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Estimation of Seismic Vulnerability Levels of Urban
Structures With Multisensor Remote Sensing

Christian Gei3, Member, IEEE, Marianne Jilge, Tobia Lakes, and Hannes Taubenbdck

Abstract—The ongoing global transformation of human habi-
tats from rural villages to ever growing urban agglomerations
induces unprecedented seismic risks in earthquake prone regions.
To mitigate affiliated perils requires the seismic assessment of built
environments. Numerous studies emphasize that remote sensing
can play a valuable role in supporting the extraction of relevant
features for preevent vulnerability analysis. However, the majority
of approaches operate on building level. This induces the deploy-
ment of very high spatial resolution remote sensing data, which
hampers, nowadays, utilization capabilities for larger areas due
to data costs and processing requirements. In this paper, we alter
the spatial scale of analysis and propose concepts and methods
to estimate the seismic vulnerability level of homogeneous urban
structures. A procedure is designed, which comprises four main
steps dedicated to: 1) delineation of urban structures by means of
a tailored unsupervised data segmentation procedure with scale
optimization; 2) characterization of urban structures by a joint
exploitation of multisensor data; 3) selection of most feasible fea-
tures under consideration of in situ vulnerability information; and
4) estimation of seismic vulnerability levels of urban structures
within a supervised learning framework. We render the predic-
tion problem in three ways to address operational requirements
that can evolve in real-life situations. 1) To discriminate two or
more classes based on labeled samples of all classes present in
the data under investigation, we use the framework of soft mar-
gin support vector machines (C-SVM). 2) To consider situations,
where solely labeled samples are available for the class(es) of inter-
est and not for all classes present in the data, we deploy ensembles
of v-one-class SVM (v-OC-SVM). and 3) To fit data with a higher
statistical level of measurement (interval or ratio scale), we utilize
a support vector regression (SVR) approach to estimate a regres-
sion function from the training samples. Experimental results are
obtained for the earthquake-prone mega city Istanbul, Turkey. We
use multispectral data from the RapidEye constellation, elevation
measurements from the TanDEM-X mission, and spatiotemporal
analyses based on data from the Landsat archive to characterize
the urban environment. In addition, different in situ data sets are
incorporated for Istanbul’s district Zeytinburnu and the residual
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settlement area of Istanbul. When estimating damage grades for
Zeytinburnu with SVR, best models are characterized by mean
absolute percentage errors less than 11%, and fairly strong good-
ness of fit (R > 0.75). When aiming to identify different types
of urban structures for the remaining settlement area of Istanbul
(i.e., urban structures determined by large industrial/commercial
buildings and tall detached residential buildings, which can be
considered here as highly and slightly vulnerable, respectively),
results obtained with C-SVM show a distinctive increase of accu-
racy compared to results obtained with ensembles of v-OC-SVM.
The latter were not able to exceed moderate agreements, with ~
statistics slightly above 0.45. Instead, C-SVM allowed obtaining
K statistics expressing substantial and even excellent agreements
(k > 0.6 up to & > 0.8). Overall, analyzes provide very promis-
ing empirical evidence, which confirms the potential of remote
sensing to support seismic vulnerability assessment.

Index Terms—Earthquakes, Istanbul, Landsat, machine learn-
ing, object-based image analysis, RapidEye, seismic vulnerability
assessment, support vector machines (SVM), TanDEM-X.

I. INTRODUCTION

HE IMPACT of natural hazards such as earthquakes on

mankind has increased dramatically over the last decades.
Global urbanization processes and increasing spatial concentra-
tion of exposed elements, such as people, buildings, infrastruc-
ture, and economic values in earthquake prone regions induce
seismic risk at a uniquely high level. Thereby, the increase
of urban population has occurred during a time period that is
comparatively short with respect to the return time of severe
earthquakes. Earthquakes that had little impact in the past, when
they hit sparsely populated and spatially fragmented settlement
areas, will nowadays shake urban agglomerations with millions
of people. This situation, when left unmitigated, is expected to
cause unprecedented death tolls, enormous economic and eco-
logical losses, critical infrastructure and service failures, and
poses a significant threat for civil security, and a sustainable
development in the future [1]-[3]. The mitigation of affiliated
perils requires detailed knowledge about seismic risks. As an
important constituent element of seismic risk, the seismic vul-
nerability of the built environment needs to be assessed. In
particular, it is crucial to have information about the building
inventory and its behavior with respect to a certain level of
ground shaking [4].

Conventional approaches to assess the seismic vulnerabil-
ity of the building inventory, which incorporate an exclusive
application of detailed in situ building-by-building analysis
by structural engineers, may provide very detailed and high-
quality vulnerability information, but are decreasingly able
to cope with the high spatiotemporal dynamics of urban
environments. On the contrary, information collected on a
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very broad spatial level, such as spatially aggregated cen-
sus data hampers the consideration of small-scale hazard
effects in a downstream risk model [5]. Hence, building inven-
tory data and affiliated seismic vulnerability information is
often outdated, spatially aggregated and discontinuous, and
in many earthquake prone regions of the world simply not
existent.

Remote sensing has already proven its great potential to
extract relevant features for preevent vulnerability analysis of
buildings. The intrinsic advantage of remote sensing is the
ability to offer an overview of building stocks and serve as
a screening method for derivation of building vulnerability
related features, such as shape characteristics, height, roof
material, period of construction, structure type, and spatial con-
text [6]. In this sense, the authors of [7] and [8] present a
proxy-based seismic vulnerability assessment approach primar-
ily using the features “period of construction” and “building
height” for an area-wide assessment. Generally, this topic is
subject to a lively research and has gained much scientific
contemplation in the past few years. Thereby, the research
environment is constituted by two distinctive science commu-
nities: remote sensing and earthquake engineering. Nowadays,
concepts and methods have reached a level, where they are
found to be relevant and being accepted in both commu-
nities. This is evident since the following studies are pub-
lished in established journals and publication series of both
communities.

The authors of [9]-[11] characterize the built environment
by means of remote sensing data and retrieve specific fragility
functions or damage probability matrices, respectively, for
designated building types. The authors of [12] assess the vulner-
ability of buildings in a hybrid way, by combining in sifu ground
truth for selected buildings with information derived from
remote sensing data. Supervised classification techniques are
subsequently applied to classify the residual building inventory.
The authors of [13] and [14] derive basic building parameters
from remote sensing (i.e., “roof type” and “building height”)
and assess the seismic vulnerability of buildings in conjunc-
tion with in sifu data based on an expert judgment method
and categorization according to the European Macroseismic
Scale (EMS-98) using supervised regression and classifica-
tion techniques, respectively. More exhaustively, the authors
of [15] and [16] combine detailed in situ seismic vulnerabil-
ity information with a huge number of features derived from
multisensor remote sensing data describing the urban mor-
phology. Supervised regression and classification techniques
are then applied to evaluate the suitability for an area-wide
seismic vulnerability assessment and earthquake loss estima-
tion. All cited studies present promising empirical evidence
with respect to the viability of the approaches. However, from
a conceptual point of view, all approaches operate on build-
ing level. This induces the deployment of very high spatial
resolution (VHR) remote sensing data, which hampers uti-
lization capabilities for larger areas due to data costs and
processing requirements. When aiming at spatially continuous
and consistent assessment approaches that are applicable for
large areas, those kinds of data represent, nowadays, a clear
limitation.

To alleviate these restrictions, analyses can be addressed at
a coarser level of the urban morphology. From a conceptual
point of view, urban environments are perceived as systems that
exhibit a hierarchical arrangement [17]. At the lowest level of
aggregation, individual objects such as buildings can be con-
sidered, followed by their homogeneous assemblage at block
level (i.e., urban structures), and end with a spatially indiffer-
ent urban area at the highest level of aggregation. In this paper,
we alter the spatial scale of analysis compared to the aforemen-
tioned studies and propose concepts and methods to estimate
vulnerability levels for physically homogeneous urban struc-
tures. Thus, a coarser level of urban morphology is addressed
when compared to building level. However, this allows relying
on remote sensing data with a lower spatial resolution but larger
spatial coverage.

