k, n) depends on how the

reward is derived based on the popularity prediction based
on various economical and technological factors. For instance,
the reward can the ad revenue derived from placing proper ads
for potential popular videos or the cost spent for adequately
planning computation, storage, and bandwidth resources to
ensure the robust operation of the video streaming services.
Even though our framework allows any general form of the
reward function, in our experiments (Section VI), we will
use a reward function that takes the form ofU(akn, s

k, n) =
θ(akn, s

k) + λψ(n) where θ(akn, s
k) measures the prediction

accuracy,ψ(n) accounts for the prediction timeliness and
λ > 0 is a trade-off parameter that controls the relative
importance of accuracy and timeliness.

Let n∗ be the first age at which the action is not “Wait”
(i.e. the first time a forecast is issued). Theoverall prediction
reward is defined as therk = rkn∗ . According to equation
(1), when the action is “Wait” at agen, the reward is the
same as that at agen + 1. Thusrk1 = rk2 = ... = rkn∗ . This
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Fig. 3. An illustration for the multi-stage decision making. The firstn− 1

action is “Wait”. If the age-n action is “Wait”, thenrkn = rk
n+1

which depends
on later actions. If the age-n action is not “Wait”, thenrkn 6= r

k

n+1 and r
k

does not depend on later actions. However, we can still learnthe reward of
action at agen+ 1 as if all actions beforen+ 1 were “Wait”.

suggests that the overall prediction reward is the same as the
age-dependent reward at age 1, i.e.rk = rk1 . For agen >
n∗, the actionank and the age-dependent rewardrkn do not
affect the realized overall prediction result since a prediction
has already been made. However, we still select actions and
compute the age-dependent reward since it helps learning the
best action and the best reward for this agen which in turn
will help decide whether or not we should wait at an early
age. Figure 3 provides an illustration on how the actions at
different ages determine the overall prediction reward.

Remark: The prediction action itself does not generate
rewards. It is the action (e.g. online ad investment) taken using
the prediction results that is rewarding. In many scenarios, this
action can only be taken once and cannot be altered afterwards.
This motivates the above overall reward function formulation
in which the overall prediction reward is determined by the
first non-“Wait” action. Nevertheless, our framework can also
be easily extended to account for more general overall reward
functions which may depend on all non-“Wait” actions. For
instance, the action may be revised when a more accurate
later prediction is made. In this case, the reward function
U(akn, s

k, n) in (1) will depend on not only the current
prediction actionakn ∈ S but also all non-“Wait” actions after
agen. We will use the reward function in (1) because of its
simplicity for the exposition but our analysis also holds for
general reward functions.

C. Prediction Policy

In this paper, we focus on prediction policies that depend on
the current contextual information. Letπn : Xn → S∪{Wait}
denote the prediction policy for a video link of agen and
π = (π1, ..., πN ) be the complete prediction policy. Hence, a
prediction policyπ prescribes actions for all possible context
information at all ages. For expositional simplicity, we also
define πn+ = (πn+1, ..., πN ) as the policy vector for ages
greater thann, πn− = (π1, ..., πn−1) as the policy vector for
ages smaller thann andπ−n = (πn− , πn+). For a video with
context informationxk, the prediction policyπ determines the
prediction action at each age and hence the overall prediction
reward, denoted byr(x|π), as well as the age-dependent
rewardsrn(x|π), ∀n = 1, ..., N . Let f(x) be the probability
distribution function of the video context information, which
also gives information of the popularity evaluation patterns.

The expected prediction reward of a policyπ is therefore,

V (π) =

∫

x∈X
r(x|π)f(x)dx (2)

Note that the age-n policy πn will only use the context
informationxn rather thanx to make predictions sincexn+

has not been realized at agen.
Our objective is to determine the optimal policyπopt

that maximizes the expected prediction reward, i.e.πopt =
argmax

π
V (π). In the following sections, we will propose a

systematic methodology and associated algorithms that find
the optimal policy for the case whenf(x) is known or un-
known, which are referred to as the complete and incomplete
information scenarios, respectively.

IV. W HY ONLINE LEARNING IS IMPORTANT?

In this section, we consider the optimal policy design prob-
lem with the complete information of the context distribution
f(x) and compute the optimal policyπopt. In the next section
in which f(x) is unknown, we will learn this optimal policy
πopt online and hence, the solution that we derive in this
section will serve as the benchmark. Even when having the
complete information, determining the optimal predictionpol-
icy faces great challenges: first, the prediction reward depends
on all decision actions atall ages; and second, when making
the decision at agen, the actions for ages larger thann are
not known since the corresponding context information has
not been realized yet.