This idea goes along with the concept of urban structure
types (USTs). USTs represent distinct and homogeneous spa-
tial entities in terms of physical arrangement of their constituent
elements, such as surface materials, affiliated environmental
characteristics (e.g., microclimate), or functional properties,
such as land use [18], [19]. From a remote sensing perspec-
tive, the concept of USTs has been exploited within different
applications. Previous studies emphasize the viability of this
concept to, e.g., identify distinctive settlement types [20]-[22],
classify urban biotopes [23], support urban (micro-)climate
modeling [24], [25], or monitor urban dynamics [17]. As can
be seen from the cited studies, definitions of target class(es) to
be mapped and characterized are very heterogeneous. This ren-
ders “USTs” rather a concept, then an accepted typology with
defined specification. Hence, we use the term urban structures
to generally describe distinctive and homogeneous assemblages
of land cover/land use elements.

In the context of seismic vulnerability research, the authors
of [26] note already that urban structures can be helpful to
assess the seismic vulnerability of buildings, since they rep-
resent a characteristic grouping of idealtypic building types
and the spatial context they are embedded in. In this man-
ner, the authors of [5] and [27] use multitemporal Landsat
data to discriminate homogeneous urban structures based on
an image segmentation approach and semantically annotate
them by utilizing a supervised classification scheme. Derived
urban structures are intended to serve as strata for a guided and
more detailed analysis of the building stock with VHR opti-
cal data and a ground-based omnidirectional imaging system.
The sensed information is combined with ancillary informa-
tion (i.e., information from the world housing encyclopedia)
for a subsequent probabilistic seismic vulnerability assessment.
Hence, the approach delineates and determines urban structures
without prior vulnerability knowledge and assesses the seismic
vulnerability a posteriori.

In contrast to that, here, we present a procedure, which
learns available prior seismic vulnerability knowledge for urban
structures, which are characterized exclusively based upon
spaceborne remote sensing systems. Such a procedure can
be considered, in particular, relevant in situation where an
in situ assessment has been conducted, but, for instance, only
for spatially fragmented and discontinuous settlement areas,
and the gathering of VHR data and additional ground-based
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Fig. 1. Overview on the location of the study area, tectonic setting and acquired data. (a) Location of Istanbul and main ruptures along the North Anatolian
Fault since 1939 (moment magnitude of affiliated earthquake in brackets), which indicate a westbound regime. (b) Acquired RapidEye data. (c) Tiles of TDM
intermediate DSM data. (d) Spatiotemporal evolvement of urban structures in Istanbul monitored with data from the Landsat archive (MSS 1975, TM 1987, and
ETM-+ 2000) and TDM (UF 2012). (e) In situ information for the district Zeytinburnu and for Istanbul’s settlement area.

information is not feasible. Thus, the primal objective of this
paper is to introduce an original procedure for estimation of
seismic vulnerability levels of urban structures with earth obser-
vation data. Thereby, we evaluate, in this rather new thematic
application context, if desired target variables can be esti-
mated at all with the selected remote sensing data and designed
procedures. In particular, we combine multispectral data and
elevation measurements to characterize the urban morphology
and use techniques of object-based image analysis [28], [29]
and statistical learning [30], [31] to estimate the vulnerabil-
ity level of urban structures under consideration of in situ
information. Thereby, a perceptual coherence [32] of seismic
vulnerability properties and physical appearance of urban struc-
tures as well as the composition of their constituent elements,
as measured with remote sensing, are assumed. As such, in this
paper, we follow the general principle to infer and examine an
empirical relation between in situ data and multisensor remote
sensing for estimation of seismic vulnerability levels.

A number of remote sensing systems appear to be promis-
ing for the characterization of urban structures. In this paper,
we exploit multispectral and elevation data, which feature a
lower spatial resolution compared to systems with the high-
est spatial resolution available nowadays (e.g., QuickBird-2,
Geoeye-1, WorldView-2, etc.), but allow at the same time a

larger spatial coverage. In particular, we use multispectral data
from the RapidEye constellation [33], elevation measurements
from the TanDEM-X mission (TDM) [34], and spatiotemporal
analyses generated from data from the Landsat archive [35].
Based on the remote sensing data and subsequently derived
information layers, a procedure is designed, which comprises
four main steps dedicated to: 1) delineation of urban structures
by means of tailored unsupervised data segmentation procedure
with scale optimization; 2) characterization of urban structures
using multisensor data; 3) selection of most feasible features
under consideration of in situ vulnerability information; and
4) estimation of seismic vulnerability levels of urban structures
within a supervised learning framework.

Three challenging experiments are designed, which are
intended to demonstrate feasibility of procedures and dis-
cuss viability of results. Thereby, we relate our experimental
analyses to Istanbul, Turkey, since the city faces an enor-
mous seismic threat [4]. In addition, in situ observations are
available for relevant parts of the city. This paper is orga-
nized as follows. Section II gives an overview on study
area, utilized remote sensing data and reference information.
Section III presents developed and deployed methods. We use
Section IV to give an overview on the concepts and objectives
of designed experiments and report and discuss outcomes of
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Fig. 2. (a) Exemplifications of RapidEye data and (b) nDSM TDM data with affiliated appearance of urban structures. (c) Images from Google Panoramio, which

were deployed for identification of urban structures according to relevant types.

experiments in Section V. Concluding remarks and some future
perspectives are given in Section VI.

II. STUDY AREA AND DATA
A. Istanbul, Turkey

Istanbul (41° 1’ N, 28° 58 O) has about 14.2 million inhab-
itants [36], which constitutes it a mega city. Some sources
estimate the number of people living in Istanbul to be even
higher, since numerous people are not registered and, thus, do
not appear in official statistics. Massive migration during past
decades induced a complex and erratic city structure, which
comprises small and low-rise informal settlements (depicted as
Gecekondular in Turkish), large industrial buildings, and high-
rise residential and commercial buildings, among others. About
one-fifth of the existing buildings were built within the past 15
years [37]. Besides, many buildings were expanded by new sto-
ries and extensions without permission. Moreover, authorized
real estate projects were already modified during the construc-
tion phase. It is estimated that the majority of buildings in
Istanbul does not correspond to any structural standards and
lack regulatory supervision. Hence, it is assumed that most of
the buildings are not shake resistant, although a law to enforce
resistant design was issued in 1999.

Almost all earthquakes in Turkey are related to tectonic
movement [38]. Istanbul is located close to the North Anatolian
Fault [NAF; Fig. 1(a)]. The NAF represents an active right-
lateral strike-slip fault. Previous earthquakes along the fault

indicate a westbound regime [39] and give rise to a possible
earthquake close to Istanbul. According to the authors of [40],
a 35-70% probability for the occurrence of an earthquake with
a magnitude > 7 along the NAF within the next 30 years is
expected.

B. Remote Sensing Data: RapidEye, TDM, and Landsat

For the assessment of urban structures with respect to their
seismic vulnerability level, we select a multisensor approach,
comprising three different kinds of earth observation systems,
to extract complementary information. The RapidEye con-
stellation was chosen, since it appears to be promising for
area-wide analyses of urban structures. It offers a high spa-
tial resolution of 6.5 m, in conjunction with a swath width of
77 km, and a maximum acquisition capacity of 1500 km per
orbit ([41]; please note that also missions such as Sentinel-2
[42] with a spatial resolution of 10 m can be considered as an
interesting opportunity with respect to a suitable trade-off of
spatial resolution and swath width). It consists of five equally
designed satellites, which operate in a single sun-synchronous
orbit. We acquired five RapidEye images, which were col-
lected between April and August 2009. They cover the main
parts of the settlement area of Istanbul [Figs. 1(b) and 2(a)].
Cloud coverage was minimal and imagery was delivered at
level 2A. Hence, data were subject to geometric and radiomet-
ric sensor corrections and were calibrated to at-sensor radiances
with a pixel size of 6.5 m at nadir. In the experiments, we
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deploy the blue (0.440—0.510 pm), green (0.520—0.590 pum),
red (0.630—0.685 um), and nir (0.760—0.850 wm) band, and
neglect RapidEye’s specific red edge band (0.690—0.730 pum).
We want to rely on image bands that are frequently available
for multispectral scanners and thus render methods and results
more transferable and ubiquitous (although, e.g., Sentinel-2, or
Landsat-8 [43], can be considered as an interesting option to
acquire additional spectral information).