Given policiesπ−n, we define the expected reward when
taking actionan for xn as follows,

µn(x
′
n|π−n, an) =

∫

x

Ixn=x
′

n
rn(x|π−n, an)f(x)dx (3)

where Ixn=x
′

n
is an indicator function which takes value

1 when the age-n context information isx′
n and value 0

otherwise. The optimalπ∗(π−n) given π−n thus can be
determined by

π∗
n(xn|π−n) = argmax

a
µ(xn|π−n, a), ∀xn (4)

and in which we break ties deterministically. Equation (4)
defines a best response function from a policy to a new
policy F : Π → Π where Π is the space of all policies.
In order to compute the optimal policyπopt, we iteratively
use the best response function in (4) using the output policy
computed in the previous iteration as the input for the new
iteration. Note that a computation iteration is different from a
time period. “Period” is used to describe the time unit of the
discrete time model of the video propagation. A period can
be a miniute, an hour or any suitable time duration. In each
period, the sharing and viewing statistics of aspecificvideo
may change. “Iteration” is used for the (offline) computation
method for the optimal policy (which prescribes actions for
all possible context information inall periods). Given the
complete statistical information (i.e. the video propagation
characteristics distributionf(x)) of videos, a new policy is
computed using best response update in each iteration.

We prove the convergence and optimality of this best
response update as follows.
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Lemma 1. π∗
n(xn|π−n) is independent ofπm, ∀m < n, i.e.

π∗
n(xn|π−n) = π∗

n(xn|πn+).

Proof: By the definition of age-dependent reward, the
prediction actions before agen does not affect the age-n
reward. Hence, the optimal policy depends only on the actions
after agen.

Lemma 1 shows that the optimal policyπn at agen is fully
determined by the policies for ages larger thann but does
not depend on the policies for ages less thann. Using this
result, we can show the best response algorithm converges
to the optimal policy within a finite number of computation
iterations.

Theorem 1. Starting with any initial policyπ0, the best
response update converges to a unique pointπ∗ in N compu-
tation iterations. Moreover,π∗ = πopt.

Proof: Given the context distributionf(x) which also
implies the popularity evolution, the optimal age-N policy
can be determined in the first iteration. Since we break ties
deterministicaly when rewards are the same, the policy is
unique. Given this, in the second iteration, the optimal age-
(N − 1) policy can be determined according to (4) and is
also unique. By induction, the best response update determines
the unique optimal age-n policy afterN + 1 − n iterations.
Therefore, the complete policy is found inN iterations and
this policy maximizes the overall prediction reward.

Theorem 1 proves that we can compute the optimal pre-
diction policy using a simple iterative algorithm as long as
we have complete knowledge of the popularity evolution
distribution. In practice, this information is unknown and
extremely difficult to obtain, if not possible. One way to
estimate this information is based on a training set. Since the
context space is usually very large (which usually involves
infinite number of values), a very large volume of training set
is required to obtain a reasonably good estimation. Moreover,
existing training sets may be biased and outdated as social
media evolves. Hence, prediction policies developed using
existing training sets may be highly inefficient [38]. In the
following section, we develop learning algorithms to learn
the optimal policy in an online fashion, requiring no initial
knowledge of the popularity evolution patterns.

V. L EARNING THE OPTIMAL FORECASTINGPOLICY WITH

INCOMPLETE INFORMATION

In this section, we develop a learning algorithm to determine
the optimal prediction policy without any prior knowledge of
the underlying context distributionf(x). In the considered
scenario, videos arrive to the system in sequence3 and we
will make popularity prediction based on past experiences by
exploiting the similarity information of videos.

Since we have shown in the last section that we can
determine the complete policyπ using a simple iterative
algorithm, we now focus mainly on learningπn for one age
by fixing the policiesπ−n for other ages. Importantly, we

3To simplify our analysis, we will assume that one video arrives at one
time. Nevertheless, our framework can be easily extended toscenarios where
multiple videos arrive at the same time.

will provide not only asymptotic convergence results but also
prediction performance bounds during the learning process.

A. Learning Regret

In this subsection, we define the performance metric of
our learning algorithm. Letσn be a learning algorithm ofπn
which takes actionσk

n(x
k
n) at instancek. We will use learning

regret to evaluate the performance of a learning algorithm.
Since we focus onπn, we will use simplified notations in this
section by neglectingπ−n. However, keep in mind that the
age-n prediction reward depends on actions at all later ages
an+ besidesan whenan = Wait. Let µn(xn|an) denote the
expected reward when age-n context information isxn and the
algorithm takes the actionan ∈ S∪{Wait}. We make a widely
adopted assumption [34] [35] [36] that the expected reward
of an action is similar for similar contextual and situational
information; we formalize this in terms of (uniform) Lipschitz
condition.

Assumption. (Lipschitz) For eachan ∈ S ∪ {Wait}, there
existsL > 0, α > 0 such that for allxn,x

′
n ∈ Xn, we have

|µ(xn|an)− µ(x′
n|an)| ≤ L‖xn,x

′
n‖α.

The optimal action given a contextxn is therefore,
a∗(xn) = argmaxan µn(xn|an) (with ties broken deter-
ministically) and the optimal expected reward isµ∗

n(xn) =
µn(xn|a∗n). Let∆ = maxxn∈Xn{µ∗

n(xn)−µn(xn|an 6= a∗n)}
be the maximum reward difference between the optimal action
and the non-optimal action over all contextxn ∈ Xn. Finally,
we let rn(xk

n|σk
n) be the realized age-n reward for videok

by using the learning algorithmσ. The expected regret by
adopting a learning algorithmσn is defined as

Rn(K) = E{
K
∑

k=1

µ∗
n(x

k
n)−

K
∑

k=1

rn(x
k
n|σk

n)} (5)

Our online learning algorithm will estimate the prediction
rewards by selecting different actions and then choose the
actions with best estimates based on past experience. One
way to do this is to record the reward estimates without
using the context/situational information. However, thiscould
be very inefficient since for different contexts, the optimal
actions can be very different. Another way is to maintain the
reward estimates for each individual contextxn and select
the action only based on these estimates. However, since
the context spaceXn can be very large, for a finite number
K of video instances, the number of videos with the same
contextxn is very small. Hence it is difficult to select the
best action with high confidence. Our learning algorithm will
exploit the similarity information of contexts, partitionthe
context space into smaller subspaces and learn the optimal
action within each subspace. The key challenge is how and
when to partition the subspace in an efficient way. Next, we
propose an algorithm that adaptively partitions the context
space according the arrival process of contexts.

B. Online Popularity Prediction with Adaptive Partition

In this subsection, we propose the online prediction algo-
rithm with adaptive partition (Adaptive-Partition) that adap-
tively partitions the context space according to the context
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Fig. 4. Illustration for virtual reward update in Adaptive Partition.

arrivals. This will be the key module of the Social-Forecast
algorithm. For analysis simplicity, we normalize the context
space to beXn = [0, 1]d. We call ad-dimensional hypercube
which has sides of length2−l a level l hypercube. Denote
the partition ofXn generated by levell hypercubes byPl.
We have |Pl| = 2ld. Let P := ∪∞l=0Pl denote the set of
all possible hypercubes. Note thatP0 contains only a single
hypercube which isXn itself. For each instance arrival, the
algorithm keeps a set of hypercubes that cover the context
space which are mutually exclusive. We call these hypercubes
activehypercubes, and denote the set of active hypercubes at
instancek by Ak. Clearly, we have∪C∈Ak

= Xn. Denote the
active hypercube that containsxk

n by Ck. Let MCk
(k) be the

number of times context arrives to hypercubeCk by instance
k. Once activated, a levell hypercubeC will stay active until
the first instancek such thatMCk

(k) ≥ A2pl wherep > 0 and
A > 0 are algorithm design parameters. When a hypercubeCk

of level l becomes inactive, the hypercubes of levell+1 that
constituteCk, denoted byPl+1(Ck), are then activated.

When a contextxk
n arrives, we first check to which active

hypercubeCk ∈ Ak it belongs. Then we choose the action
with the highest reward estimatean = argmax

a
r̄a,Ck

(k),

where r̄a,Ck
(k) is the sample mean of the rewards collected

from action a in Ck which is an activated hypercube at
instancek. When the prediction reward is realized for instance
k (i.e. at the end of ageN ), we perform avirtual updatefor
the reward estimates for all actions (see Figure 4). The reason
why we can perform such a virtual update for actions which
are not selected is because the context transition over timeis
independent of our prediction actions and hence, the reward
by choosing any action can still be computed even though it
is not realized.

Algorithm 1 provides a formal description for the Adaptive-
Partition algorithm. Figure 5 illustrates the adaptive partition
process of Adaptive-Partition algorithm. Next, we bound the
regret by running the Adaptive-Partition algorithm.

In order to get the regret bound of the Adaptive-Partition
algorithm, we need to consider how many hypercubes of
each level is formed by the algorithm up to instanceK.
The number of such hypercubes explicitly depends on the
context arrival process. Therefore, we investigate the regret
for different context arrival scenarios.

Definition. We call the context arrival process thethe worst-
case arrival processif it is uniformly distributed inside the

Algorithm 1 Adaptive-Partition Algorithm

Initialize A1 = P0, MC(0) = 0, r̄a,C(0) = 0, ∀a, ∀C ∈ P .
for each video instancek do

DetermineC ∈ Ak such thatxk
n ∈ C.

Selectan = argmax
a

r̄a,C(k).

After the prediction reward is realized, updater̄a,C(k+
1) for all a.

SetMC(k)←MC(k − 1) + 1.
if MC(k) ≥ A2pl then

SetAk+1 = (Ak\C) ∪ Pl+1(C)
end if

end for

context space, with minimum distance between any two context
samples beingK−1/d, and the best-case arrival processif
x
k ∈ C, ∀k for some level⌈(log2(K)/p⌉+ 1 hypercubeC.

In Theorem 2, we determine the finite time, uniform regret
bound for the Adaptive-Partition algorithm. The complete
regret analysis and proofs can be found in the appendix.