Second, elevation measurements from the TDM were cho-
sen to characterize height properties of urban structures for
large areas. The TDM is a spaceborne radar interferometer,
which acquires data for a seamless global digital surface model
(DSM) with an unprecedented, globally consistent spatial res-
olution of 0.4 arcseconds [34] (which corresponds to a spatial
resolution of 12 m in Istanbul). This allows resolving objects
that are elevated from the earth’s surface in urban environ-
ments, such as buildings. In our study, four tiles of the so-called
TDM Intermediate Digital Elevation Model (IDEM) are used
[Tile N4OE028, N40E029, N41E028, and N41E029; Figs. 1(c)
and 2(b)]. The IDEM consists only of the best quality single-
baseline processed data of the first global coverage, whereas
insufficient acquisitions affected by phase-unwrapping errors
are excluded.

Finally, data from the Landsat archive, which dates back
to 1972, are considered, since they enable a characterization
of spatiotemporal developments of urban structures (Fig. 1(d);
[44]). Data were acquired by the multispectral scanner (MSS),
thematic mapper (TM) sensor, and the enhanced thematic
mapper (ETM+) sensor in 1975, 1987, and July 2000, respec-
tively. Images are constituted by four (MSS) and seven (TM,
ETM+) multispectral bands covering a spectral range of
0.500—1.100 pm (MSS) and 0.450—2.350 um (TM, ETM+)
at 79 m and 30 m spatial resolution, respectively.

C. In Situ Data: Seismic Building Vulnerability Reference
Information

Two different in situ data sets are incorporated for Istanbul’s
district Zeytinburnu and the settlement area of Istanbul
[Fig. 1(e)]. As such, it should be noted that the experiments
elaborated later in Section I'V-A are based on different kinds of
in situ data.

1) For Istanbul’s district Zeytinburnu (40° 59’N, 28° 54’0),

a spatially continuous and complete assessment of the
buildings according to the capacity spectrum method [45]
was available. The method consists of three main steps.
1) Quantification of the seismological impact in terms
of a response spectrum; thereby, possible seismic events
are considered, which results in a function showing dis-
placement in dependency of acceleration. 2) The capacity
of individual structures is quantified in dependency of
specific strength and deformation properties of their com-
ponents. 3) Finally, the capacity of an individual structure
(in the form of a pushover curve) is related to the seismo-
logical impact on the structure (in the form of response
spectra), whereas the intersection of the two functions
approximates the response of the structure. Thus, it allows
quantifying expectable damage grades in a probabilistic

manner. The necessary in situ information to adapt the
functions for Zeytinburnu was gathered and provided by
the authors of [9] ([9] provide also are more detailed
explanation of the method and its adaption).

2) In addition, ground-based GPS-photos for large parts
of the settlement area were available from Google
Panoramio [some exemplifications for relevant structures
are depicted in Fig. 2(c)]. Generally, such information
can support a rapid visual screening assessment of build-
ings [46]. Here, the information was used to identify
urban structures according to distinctive types as identi-
fied by the capacity spectrum method. In particular, we
identified urban structures determined by large industrial/
commercial buildings or tall detached residential build-
ings, which can be considered as highly and slightly
vulnerable in this application, respectively. Find a more
detailed description of procedures in Section IV-A, where
we describe the experiments.

III. METHODS

Presented data are subject to a multistep procedure to assess
seismic vulnerability of urban structures. A block scheme of
the procedure is provided in Fig. 3. First, remote sensing data
are preprocessed. The multispectral data are atmospherically
corrected by means of the software tool ATCOR-2 [47], and
a mosaic is generated from the different images (Section III-A).
Data from the TDM serve for both the derivation of a set-
tlement mask (i.e., urban footprint, UF; Section III-A1), and
the computation of a normalized digital surface model (nDSM;
Section III-A2). Landsat imagery are deployed for spatiotem-
poral analyses, and are subject to a post classification change
detection procedure (Section III-A3). Subsequently, four main
steps are carried out within a supervised learning framework.
1) Section III-B is used to describe an unsupervised image seg-
mentation procedure with scales optimization to allow for a
delineation of urban structures. 2) Section III-C details the cal-
culations of multiscale features from both the multispectral data
and height information from the nDSM for a comprehensive
characterization of urban structures. 3) Section III-D features
are grouped according to different underlying remote sensing
data and segmentation scales to better understand the respec-
tive value within the process of supervised learning; in addition,
supervised feature selection techniques are deployed to possi-
bly identify the most suitable feature sets for model learning;
this is naturally done under consideration of in situ data, which
determine the UST with affiliated vulnerability level. 4) Finally,
in Section III-E, we briefly reveal three different formulations
of support vector machines (SVM), for multi- and one-class
problems, and function estimation within a supervised learning
framework, which were used in the experiments.

A. Preprocessing

Multispectral RapidEye data were subject to atmospheric
corrections with ATCOR-2 [47] to account for radiometric dis-
tortions. The five images were radiometrically adjusted with a
histogram match and merged to a spatially continuous mosaic.
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Fig. 3. Block scheme of the proposed procedure.

RapidEye and TDM imagery were resampled (by means of a
nearest neighbor interpolation) and coregistered to a common
spatial resolution of 5 m.

1) Derivation of Settlement Mask From TDM Data: To
focus analyses on urban environments, we deploy a fully auto-
mated image analysis procedure to discriminate “built-up” and
“nonbuilt-up” land cover (referred to as “UF”; [48]). Based on
the TDM, which collects two global data sets of very high reso-
lution synthetic aperture radar images between 2011 and 2013,
built-up areas can be delineated globally with an unknown spa-
tial detail. The binary layer is generated with an unsupervised
classification scheme accounting for both the original backscat-
tering amplitude and extracted texture characteristics. A high
classification accuracy, which exceeds consistently an overall
accuracy of 94% and a & statistic of 0.75 for representative case
studies [48], ensures a reliable delineation of built-up areas.
The original UF data were subject to some generalization pro-
cedures in this study. We deployed morphological operators
(i.e., closing was performed by sequentially carry out dilation
and erosion [49]) to ensure a spatially nonfragmented repre-
sentation of the settlement area of Istanbul. The utilized UF of
Istanbul covers an area of more than 500 km?* and is visualized
in Fig. 1(d).

2) Calculation of Normalized DSM From TDM: Height
characteristics are frequently used features for seismic vulner-
ability assessment [6], [15], [27]. We use elevation measure-
ments of TDM IDEM to compute a nDSM, which comprises
elevation information of objects above ground. To this purpose,
a digital terrain model (DTM) is derived from the data first with
a region growing-based progressive morphological filter pro-
cedure [50]. This approach was recently proposed to address

prediction
map

general challenges associated with the use of morphological
filters in nonflat terrain, and overcomes individual challenges
related to the spatial resolution of TDM data. It comprises a
multistep procedure using concepts of morphological image fil-
tering, region growing, and interpolation techniques. It is based
on the idea of progressive morphological filters that aim to dis-
criminate ground and nonground pixels in the DSM based on
algebraic set operations. Some free parameters need to be deter-
mined when using this approach. To ensure extraction of all
buildings present in the area under investigation, the structur-
ing element must always exceed a building’s outline. The side
length of the structuring element was determined empirically
for eight individual subsets of the study area. In addition, an
elevation difference threshold and similarity constraint need to
be fixed. Both were set in accordance to previous experimen-
tal analyses, to ensure a favorable trade-off between decrease
of omission errors and increase of commission errors when
classifying ground pixels (i.e., 2.6 m for elevation difference
threshold and 0.8 m for similarity constraint; [50]). Identified
ground pixels are interpolated to a DTM based on inverse dis-
tance weighting [51]. Finally, the DTM was subtracted from the
DSM to receive the final nDSM.

3) Spatiotemporal Analysis With LANDSAT: To uncover
the spatiotemporal evolvement of urban structures in Istanbul,
we integrate results from a post classification change detection
procedure provided by the authors of [44]. Based on LANDSAT
imagery, the settlement area of Istanbul is identified [Fig. 1(d)].
The approach deploys spectral classification in conjunction
with a temporal hierarchical scheme. This means that the clas-
sified settlement area for a past time step is used as a spatial
condition when classifying urbanized areas for the more current
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time steps. The individual classifications feature viable accura-
cies. The overall accuracy, as evaluated based on comparison
with VHR data [44], is 93.7% for the year 1975 (k = 0.82),
92.4% (k = 0.79) for the year 1987, and 90.8% (x = 0.82) for
2000, respectively.