Theorem 2. • For the worst case arrival process, ifp =

3α+
√
9α2+8αd
2 , thenRn(K) = O(K

d+α/2+
√

9α2+8αd/2

d+3α/2+
√

9α2+8αd/2 ).
• For the best case arrival process, ifp = 3α, then
Rn(K) = O(K2/3).

Proof: See Appendix.
The regret bounds proved in Theorem 2 are sublinear inK

which guarantee convergence in terms of the average reward,
i.e. limK→∞ E[Rn(K)]/K = 0. Thus our online prediction
algorithm makes the optimal predictions as sufficiently many
videos instances have been seen. More importantly, the regret
bound tells how much reward would be lost by running our
learning algorithm for any finite numberK of videos arrivals.
Hence, it provides a rigorous characterization on the learning
speed of the algorithm.

C. Learning the Complete Policyπ

In the previous subsection, we proposed the Adaptive-
Partition algorithm to learn the optimal policyπ∗

n(π−n) by
fixing π−n. We now present in Algorithm 2 the Social-Forecast
algorithm that learns the complete policy.

Algorithm 2 Social-Forecast Algorithm
for each video instancek do

for each agen = 1 to N do
Get context informationxk

n.
Selectakn according to Adaptive-Partition.
Perform context partition using Adaptive-Partition.

end for
Popularity statussk is realized.
for each agen = 1 to N do

Compute the age-dependent rewardrkn.
Update reward estimates using Adaptive-Partition.

end for
end for
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Fig. 5. The context space partitioning of the Adaptive-Partition algorithm.

Social-Forecast learns all age-dependent policiesπn, ∀n
simultaneously. For a given agen, sinceπ−n is not fixed to be
the optimal policyπopt

−n during the learning process, the learned
policy πn may not be the global optimalπopt

n . However, as
we have shown in Section IV, in order to determineπopt

n ,
only the policies for ages greater thann, i.e. πopt

n+ need to
be determined. Thus even though we are learningπn, ∀n
simultaneously, the learning problem ofπN is not affected
and hence,πopt

N will be learned with high probability after
a sufficient number of video arrivals. Onceπopt

N is learned
with high probability,πopt

N−1 can also be learned with high
probability after an additional number of video arrivals. By
this induction, such a simultaneous learning algorithm canstill
learn the global optimal complete policy with high probability.
In the experiments we will show the performance of this
algorithm in practice.

D. Complexity of Social-Forecast

For each age of one video instance arrival, Social-Forecast
needs to do one comparison operation and one update oper-
ation on the estimated reward of each forecast action. It also
needs to update the counting of context arrivals to the current
context subspace and perform context space partitioning if
necessary. In sum, the time complexity has the orderO(|S|N)
for each video instance andO(|S|NK) for K video arrivals.
Since the maximum ageN of interest and the popularity
status space is given, the time complexity is linear in the
number of video arrivalsK. The Social-Forecast algorithm
maintains for eachactive context subspace reward estimates
of all forecast actions. Each partitioning creates2d − 1 more
activecontext subspaces and the number of partitioning is at
mostK/A. Thus the space complexity forK video arrivals
is at mostO(2dNK/A). Since the context space dimensiond
and the algorithm parameterA are given and fixed, the space
complexity is at most linear in the number of video arrivals
K.

VI. EXPERIMENTS

In this section we evaluate the performance of the pro-
posed Social-Forecast algorithm. We will first examine the
unique propagation characteristics of videos shared through
social media. Then we will use these as the context (and
situational) information for our proposed online prediction

algorithm. Our experiments are based on the dataset that
tracks the propagation process of videos shared on RenRen
(www.renren.com), which is one of the largest Facebook-
like online social networks in China. We set one period to be
2 hours and are interested in predicting the video popularity
by 100 periods (8.3 days) after its initiation. In most of our
experiments, we will consider a binary popularity status space
{Popular, Unpopular} where “Popular” is defined for videos
whose total number of views exceeds 10000. However, we
also conduct experiments on a more refined popularity status
space in Section VI(F).

The prediction reward function that we use is
U(akn, s

k, n) = θ(akn, s
k) + λψ(n). For the case of binary

popularity status space, the accuracy reward functionθ is
chosen as follows

θ(akn, s
k) =







1, if akn = sk = Unpopular
w, if akn = sk = Popular
0, if akn 6= sk

(6)

wherew > 0 is fixed reward for correctly predicting popular
videos and hence controls the relative importance of true
positive and true negative. The timeliness reward functionψ
is simply taken asψ(n) = N − n. Recall that the prediction
reward function is a combination of the two and we useλ > 0
to trade-off accuracy and timeliness. In the experiments, we
will vary both w and λ to investigate their impacts on the
prediction performance. Note that we use these specific reward
functions in this experiment but other reward functions can
easily be adopted in our algorithm.