Data from the Landsat archive are used quite frequently to
estimate the period of construction of built environments in
seismic vulnerability studies (e.g., [12], [5]). The period of
construction is a feature that might encode valuable informa-
tion with respect to seismic vulnerability properties of urban
structures due to, e.g., the implementation of building codes
or usage of distinctive and idiosyncratic construction materi-
als and techniques associated with certain construction periods.
From a conceptual perspective, this feature is different from the
features introduced in Section III-C with respect to both the-
matic information content and statistical level of measurement.
That is why, we assign the estimated period of construction
posterior to model learning [see Fig. 3 in this section and
Fig. 9 in Section V] to further discriminate urban structures
that might exhibit similar physical properties, as measured with
the RapidEye, and TDM data, but belong to different categories
of construction periods. Simultaneously, this reduces the com-
putational burden compared to an assignment prior to model
learning, since then a model must be learned based on labeled
samples for every class of interest and different periods of
construction.

B. Segmentation Procedure for Delineation of Urban
Structures

This section is dedicated to the description of an unsu-
pervised segmentation procedure with scale optimization for
delineation of urban structures. In contrast to natural envi-
ronments, urban man-made structures have been identified as
few examples of objects within a landscape with distinct and
crisp boundaries, which feature often also an irregular shape
[52]. This makes the utilization of object-based image analy-
sis techniques feasible and especially the latter limits the use of
uniform spatial entities, such as quadratic objects. Image seg-
mentation represents the basis for object-based image analysis
and aims at the delineation of meaningful real-world objects
[29]. In this study, segmentation focuses on the distinction of
intra-urban areas, which are homogeneous in terms of their
response in the multispectral and surface elevation data. For a
joint exploitation, a brightness layer was defined as the sum in
the visible, NIR, and elevation measurement bands Zi(v) divided
by the number of affiliated bands (n.,)

1 Ny
B=— Zi:l Ziv)- (1)

Ny

In this study, segments represent basic spatial units to delin-
eate and characterize homogeneous urban structures later on.
We deploy multiresolution segmentation based on fractal net
evolution approach (FNEA) [53]. This is a bottom-up region-
growing segmentation algorithm. It starts from individual pixels
and merges pixels in dependence of user-defined constraints
related to spectral and geometrical properties of modeled seg-
ments. Based on this technique, several automated routines are
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Fig. 4. Schematic processing steps of the segmentation procedure.

carried out in a sequential way to ensure parameterization and
outcomes of optimized multiresolution image segmentation to
be objective, data-driven, and generic. A schematic overview of
the segmentation procedure is given in Fig. 4.

First, an initial image level is built, which includes all “built-
up” areas from the UF data set [Section ITI-A1; exemplifications
are provided in Appendix A, Fig. 12(a)]. The subsequent seg-
mentation is limited to areas identified as “built-up”. The
multiresolution segmentation approach is controlled by scale,
color, and shape. Thereby, shape is being composed of com-
pactness and smoothness. The scale parameter is a function
of the geometric resolution of the image data and defines the
maximum allowable heterogeneity of modeled segments, with a
lower scale parameter resulting in a higher number of segments.
We suggest to put more emphasize on shape heterogeneity
rather than on grey-value heterogeneity. This is due to the fact
that man-made features, such as urban structures, have dis-
tinct shape and size properties, unlike, e.g., natural features.
Analogously, we propose to maintain the same weights for
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heterogeneity of smoothness and compactness throughout the
segmentation. However, the main difficulty lays in the determi-
nation of a scale, which is suitable to represent different kinds
of urban structures adequately. In this manner, the usage of a
single scale is prohibited, since urban structures feature several
orders of magnitude of spatial extend. Thus, we adapt a multi-
level segmentation procedure proposed by the authors of [54],
which compares the distinctiveness of segments generated at
multiple scales. Prior to this, we deploy the objective function
introduced by the authors of [55] to identify scene-specific opti-
mal segmentation scales. Based on the assumption that optimal
segmentation maximizes intrasegment homogeneity and inter-
segment heterogeneity, a measure is calculated by incorporating
intrasegment variance and Moran’s I.

During the procedure, we suggest to maintain constant
weights for color and shape criteria and create segments at
ascending scales in a defined interval, e.g., [hs, Rsy1, .- -
h,]. Thereby, hs represents the initial scale. To determine an
appropriate initial scale and ensure that generated segments
can represent valid delineations of urban structures, some con-
straints are introduced. In this sense, we define that valid image
segments must correspond to the Shannon sampling theorem.
This theorem states that modeled segments should be of the
order of one-tenth of the dimension of the sampling scheme,
the pixel, to ensure that they will be completely independent
of their random position and their orientation in relation to the
sampling scheme [29]. Thus, we define that there should be at
least ten pixels to represent a valid segment in terms of size, and
five pixels to represent a valid segment in terms of width

VA 1

1. if 2= . — IANS <3
T =
. _ 1
valid segment = 1, ifé~*>1/\523 )
c 5
0, else

where A is the area of a segment, ¢ represents the pixel size
of the image data, d is the width of a segment, and S a shape
complexity index calculated as perimeter to boundary ratio
s—_1 /4 3)
2-r-7 T
where ¢ is the perimeter of a segment, and r is the radius of
circle with the same surface area. Analogous to the author of
[56], we chose a threshold of 3 to differentiate between com-
pact (S < 3) and narrow/long (S > 3) segments. Generally, a
suitable h4 should include a comparatively small share of non-
valid segments (nvSs) and represent a local maximum regarding
the decline in shares of nvSs. This principle and the selection of
h for our application are illustrated in Section I'V-B [Fig. 7(a)].
Following the aforementioned heuristic [55], for each of the
created scales in the given interval, the intrasegment variance
(0?) with respect to the brightness values was calculated

" A2
0_2 _ Zz:l 0; (4)

n
27321 A;
where A; and o7 represent the area and intrasegment variance
of segment 4. The intrasegment variance o2 is the weighted

average, with the areas of each segment being the weights. As
a measure of intersegment heterogeneity, Moran’s [ is used

_ N X6y (uBi—pB) (uB; — uB)
i ¢i > (uBi — u§)2

where N is the number of segments indexed by ¢ and j; uB is
the mean brightness of a segment; ;3 is the mean brightness of
all segments; and e;; is the spatial weight between segments %
and j, implemented in our case analogous to a queen contiguity
or 8-connectivity as follows:

1

&)

(6)

1, if4,j are adjacent neighbor segments
€ij =
7 0, else.
With the determined variance and autocorrelation measure,
the objective function is calculated by summing up normalized
values of 2 and I

o2 . —o? Tax — 1
F 2 ) = max max ) 7
(U 7 ) Enax - Jr2nin * Imax - Imin ( )

Generally, the objective function is calculated for ascend-
ing scales. Thereby, o2 values represent a monotonic function:
for the sequel (02, )ner, the condition 02, > o2 is fulfilled.
The maximum value of function F' (02, ]) is a statistical indi-
cator of optimal segmentation [Section IV-B, black arrow in
Fig. 7(b)]. As discussed above, a single optimal scale is not suf-
ficient to take into account the relationship between the spatial
structure of an image and the structure of urban environments.
Thus, we deploy a plateau objective function F'(u), which was
introduced by the authors of [57], to obtain multiple optimal
scales. The function is defined as

F(u) = F(0? Iymax — 0 )

where F(O’Q, I)max represents the maximum value of the objec-
tive function, and o is the standard deviation of the function
calculated for all scales. Optimal segmentation scales should
be located above the plateau function, since these scales have
high external and low internal heterogeneity levels, and the bal-
ance between under- and oversegmentation is still present [57].
As initial segmentation scale for the subsequent multilevel opti-
mization procedure, we select the segmentation of the first scale
above the plateau objective function [Section IV-B, black arrow
in Fig. 7(b); exemplified in Appendix A, Fig. 12(b), ioMRS].