A. Video propagation characteristics

A RenRen user can post a link to a video taken by
him/herself or from an external video sharing website such
as Youtube. The user, referred to as aninitiators [16], then
starts the sharing process. The friends of these initiatorscan
find this video in their “News Feed”. Some of them may
watch this video and some may re-share the video to their
own friends. We call the users who watched the shared video
viewersand those who re-shared the videospreaders. Since
spreaders generally watched the video before re-shared it,
most of them are also viewers. In the experiment, we will
use two characteristics of videos promoted by social media
as the context (and situational) information for our algorithm.
The first is the initiator’sBranching Factor (BrF), which is
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the number of viewers who directly follow the initiator. The
second is theShare Rate (ShR), which is the ratio of the
viewers that re-share the video after watching it. Figure 6
shows the evolution of the number of views, the BrF and the
ShR for three representative videos over 100 periods. Among
these three videos, video 1 is an unpopular video while video
2 and video 3 are popular videos, which become popular at
age 37 and age 51, respectively. We analyze the differences
between popular and unpopular videos as follows.

• Video 1 vs Video 2. The ShRs of both videos are similar.
The BrF of video 2 is much larger than that of video
1. This indicates that video 1 may be initiated by users
with a large number of friends, e.g. celebrities and pubic
accounts. Thus, videos with larger BrF potentially will
achieve popularity in the future.

• Video 1 vs Video 3. The BrFs of both videos are low
(at least before video 3 becomes popular). Video 3 has a
much larger ShR than video 1. This indicates that video
3 is being shared with high probability and thus, videos
with larger ShR will potentially become popular in the
future.

The above analysis shows that BrF and ShR are good situa-
tional metrics for videos promoted by social media. Therefore
we will use these two metrics in addition to the total and
per-period numbers of views as the context information for
our proposed online prediction algorithms. Nevertheless,our
algorithms are general enough to take other situational metrics
to further improve the prediction performance, e.g. the type of
the videos, the number of spreaders, the propagation topology
etc.

B. Benchmarks

We will compare the performance of our online prediction
algorithm with four benchmarks.

• All Unpopular (AU) . The first benchmark is a naive
scheme which predicts that all videos are not popular
at age 1. This is equivalent toak1 = Unpopular, ∀k.

• All Popular (AP) . The second benchmark is another
naive scheme which makes the prediction at age 1 that
the video will become popular in the future. This is
equivalent to take the actionak1 = Popular, ∀k.

• View-based Prediction (VP). The third benchmark is
a conventional view-based prediction algorithm based
on [15]. It uses training sets to establish log-linear
correlations between the early number of views and
the later number of views. Since this algorithm does
not explicitly consider timeliness in prediction, we will
investigate different versions that make predictions at
different ages. Intuitively, the time when the prediction
is made has oppositive affects on the prediction accuracy
and timeliness. A later prediction predicts the video with
higher confidence but is less timely.

• Perfect Prediction. The last benchmark provides the best
prediction results: for each unpopular video, it predicts
unpopular at age 1; for each popular video, it predicts
popular at age 1. Since this benchmark generates the
highest possible prediction reward, we normalize the
rewards achieved by other algorithms with respect to this
reward.

C. Performance comparison

In this subsection, we compare the prediction performance
of our proposed algorithm with the benchmarks. This set of
experiments are carried out on a set of 10000 video links,
among which 10% are popular videos. The videos were
initiated in sequence and thus, initially we do not have any
knowledge of the videos or video popularity evolution patterns.
For the VP algorithm, we use three versions, labeled as VP-
25, VP-50, VP-75, in which the prediction is made at age 25,
50, 75, respectively.

Table II records the normalized prediction rewards obtained
by our proposed algorithm and the benchmarks forλ = 0.010
andw = 5, 10, 15. The trade-off parameterλ for accuracy and
timeliness is set to be small because the lifetimeN is large.
The Social-Forecast algorithm is labeled by SF.

• For AU and AP, even though their accuracy is expected to
be bad, they will obtain full timeliness rewards because
they make the predictions at the first age for each
video. However, since their prediction accuracy is low,
their overall prediction rewards are the lowest among all
algorithms. The reward achieved by AU is decreasing in
w and the reward achieved by AP is increasing inw.
This is because a largerw assigns higher importance to
correct prediction for popular videos and the fact that AP
predicts all popular videos correctly and AU predicts all
unpopular videos correctly.

• VP algorithms achieve better prediction rewards than AU
and AP. As can be seen from the table, an early prediction
generates higher rewards because a large portion of the
reward is derived from the timeliness of the prediction.
The reward achieved by VP-25 is decreasing inw while
those achieved by VP-50 and VP-75 are increasing in
w. This implies that VP-25 has a better performance
on predicting unpopular videos than predicting popular
videos.
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TABLE II
COMPARISON OF NORMALIZED PREDICTION REWARD WITH VARYINGw

AU AP VP-25 VP-50 VP-75 SF
w = 5 0.795 0.622 0.831 0.763 0.643 0.986
w = 10 0.663 0.685 0.823 0.803 0.671 0.983
w = 15 0.549 0.740 0.814 0.837 0.691 0.981

TABLE III
COMPARISON OF NORMALIZED PREDICTION REWARD WITH VARYINGλ

AU AP VP-25 VP-50 VP-75 SF
λ = 0.005 0.601 0.612 0.835 0.862 0.757 0.980
λ = 0.010 0.663 0.685 0.823 0.803 0.671 0.983
λ = 0.015 0.701 0.737 0.816 0.762 0.613 0.983

• The proposed algorithm Social-Forecast generates sig-
nificantly higher prediction rewards than all benchmark
algorithms. Its performance is not sensitive to the specific
value ofw which implies that it is able to predict both
popular and unpopular videos very accurately and in a
timely manner.

Next, we fixw and varyλ. Table III records the normalized
prediction rewards obtained by our proposed algorithm and the
benchmarks forW = 10 andλ = 0.005, 0.010, 0.015. Several
points are worth discussing:

• The rewards obtained by both and AU and AP are
increasing inλ. This is because both benchmarks derive
full reward from the timeliness prediction since they make
prediction at the first age for all videos.

• The rewards obtained by all three versions of VP are
decreasing inλ. This suggests the rewards are mainly
derived from prediction accuracy but the VP algorithms
are not able to make the prediction in a timely manner.

• Our proposed Social-Forecast algorithm significantly out-
performs all other benchmark algorithms and achieve
close-to-optimal rewards for all values ofλ.

We also investigate the achieved predication accuracy in
terms of true positive rate and true negative rate. We define
the true positive rate as the ratio of correctly predicted videos
among all popular videos and the true negative rate as the
ratio of correctly predicted videos among all unpopular videos.
Table IV illustrates the true positive rates and true negative
rates achieved by different algorithms. As can be seen from the
table, in general prediction at a later age for the VP algorithms
improves the accuracy. However, it is not always the case
since the true negative rate achieved by VP-75 is low. This
suggests that the correlation used by VP-75 for unpopular
videos does not accurately reflect the true popularity evolution
trend. Instead, our proposed Social-Forecast is able to achieve
both a high true positive rate and a high true negative rate, at
the same time predicting in a timely manner.

TABLE IV
TRUE POSITIVE AND TRUE NEGATIVE.

AU AP VP-25 VP-50 VP-75 SF
True Positive 0 1 0.918 0.917 0.995 0.983
True Negative 1 0 0.804 0.994 0.789 0.972
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Fig. 7. Prediction performance during the learning process.

D. Learning performance

Our proposed Social-Forecast algorithm is an online al-
gorithm and does not require any prior knowledge of the
video popularity evolution patterns. Hence, it is important
to investigate the prediction performance during the learning
process. Our analytic results have already provided sublinear
bounds on the prediction performance for any given number
of video instances which guarantee the convergence to the
optimal prediction policy. Now, we show how much prediction
reward that we can achieve during the learning process in
experiments. Figure 7 shows the normalized prediction reward
of Social-Forecast as the number of videos instances increases.
As more video instances arrive, our algorithm learns better
the optimal prediction policy and hence, the prediction reward
improves with the number of video instances. In particular,
the proposed prediction algorithm is able to achieve more than
90% of the best possible reward even with a relatively small
number of video instances.

E. Choices of lifetimeN

So far in our analysis, we treated the prediction reference
ageN as fixed. In practice, this is a parameter that can be
set by the content providers, the advertisers and the web hosts
depending on their specific requirements. In this experiment,
we show the performance of our algorithm for different
choices ofN . Table V provides the prediction rewards ob-
tained by different algorithms forN = 60, 70, 80, 90, 100
whend = 0.010 andw = 10. In all experiments, the proposed
algorithm achieves significant higher prediction rewards than
the benchmarks. This shows that our methodology and asso-
ciated algorithm is general and applicable for problems with
different requirements.

F. More refined popularity prediction

In the previous experiments, we considered a binary pop-
ularity status space. Nevertheless, our proposed popularity
prediction methodology and associated algorithm can also
be applied to predict popularity in a more refined space.
In this experiment, we consider a refined popularity status
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TABLE V
IMPACT OF REFERENCE AGEN

AU AP VP-25 SF
N = 60 0.600 0.569 0.722 0.920
N = 70 0.612 0.655 0.801 0.992
N = 80 0.645 0.657 0.814 0.989
N = 90 0.642 0.678 0.816 0.986
N = 100 0.663 0.685 0.823 0.983

TABLE VI
PERFORMANCE COMPARISON FOR REFINED POPULARITY SPACE.