1) Optimization Procedure: Segments that do not represent
valid segments according to the Shannon sampling theorem cri-
teria defined above [exemplified in Appendix A, Fig. 12(c-I),
nvS] are merged with adjacent neighbor segments that have
the smallest mean brightness difference of all adjacent neigh-
bor segments [Fig. 12(c-II), ioMRS-m]. Subsequently, a second
hierarchical scale level is created and the mean percentage
difference (mPD) between subsegment level (L1) and super-
segment level (L2) is calculated as

\,UBLl - MBLQ\

mPD =
1Bra

C))
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where ;1B is the mean brightness of the respective super- and
subsegments. Similar to the simplified and data-driven ver-
sion of the multiscale optimization approach proposed by the
authors of [58], we regard segments as “real” subsegment if
their mPD exceeds the mean mPD of all subsegments by
more than two standard deviations

1, mPD > 20,,pp

10
0, else. (10)

real subsegment = {

Identified “real” subsegments [exemplified in Appendix A,
Fig. 12(d-I), rSS] are transferred to the supersegment level
[Fig. 12(d-II)]. Then, the similarity of transferred adjacent sub-
segment is evaluated in terms of their mean brightness values,
and two adjacent segments are merged [Fig. 12(d-III)] if they
fulfill the following condition:

Similaritysegmentl,segmentQ
o 17 |,uBsegment1 - ﬂBsegmentZ‘ S Y
0,

with ~ being a threshold. The procedure is repeated for the
remaining scales above the plateau objective function, whereby
the result of the previous cycle becomes the subsegment level
in each step, and a number of segments are merged to create
a supersegment level above, according to the respective scale
factor [58]. The complete procedure is intended to provide an
optimized segmentation that comprises distinctive and valid
segments independent of their particular scale. However, as
the multilevel optimization procedure and the merging of nvSs
alter image segments and alignment, we calculated the objec-
tive function again for the processed levels to identify the most
sufficient final segmentation [fS, Section IV-B, black arrow in
Fig. 7(c); exemplified in Appendix A, Fig. 12(e), fS].

an

else

C. Feature Calculation for Characterization of Urban
Structures

Features based on the RapidEye and TDM nDSM data
were computed to allow for a comprehensive characteriza-
tion of urban structures. We extracted statistical measures of
first and second order from both the multispectral RapidEye
data and TDM nDSM (Fig. 5). Measures of central tendency
and measures of spread of the different image bands are
deployed. The same measures are computed for the nDSM to
take into account height characteristics of discriminated areas.
Additionally, rotation-invariant texture measures for the opti-
cal and nDSM data were computed based on the co-occurrence
matrix (GLCM; [59]). It could be shown that texture can pro-
vide valuable information when aiming at discrimination of
urban structures [52], and generally allow to overcome a lack
of spectral information [60]. The last group of features consists
of spatial metrics. Using the NDVI [61], we quantify the share
of vegetation per segment. Thereby, pixels, which exceed a cer-
tain NDVI value (i.e., 0.3), are considered as vegetation. To
specifically describe height characteristics of elevated objects
that do not represent vegetation within a segment (i.e., build-
ings), we first identify pixels that exceed a certain nDSM value

(i.e., 2.6 m). Besides the share of elevated objects per segment,
measures of central tendency and spread of elevated objects are
computed.

We calculated the aforementioned features not only for the
optimized multiscale segmentation, which generally provides
the spatial entities for subsequent procedures, but also for two
segmentations with a larger scale factor (i.e., scale factor 80
and 120), which were not subject to the optimization procedure.
This was done to ensure a sufficient consideration of spatial
context information of urban structures. In fact, it is very chal-
lenging to fully exclude oversegmentation by means of an unsu-
pervised segmentation procedure. When urban structures are
subject to oversegmentation, a characteristic appearance with
respect to spectral-spatial composition may not be reflected.
However, including information from coarser segmentation
scales allows to model spatial context relations in feature space
adequately. This idea is consistent with approaches that deploy
supersegment information to enhance classification accuracy
(e.g., [62] and [63]).

Overall, each segment of the optimized multiscale segmen-
tation is represented by a 198-dimensional feature vector, con-
taining 66 different features computed for three segmentation
levels.

D. Feature Grouping and Selection

Two different strategies were followed to bundle features
into feature sets to be used in the experiments. First, a the-
matic grouping was carried out to quantify the usability of the
different remote sensing data sets and evaluates the value of fea-
tures from multiple segmentation levels. Beside the unreduced
feature vector containing all computed features, we grouped
all optical features, all height-related features, all optical fea-
tures from the optimized segmentation level, all height-related
features from the optimized segmentation level, and both all
optical- and height-related features from the optimized segmen-
tation level.

The second strategy to bundle features is motivated by the
circumstance that features vectors with a high dimensionality
often exhibit redundancy, are highly correlated, and may suf-
fer from the “Hughes phenomenon,” which states that for a
limited amount of samples, the predictive accuracy decreases
as the dimensionality of the feature vector increases [64].
Accordingly, we applied two machine learning-based feature
selection algorithms on the data. The two approaches represent
filter methods, which work independently with respect to the
classifier, which is in contrast to the concept of wrapper meth-
ods. They were chosen since they can handle both regression
problems and evaluate discrete valued variables. We used the
Relief-F approach [65], because it enables to rank individual
features, and deployed the correlation-based feature selection
(CFS) method [66], since it enables the scoring of the value
of groups of features. The applied filter methods run super-
vised and aim to identify the best features for building robust
regression and classification models.

The Relief-F approach ranks features according to the
assumption that useful features should be able to differentiate



Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal. Contentisfinalaspresented, withtheexceptionofpagination.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

FEATURES

optimized multiscale
segmentation

computation of
features for three
segmentation levels

scale factor 80
scale factor 120
oy G |
’\.;/ 2 5 /_,)\‘ >/,

{
A I N

RapidEye TanDEM-X
S
2 B
n g £ § Mean(pR, pG, pB, pNIR, pBrightness, pMax. Diff.) Mean (nDSM)
=

%é 285 Median(sR, oG, pB, pNIR) Median (nDSM)
2 =
E o Standard deviation (pR, pG, pB, pNIR) Standard deviation (nDSM)
g = = Variance (pR, pG, pB, pNIR) Variance (nDSM)
2 58  Minimum(gR, pG, pB, pNIR) Minimum (nDSM)
S § %  Maximum(pR, pG, pB, pNIR) Maximum (nDSM)

= Range (pR, pG, pB, pNIR) Range (nDSM)

Interquartile range (pR, pG, pB, pNIR) Interquartile range (nDSM)
5 Homogeneity(pBrightness) Homogeneity(nDSM)
"g g Contrast (pBrightness) Contrast (nDSM)
2 3 Dissimilarity (pBrightness) Dissimilarity (!DSM)
2 8 5 Entropy (pBrightness) Entropy (nDSM)
e =  Angular 2 moment (pBrightness) Angular 24 moment (nDSM)
95) 2 Mean (pBrightness) Mean (nDSM)
§ [ Standard deviation (pBrightness) Standard deviation (nDSM)
= Correlation (pBrightness) Correlation ("DSM)
Share of vegetation Share of elevated objects

Spatial
metrics

p = reflectance

Mean height of elevated objects

Standard deviation of height of elevated objects
Variance of height of elevated objects
Minimum height of elevated objects

Maximum height of elevated objects

Range of height of elevated objects

Fig. 5. Features derived from remote sensing data for different segmentation scales to characterize the urban morphology.

between instances from different classes and have similar val-
ues for instances from the same class [65], [67]. Therefore,
an instance from the data is randomly sampled and %k near-
est neighbors from the same and opposite classes are located.
Feature values of the k£ nearest neighbors are compared to
the sampled instance and are used to update relevant scores
for each feature. This procedure is repeated until a number of
instances m were considered. Thereby, m is a free parameter,
but frequently sets to the maximum number of labeled instances
available to achieve a reliable approximation [65].

CFS deploys a best first search algorithm to identify a group
of subsets, which are possibly suitable. The identified sub-
sets are evaluated by means of an entropy-based heuristic.
The heuristic favors subsets with a high-feature-class correla-
tion and low-feature-feature intercorrelation. Relief-F and CFS
are both multivariate procedures, which evaluate features in
dependence of other features in the data set.

E. Support Vector Machines

SVM emanate from the field of machine leaning and rep-
resent a family of nonparametric approaches for supervised
classification and regression [68]. They are based on the struc-
tural risk minimization principle, which suggest a trade-off
between the accuracy of an approximation and the complex-
ity of the affiliated approximation function. SVM determine a
suitable set of parameters to fit a decision surface, the so-called
hyperplane, between different classes of labeled samples. To
deal with nonlinear problems, the labeled samples are mapped
through a nonlinear transformation ¢(-) from the input space
x into a space of higher dimensionality  [Appendix B,
Fig. 13(a)—(b)]. In that space, the optimal separating hyperplane
maximizes the margin between the patterns of the different
classes and the hyperplane [Fig. 13(c)]. The maximized mar-
gin can be described by two additional marginal hyperplanes
that border the samples closest to the separating surface, the
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so-called support vectors [69], [70]. Only those samples are
needed to define the model, which allows for building robust
models with a high generalization capability based on a com-
paratively small number of labeled training samples. A linear
separation in H corresponds to a nonlinear separation in the
original input space y [71] [Fig. 13(d)].

Different formulations of SVM allow rendering a prediction
problem in three ways. 1) If two or more classes are to be dis-
criminated based on labeled samples of all classes present in the
data under investigation, the framework of C'-SVM can be uti-
lized. 2) If solely labeled samples are available for the class(es)
of interest and not for all classes present in the data, (ensem-
bles of) one-class ¥-SVM (v-OC-SVM) can be deployed. 3) If
the statistical level of measurement is higher and corresponds
to an interval or ratio scale, a support vector regression (SVR)
approach allows to estimate a prediction function from the
training samples.

These three SVM formulations are revealed in Appendix B
with affiliated minimization objective and decision function to
clarify methodological divergences, which are relevant for dif-
fering real-world situations. Those may evolve when aiming
to assess urban structures according to different engineering-
related methods and a varying amount of prior knowledge
available. For a more detailed theoretical and application-
oriented background of SVM, the reader can refer to the authors
of [68], [69], [72]-[75]. In the context of remote sensing, the
authors of, e.g., [76]-[80], provide comprehensive literature.

IV. DESCRIPTION OF EXPERIMENTS AND
EXPERIMENTAL SETUP

A. Description of Experiments

Experiments are designed with three different formulations
of the supervised prediction problem. We render the prediction
problem in three ways to address operational requirements that
may evolve in many real-life cases.

1) For the district Zeytinburnu, we first aggregate the dam-
age grades, as determined with the capacity spectrum
method, from building level to structure level (generated
with the multiscale segmentation procedure). In partic-
ular, the aggregated damages grades on structure level
are calculated from the damage grades of the correspond-
ing buildings, whereby a weighted average was computed
taking the building areas into account. Subsequently, the
aim is to estimate the damage grade for spatial entities,
where no damage grade information is available based on
SVR approach [Fig. 6(a)].

2) Then, we use the ground-based GPS-photos from the
whole settlement area of Istanbul to identify system-
atically urban structures that are either determined by
large industrial/commercial buildings or tall detached res-
idential buildings. Analogous to the previous setting, the
structure level provides, hereby, the constituting spatial
units. Generally, the predominant building type can be
seen as proxy for the vulnerability of an area [5]. In
this study, those two structure types revealed distinctive
properties with respect to the capacity spectrum assess-
ment. Thereby, urban structures determined by large
industrial/commercial buildings can be considered as

highly vulnerable in our application, whereas urban struc-
tures determined by tall detached residential buildings
can be considered as slightly vulnerable. In the second
experiment, we aim to identify those two urban structures
within the settlement area of Istanbul, disregarding all
other potentially present classes in the area. Thereby, only
labeled samples are available for the classes of interest
and not for all classes present in the data [Fig. 6(b)]. This
is a very challenging but realistic task. The availability of
information comprising all urban structures present in the
area of interest is infrequently satisfied in real-life situa-
tions. We deploy an ensemble of »-OC-SVM to address
this problem.

3) However, in experiment 3, we investigate feasibility of
procedures when labeled samples of other classes are
also available [Fig. 6(c)]. This renders the classifica-
tion problem fully supervised and we approach it with
C-SVM.

B. Experimental Setup

Regarding free parameters of multiresolution segmenta-
tion, we put more emphasize on shape heterogeneity (shape:
0.7) rather than on grey-value heterogeneity (0.5) as sug-
gested in Section III-B. First, an initial scale hy was deter-
mined. Therefore, the ratio of valid segments and nvSs,
as evaluated with (2), was computed. Fig. 7(a) shows the
corresponding function. We chose scale 24, since it fea-
tures a small share of nvSs and the decline in shares of
nvSs with respect to neighboring scales is comparatively
explicit. Hence, the objective function is calculated for the
interval [24, 25, ..., 150], and the outcome is plotted in
Fig. 7(b). It can be seen that optimal segmentation scales
above the plateau objective function (F'(u) = 1.432) are
located between 24 and 38. Hence, those scales were sub-
ject to the optimization procedure described in Section I1I-B2
(v in similarity constraint (11) was set to 5). Outcomes are
reassessed with the objective function to determine the fS
[black arrow in Fig. 7(c)].

Regarding the feature selection algorithms, we tested varying
numbers for neighbors to be considered regarding the Relief-
F approach. Finally, k£ was consistently set to 10, since it was
found that results are hardly sensitive for this parameter in this
study. Based on Relief-F, we compiled four feature sets, con-
taining the 10, 20, and 50 best-ranked features, and a set with
all features that have a positive degree of relevance (w > 0). For
the CFS approach, we deployed a stopping criterion of five con-
secutive fully expanded, nonimproving subsets. The subset with
the highest merit according to the evaluation heuristic during
the search was selected. Together with the thematically grouped
features (sets include features from different remote sensing
data sources and segmentation scales) computed features were
subdivided in 11 different feature sets. For all support vec-
tor methods, we use RBF kernels (support vector methods, in
this paper, were carried out with the LibSVM package by the
authors of [73]).

Regarding the SVR approach, the number of samples has
been varied to test sensitivity with respect to accuracy. We
learn models with randomly drawn 25%, 50%, 75%, and 100%
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Fig. 6. Concept and data for experiments. (a) Selected urban structures (25%) with damage grades for Zeytinburnu; damage grade for residual urban structures is
to be estimated with SVR. (b) Available labeled samples of classes of interest deployed for learning ensembles of v-OC-SVM. (c) Setting for C'-SVM: additional
labeled samples for classes of residual urban structures are available. This allows rendering the classification problem fully supervised.

of the labeled samples available and estimate generalization
capabilities based on fivefold cross-validation. To avoid skewed
results, five different training sets sharing the same number of
labeled instances were created. To avoid a biased quantifica-
tion of the effect of training set size on prediction accuracy, it
was made sure that samples contained in one set are also con-
tained in the affiliated set with a larger number of samples (i.e.,
the samples randomly drawn in one of the five sets with 25%
of available labeled samples are also contained in the corre-
sponding set with 50% of available labeled samples and so on).
Generalization capability is evaluated in terms of mean absolute
percentage error (MAPE) and reported as average of three inde-
pendent trials (some Pearson’s correlation coefficients R are
also reported in Section V to account for the models’ goodness
of fit). Model parameters were optimized with respect to MAPE
in the ranges o = {1071, ..., 10}, C' = {1, ..., 100}, and
e= {1076 1073}.

Application of the v-OC-SVM approach with a RBF ker-
nel requires adjusting the parameter v, and the kernel-width
parameter ~y. Generally, it is difficult to tune free parameters if
only target labeled samples are available in the training data.
In such situations, solely the true positive rate (sensitivity)
can be calculated, whereas the error counterpart (specificity)
cannot (i.e., a suitable model cannot be distinguished from a
fatally underfitted model, since also the latter would yield a
high accuracy). To overcome this limitation, the free parame-
OA[%]
#SV [°
where 6 is the set of free parameters (i.e., v and ), OA is
the overall accuracy, and #.SV the number of support vectors.
This heuristic enforces high OA while simultaneously limiting
model complexity keeping a low number of SV [81], [82].
For both v and v, we performed a grid search varying v in
the range {0.01,...,0.1} in 0.01 steps and ~ in the range
{1072, ..., 10'} in power of /10 steps, respectively. OA for

ter selection was determined by evaluating arg maxg {

each model was estimated by a fivefold cross-validation strat-
egy. The parameter combination yielding the highest value of
the evaluation heuristic was chosen. In case, a segment is voted
as belonging to the class of interest by multiple »-OC-SVM
models, reasonably, we assign the segment to the residual class,
since results can be considered nondistinctive, and we gener-
ally observe considerable errors of commission in preliminary
model runs. In the experiments, we used 50% of available sam-
ples for training the models and 50% for validation. Results are
reported based on five independent trials. Evaluation is based
on estimated « statistic, which allows considering both omis-
sion and commission errors and is thus not biased by class
distribution [83].