VP-25 VP-50 VP-75 SF
λ = 0.005 0.487 0.601 0.627 0.938
λ = 0.010 0.493 0.580 0.578 0.928
λ = 0.015 0.492 0.558 0.545 0.920

space{High Popularity, Medium Popularity, Low Popularity}
where “High Popularity” is defined for videos with more than
10000 views, “Medium Popularity” for videos with views
between 2000 and 10000, and “Low Popularity” for videos
with views below 2000. The portions of High, Medium and
Low videos are 10%, 30% and 60%, respectively. We set
rewards for correctly predicting High, Medium, Low videos
to be 10, 5 and 1, respectively. The proposed Social-Forecast
algorithm is compared against the view-based algorithm VP
performed at different prediction ages. Table VI illustrates
the normalized rewards obtained by different algorithms for
λ = 0.005, 0.010, 0.015. As can been seen from the table,
the rewards obtained by all algorithms decrease compared
with the binary popularity status case since prediction be-
comes more difficult. However, the performance improvement
of Social-Forecast against VP becomes even larger. This
suggests that our algorithm, which explicitly considers the
situational/contextual information, is able to achieve a higher
performance gain against view-based approaches for more
refined popularity prediction.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed a novel, systematic and
highly-efficient online popularity forecasting algorithmfor
videos promoted by social media. We have shown that by
incorporating situational and contextual information, signif-
icantly better prediction performance can be achieved than
existing approaches which disregard this information and
only consider the number of times that videos have been
viewed so far. The proposed Social-Forecast algorithm does
not require prior knowledge of popularity evolution or a
training set and hence can operate easily and successfully
in online, dynamically-changing environments such as social
media. We have systematically proven sublinear regret bounds
on the performance loss incurred by our algorithm due to
online learning. Thus Social-Forecast guarantees both short-
term performance as well as its asymptotic convergence to the
optimal performance in the long term.

This paper considered a single learner who observes the
propagation patterns of videos promoted by one social media.
One important future work direction is to extend to scenarios
where there are multiple distributed learners (e.g. multiple

advertisers, content producers and web hosts) who have access
to multiple different social medias or different sections of
one social media. In such scenarios, significant improvement
is expected by enabling cooperative learning among the dis-
tributed learners [39]. The challenges in these scenarios are
how to design efficient cooperative learning algorithms with
low communication complexity [40] and, when the distributed
learners are self-interested and have conflicting goals, how
to incentivize them to participate in the cooperative learning
process using, e.g. rating mechanisms [41] [42]. Finally, while
this paper has studied the specific problem of online predic-
tion of video popularity based on contextual and situational
information, our methodology and associated algorithm can
be easily adapted to predict other trends in social media (such
as identifying key influencers in social networks, the potential
for becoming viral of contents or tweets, identifying popular
or relevant content, providing recommendations for socialTV
etc.).

APPENDIX

In this appendix, we analyze the learning regret of the
Adaptive-Partition algorithm. To facilitate the analysis, we
artificially create two learning steps in the algorithms: for each
instancek, it belongs to either avirtual explorationstep or a
virtual exploitationstep. LetMC(k) be the number of context
arrivals inC by video instancek. Given a contextxk

n ∈ C,
which step the instancek belongs to depends onMC(k) and a
deterministic functionD(k). If MC(k) ≤ D(k), then it is in a
virtual exploration step; otherwise, it is in a virtual exploitation
step. Notice that these steps are only used in the analysis; in
the implementation of the algorithm, these different stepsdo
not exist and are not needed.

We introduce some notations here. LetEa,C(k) be the set of
rewards collected from actiona by instancek for hypercube
C. For each hypercubeC let a∗(C) be the action which
is optimal for the center context of that hypercube, and let
µ̄a,C := sup

x∈C µ(x|a) and µ
a,C

:= infx∈C µ(x|a). For a
level l hypercubeC, the set of suboptimal action is given by

LC,l,B := {a : µ
a∗,C
− µ̄a,C > BLdα/22−lα} (7)

whereB > 0 is a constant.
The regret can be written as a sum of three components:

R(K) = E[Re(K)] + E[Rs(K)] + E[Rn(K)] (8)

whereRe(K) is the regret due to virtual exploration steps by
instanceK, Rs(K) is the regret due to sub-optimal action
selection in virtual exploitation steps by instanceK and
Rn(K) is the regret due to near-optimal action selections in
virtual exploitation steps by instanceK. The following series
of lemmas bound each of these terms separately.

We start with a simple lemma which gives an upper bound
on the highest level hypercube that is active at any instancek.

Lemma 2. All the active hypercubesAk at instancek have
at most a level of(log2 k)/p+ 1.

Proof: Let l + 1 be the level of the highest level active

hypercube. We must have
l
∑

j=1

A2pj < k, otherwise the highest
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level active hypercube will be less thanl + 1. We have for
k/A > 1,

A
2p(l+1)−1

2p − 1
< k ⇒ 2pi <

k

A
⇒ i <

log2(k)

p
(9)

The next three lemmas bound the regrets for any levell
hypercube. .

Lemma 3. If D(k) = kz log k. Then, for any levell hypercube
the regret due to virtual explorations by instancek is bounded
above by∆(kz log k + 1).

Proof: Since the instancek belongs to a virtual explo-
ration step if and only ifMC(k) ≤ D(k), up to instanceK,
there can be at most⌈kz log k⌉ virtual exploration steps for one
hypercube. Therefore, the regret is bounded by∆(kz log k+1).

Lemma 4. Let B = 2
Ldα/22−α + 2. If p > 0, 2α/p ≤ z < 1,

D(k) = kz log k, then for any levell hypercubeC, the regret
due to choosing suboptimal actions in virtual exploitation
steps, i.e.E[RC,s(K)], is bounded above by2β2.

Proof: Let Ω denote the space of all possible outcomes,
andw be a sample path. The event that the algorithm virtually
exploits inC at instancek is given by

WC(k) := {w :MC(k) > D(k),xk
n ∈ C,C ∈ Ak}

We will bound the probability that the algorithm chooses a
suboptimal arm in an virtual exploitation step inC, and then
bound the expected number of times a suboptimal action is
chosen by the algorithm. Recall that loss in every step is at
most1. Let Va,C(k) be the event that a suboptimal action is
chosen. Then

E[RC,s(K)] ≤
K
∑

k=1

∑

a∈LC,l,B

P (Va,C(k),WC(k))

For anya, we have

{Va,C(k),WC(k)}
⊂{r̄a,C(k) ≥ µ̄a,C +Hk,WC(k)}
∪ {r̄a∗,C(k) ≤ µa∗,C

−Hk,WC(k)}
∪ {r̄a,C(k) ≥ r̄a∗,C(k), r̄a,C(k) < µ̄a,C +Hk,

r̄a∗,C(k) > µ
a∗,C
−Hk,WC(k)}

for someHk > 0. This implies

P (Va,C(k),WC(k))

≤P (r̄besta,C (MC(k)) ≥ µ̄a,C +Hk + Ldα/22−lα,WC(k))

+P (r̄worst
a∗,C (MC(k)) ≤ µa∗,C

−Hk − Ldα/22−lα,WC(k))

+P (r̄besta,C (MC(k)) ≥ r̄worst
a∗,C (MC(k)),

r̄besta,C (MC(k)) < µ̄a,C +Hk,

r̄worst
a∗,C (MC(k)) > µ

a∗,C
−Hk,WC(k))

Consider the last term in the above equation. In order
to make the right-hand side to be 0, we need,2Hk ≤
(B − 2)Ldα/22−lα. This holds when 2Hk ≤ (B −

2)Ldα/22−αk−α/p. For Hk = k−z/2, z ≥ 2α/p andB =
2

Ldα/22−α+2, the last term is0. By using a Chernoff-Hoeffding
bound, for anya ∈ LC,l,B , since on the eventWC(k),
MC(k) ≥ kz log k, we have

P (r̄besta,C (MC(k)) ≥ µ̄a,C +Hk,WC(k))

≤e−2(Hk)
2kz log k ≤ 1

k2

and

P (r̄worst
a∗,C (MC(k)) ≤ µa∗,C

−Hk,WC(k))

≤e−2(Hk)
2kz log k ≤ 1

k2

Therefore,E[RC,s(K)] ≤ 2β2.

Lemma 5. Let B = 2
Ldα/22−α + 2. If p > 0, 2α/p ≤

z < 1, D(k) = kz log k, then for any levell hypercubeC,
the regret due to choosing near optimal actions in virtual
exploitation steps, i.e.E[RC,n(K)], is bounded above by
2ABLdα/22(p−α)l.

Proof: The one-step regret of any near optimal actiona
is bounded by2BLdα/22−lα. SinceC remains active for at
mostA2pl context arrivals, we have

E[RC,n(K)] ≤ 2ABLdα/22(p−α)l (10)

Now we are ready to prove Theorem 2.
Proof: We letB = 2

Ldα/22−α + 2.
Consider the worst-case. It can be shown that in the

worst case the highest level hypercube has level at most
1 + log2p+d K. The total number of hypercubes is bounded
by

1+log
2p+d K
∑

l=0

2dl ≤ 22dK
d

d+p (11)

We can calculate the regret from choosing near optimal
action as

E[Rn(K)] ≤ 2ABLdα/2
1+log

2p+d K
∑

l=0

2(p−α)l (12)

≤2ABLdα/222(d+p−α)K
d+p−α
d+p (13)

Since the number of hypercubes isO(K
d

d+p ), regret due to
virtual explorations isO(K

d
d+p+z logK), while regret due to

suboptimal selection isO(K
d

d+p+z), for z ≥ 2α
p . These three

terms are balanced whenz = 2α/p and d+p−α
d+p = d

d+p + z.
Solving for p we get

p =
3α+

√
9α2 + 8αd

2
(14)

Substituting these parameters and summing up all the terms
we get the regret bound.

Consider the best case, the number of activated hypercubes
is upper bounded bylog2K/p + 1, and by the property of
context arrivals all the activated hypercubes have different



13

levels. We calculate the regret from choosing near optimal
arm as

E[Rn(K)] ≤ 2ABLdα/2
1+log2 K/p

∑

l=0

2p−αl (15)

≤2ABLdα/2 2
2(p−α)

2p−α
K

p−α
p (16)

The terms are balanced by settingz = 2α/p, p = 3α.
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