For the C'-SVM, we adopt a one-against-one scheme [84],
since we deal with more than two classes to be discriminated.
Learning the most appropriate C'-SVM in conjunction with a
RBF kernel requires the definition of the cost-parameter C' and
the kernel-width parameter . Tuning of C' and v was addressed
by a grid search strategy based on fivefold cross-validation.
Generalization accuracy is evaluated in terms of estimated ~ on
the average of three independent trials. In conformity with the
recommendations of the authors of [85], a grid-search with val-
ues of C =274, 273 .. 22 and v =272 274 ....2% was
performed. Analogous to the SVR approach, we reveal gener-
alization capabilities as a function of feature sets with different
shares of available labeled samples.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Estimation of Damage Grades for the District Zeytinburnu
With SVR

For Zeytinburnu, MAPEs with respect to estimated damage
grades are reported in Fig. 8(a)—(c) as functions of training
set size. The different figures and functions correspond to
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the optimized segmentation level only. (b) MAPE obtained with features from all three segmentation levels. (c) MAPE obtained with features selected by filter

methods.

MAPE obtained with different feature sets. Generally, it can
be noted that graphs reveal distinctive differences with respect
to accuracy. When using solely features calculated from the
elevation data (i.e., nDSM), MAPE are considerably higher
than corresponding MAPE obtained with features computed
from the optical data [Fig. 8(a)]. In particular, MAPE decrease

from 20.76% (£0.94; R = 0.163), achieved with elevation fea-
tures, to 16.23% (£0.36; R = 0.544), achieved with the optical
features, when all samples were deployed within the cross-
validation procedure. Analogously, when examining accuracies
obtained with features computed not only from the optimized
segmentation level but also from supersegments [Fig. 8(b)], we
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also observe a considerable decrease in MAPE from 14.54%
(£0.41; R = 0.596) to 11.64% (+0.30; R = 0.753). Besides,
an explicit gain of accuracy can be observed when incorporat-
ing supersegment information compared to a single segmenta-
tion (e.g., decrease of MAPE with both optical and elevation
features from 16.34% to 11.85%; simultaneously, goodness of
model fit raises from R = 0.521 to R = 0.741). Fig. 8(a) and
(b) also reveals that a joint use of optical and elevation infor-
mation does not increase accuracy remarkably compared to
accuracies obtained with optical features alone (difference in
MAPE is 0.36% and 0.30%, respectively). Finally, Fig. 8(c)
shows that the application of filter methods allow to identify
beneficial feature sets for the estimation of damage grades.
Thereby, lowest MAPE of all feature sets (i.e., 10.74%; R =
0.778) could be obtained with the 50 highest ranked features
from the Relief-F algorithm.

These numerical results suggest that features from optical
data allow estimating damage grades with viable accuracies,
whereas elevation features, as derived from the TDM data, do
not allow estimating damage grades in a viable way. Here,
also a joint exploitation of both data sets does not feature a
clear improvement in accuracy. In contrast, the idea to exploit
supersegment information proved to enhance accuracy of esti-
mates considerably. This is in line with previous experimental
analyses that confirm an increase of prediction accuracy, when
modeling spatial context information in feature space with
supersegment information (e.g., [62] and [63]). However, this
observation simultaneously suggests that homogeneous urban
structures could not consistently be discriminated properly
based on the optimized segmentation, and that oversegmenta-
tion has occurred. However, in contrast to under-segmentation,
oversegmentation leaves the possibility to gain accurate map-
ping results after classification (i.e., a possibly over-segmented
urban structure, which may be represented by two segments
instead of one, can be mapped properly if both segments are
assigned to the same class). In this sense, the incorporation
of supersegment information allowed to gain viable accura-
cies in the experiments. In addition, deployed feature selection
algorithms proved useful to alleviate problems associated with
high-dimensional feature vectors in conjunction with a compar-
atively small number of labeled samples, since best accuracies
were achieved with subsets of the features. Thereby, best mod-
els are characterized by MAPE less than 11% and fairly strong
goodness of fit (R > 0.75).

As a further means, an application of a model to estimate
damage grades for Zeytinburnu is shown in Fig. 9(a). It can
be noted that a further differentiation according to categories
of construction periods is not provided, since the settlement
area of Zeytinburnu was consistently covered before 1975. The
model was learned with 50% of available labeled samples and
50% were held out for validation. A MAPE of 13.00% and R of
0.754 were obtained based on 50 features ranked highest with
Relief-F. Generally, a good spatial agreement of reference and
model estimates can be observed. Areas characterized by high
expected damage grades in the northern part of Zeytinburnu
feature also highest model estimates. Instead, a vast majority
of the central and southern parts correspond to moderate or low
damage grades in both maps. Simultaneously, as can be seen
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Fig. 10. & statistic obtained with an ensemble of v-OC-SVM for different fea-
ture sets. Samples were split in a stratified manner and models were learned
with 50% of available samples and 50% were used for validation; five different
model runs with a differing composition of samples were carried out (marked
with different symbols, i.e., X, o, A, , and [J).

from the scatter plot, the model overestimates damage grades,
for instances, with low damage grades, and underestimates high
damage grades.

B. Assignment to Classes of Interest With an Ensemble of
v-0OC-SVM

We aimed to identify two distinctive urban structures (i.e.,
urban structures determined by large industrial/commercial
buildings that can be considered as highly vulnerable, and urban
structures determined by tall detached residential buildings that
can be considered as slightly vulnerable) within the settle-
ment area of Istanbul, disregarding all other potentially present
classes in the area. Only labeled samples were available for
the classes of interest in this experiment and not for all classes
present in the data, which rendered the prediction problem very
challenging.

Prediction accuracies, as evaluated with estimated ~ statis-
tics for different feature sets and model runs, are shown in
Fig. 10. Analogous to results of SVR, we observe consider-
able differences in accuracy with respect to deployed feature
sets. It can be noticed that & statistics achieved with features
from the optimized segmentation level indicate agreements just
slightly better than chance (i.e., x statistics vary from —0.03
to 0.24). Again, elevation features used alone perform worst.
Interestingly, when incorporating knowledge from superseg-
ments, a consistent increase of interrater agreement can be
observed for all three feature groups. Corresponding  statistics
show a mean increase in terms of absolute values by 0.09, 0.05,
and 0.12, respectively. Thereby, the unreduced feature vector
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Fig. 11. & statistics (reported as mean and standard deviation of different model runs) as a function of training set size. (a) x obtained with features from the
optimized segmentation level only. (b) x obtained with features from all three segmentation levels. (c¢) x obtained with features selected by filter methods.

allows to exhibit fair agreements with « statistics between 0.23
and 0.34. Nevertheless, applied strategies to reduce dimension-
ality of the feature vector proved useful, since features sets
generated with filter methods generally provide highest « statis-
tics. Best models feature a moderate agreement, with « statistics
larger than 0.45.

Interestingly, in accordance with the findings regarding the
SVR approach, also here, we observe that elevation features
used alone yield least favorable results. However, in contrast to
SVR, a joint exploitation with optical features yields a substan-
tial improvement in accuracy when simultaneously considering
supersegment information (mean « statistics increase from 0.17
to 0.29). Results are comparable to those obtained with mod-
els learned from filter-based features sets. In this sense, feature
selection algorithms proved useful again, since best results were
obtained with 20 and 50 features ranked highest with Relief-F.
However, & statistics cannot exhibit a moderate agreement (i.e.,
best models feature x statistics between 0.4 and 0.47), which
questions viability in real-life situations. Although benchmark
accuracies that need to be met in real-life situations are largely
absent within this rather emerging application context, results
correspond to the challenging nature of the prediction problem.

An ensemble of models was applied to assign urban
structures of Istanbul to the classes of interest [Fig. 9(b)].
Additionally, they are further differentiated according to the
categories of established construction periods. The ensemble of
models was learned with 50% of labeled samples available for
nonresidual urban structures and 50% were held out for valida-
tion. A & statistic of 0.47 and OA% of 65.4 were obtained based
on 50 features ranked highest with Relief-F. From the affiliated
user’s and producer’s accuracies, it can be seen that urban struc-
tures determined by tall detached residential buildings could
be identified most accurately, closely followed by urban struc-
tures determined by large industrial/commercial buildings. The
residual class shows lowest accuracies. This result can be rea-
sonably related to the peculiarities of the different classes,
whereby, e.g., structures of tall detached residential buildings
are constituted by most distinctive characteristics. Instead, the
residual class features a large variety of different structures.
Nevertheless, large parts of the settlement area were assigned to
either nonresidual class. The validity of this vast assignment can
be questioned, in particular, in conjunction with results from

the subsequent experiment (discussion follows at the end of the
subsequent section). In turn, this suggests a large error of com-
mission, evolving from broad, nonsufficient decision functions
of the models describing the distributions of the two classes of
interest.

C. Assignment to Classes of Interest With C-SVM

To complement results obtained with an ensemble of 1-OC-
SVM, we also rendered the prediction problem fully supervised
and approached it with C-SVM. Results are reported in terms
of estimated « statistics in Fig. 11(a)—(c). As for the two previ-
ous experiments, also here, we observe considerable differences
with respect to accuracy in dependence of deployed feature sets.
When using solely elevation features computed from the opti-
mized segmentation level, x statistics feature a fair to moderate
agreement (i.e., mean x statistics vary between 0.42 £ 0.09 and
0.46 +£ 0.05). In contrast, optical features allow achieving sub-
stantial x statistics larger than 0.6 most of the time [Fig. 11(a)].
Again, usability of supersegment information is expressed in
a further increase of « statistics, which definitely met a sub-
stantial agreement (i.e., £ > 0.6) when using optical features
or jointly exploit optical and elevation features [Fig. 11(b)].
Thereby, a joint use of optical and elevation features yields
an increase of x between 0.022 and 0.044 compared to the
use of optical features alone. In this sense, best models show
excellent « statistics larger than 0.8. Regarding feature sets
composed with filter methods, we observe that only a sufficient
number of features ensure viable « statistics with a substantial
or excellent agreement. Thereby, features that show a posi-
tive degree of relevance as evaluated with Relief-F (w > 0;
n = 152) consistently performed best [Fig. 11(c)].

Results obtained with C'-SVM show distinctive increase of
accuracies when compared to results obtained with ensembles
of v-OC-SVM. Ensembles of v-OC-SVM could not exceed
moderate agreements, with x statistics slightly above 0.45.
Instead, C-SVM allowed to obtain r statistics showing sub-
stantial and even excellent agreement (x > 0.6 up to x > 0.8).
Generally, this is reasonable and meets expectations, since C-
SVM can rely on more prior knowledge. In fact, it is much
more challenging to estimate the support of multiple multi- or
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high-dimensional distributions, than to discriminate known tar-
get classes from each other. Nevertheless, the use of labeled
samples from classes others than the classes of interest proved
very useful to achieve accuracies that may be needed in real-life
cases. Hence, results confirm viability of proposed procedures
to support an assessment of urban structures with respect to
their seismic vulnerability.

The application of a C-SVM model to assign urban struc-
tures of Istanbul to the classes of interest is shown in Fig. 9(c).
It was learned with 50% of available labeled samples and 50%
were held out for validation. A « statistic of 0.77 and OA%
of 85.6 were obtained with all available features. User’s and
producer’s accuracies reveal that urban structures determined
by tall detached residential buildings could be identified very
accurately (accuracies > 90.0), and also urban structures deter-
mined by large industrial/commercial buildings feature very
good agreements (accuracies ~ 84.0). A moderate decrease in
accuracy can be observed for the class of residual urban struc-
tures (user’s acc. of 70.5 and producer’s acc. of 74.7). These
different class-related levels of accuracy are unambiguously
in line with the previous experiment. However, in distinction
to the results obtained with an ensemble of v-OC-SVM, the
majority of the settlement area of Istanbul is assigned to resid-
ual urban structures and urban structures of particular interest
emerge now in a spatially very explicit way. As just one exam-
ple, consider urban structures determined by large industrial
and commercial buildings in the southern part of the Asian side
in Fig. 9(c). Those clearly emerge in a linear manner, in reality,
along an arterial road.

Finally, it should be noted that we addressed in the experi-
ments a comparatively coarse level of abstraction regarding the
vulnerability classes to be estimated, e.g., we aimed to iden-
tify urban structures determined by large industrial/commercial
buildings, which can be considered as highly vulnerable in our
application. However, especially industrial structures can fea-
ture a considerable variety in the main structural parameters that
are relevant for vulnerability assessment, such as the lateral load
resisting system, or construction material. Nevertheless, accu-
rate identification of structures determined by large industrial/
commercial buildings can be helpful to identify priority areas
and serve as a basis for a guided and more detailed reassess-
ment.

VI. SUMMARY, CONCLUSION, AND FUTURE
PERSPECTIVES

In this paper, we suggested procedures that learn prior seis-
mic vulnerability information to estimate seismic vulnerability
levels of urban structures based on remote sensing data. In
contrast to numerous studies that operate on building level,
we, therefore, addressed a coarser level of the urban morphol-
ogy. This allowed relying on remote sensing data with a lower
spatial resolution, but larger spatial coverage. In this sense,
we exploited data from the RapidEye constellation, TDM, and
Landsat archive.

We provided numerical results obtained for the city of
Istanbul confirm viability of procedures. When estimating dam-
age grades for Istanbul’s district Zeytinburnu with SVR, best
models were characterized by MAPEs less than 11% and

fairly strong goodness of fit (R > 0.75). When aiming to
identify types of urban structures (i.e., urban structures deter-
mined by large industrial/commercial buildings that can be
considered as highly vulnerable in this application, and urban
structures determined by tall detached residential buildings that
can be considered as slightly vulnerable), results obtained with
C-SVM showed distinctive increase of accuracies when com-
pared to results obtained with ensembles of -OC-SVM. This is
reasonable since C-SVM could rely on more prior knowledge.
Ensembles of v-OC-SVM were not able to exceed moder-
ate agreements, with « statistics slightly above 0.45. Instead,
C-SVM allowed to obtain & statistics showing substantial and
even excellent agreements (x > 0.6 up to xk > 0.8).

Besides, during experiments, we observed that elevation
information, as provided by the nDSM, used alone does
not allow for learning viable models. However, when jointly
exploited with optical data, learned models exhibit viable accu-
racies. It is worth noting that the idea to model spatial context
relations in feature space with supersegment information has
also shown very favorable results and in most cases enabled to
retrieve viable accuracies at all. In this regard, feature selec-
tion algorithms proved generally useful to alleviate problems
associated with high-dimensional feature vectors in conjunc-
tion with a comparatively small number of labeled samples. All
in all, analyses provide promising empirical evidence, which
confirms the potential of remote sensing to support the seismic
vulnerability assessment of urban structures.

However, from a methodological perspective, future work
may exploit semisupervised approaches (e.g., [86]), which
encode some knowledge from the unlabeled data also. They
may yield favorable accuracies especially in situations where
only very few labeled samples are available. Ascertainment
of labeled samples can generally be considered to be very
costly within this application context. Therefore, active learn-
ing strategies [87], [88] may be followed to solve estimation of
vulnerability levels efficiently, based on remote sensing data in
a supervised fashion. To this purpose, predefined heuristics can
be deployed to rank unlabeled instances in the domain under
analysis that are considered the most valuable for improvement
of estimation accuracy of a preliminary model learned with
available prior seismic vulnerability knowledge. Once instances
are selected, they are labeled and the learning process is iter-
ated. Recent approaches also include the spatial domain for
this task [89], [90], and consider labeling costs emerging from
ground surveys [91]. Such approaches may guide civil engi-
neers through the building inventory to collect most valuable
additional in sifu information efficiently and ensure simulta-
neously that there is no sample selection bias [92]. Moreover,
the incorporation of classification uncertainty measures can be
deployed to iteratively assess and redefine the sample sites
[93]. Before, the concept of focus maps [94] allows prioritiz-
ing areas for data collection with respect to multiple criteria
(e.g., hazard probability, (quality of) available data, etc.) in an
integrative way.

The idea of a targeted estimate, i.e., identifying the classes
of interest by having only labeled samples of the classes of
interest available and not for all classes present in the data,
should be further followed. In this paper, we deployed ensem-
bles of »-OC-SVM for this task. Thereby, identification of
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Fig. 12. Illustration of basic processing steps of the image segmentation procedure. (a) Incorporation of the UF as basic segmentation level visualized for both
multispectral and nDSM data. (b) Initial optimal multiresolution segmentation (ioMRS) is determined with a plateau objective function. (c-I) Segments are
identified that do not correspond to the Shannon sampling theorem and are considered as nvSs. (c-II) nvSs are merged with most similar adjacent segments
(ioMRS-m). (d-I) Distinctive subsegments (rSS) are determined and transferred to the (d-II) supersegment level. (d-III) They are merged if a similarity constraint
is fulfilled. (e) Final segmentation (fS) is identified by reassessment with the objective function after multilevel segmentation procedure.

most suitable hyperparameters is generally very difficult and
we used a heuristic, which evaluates overall accuracy and
model complexity, expressed by number of support vectors.
However, more sophisticated approaches may identify more
suitable combinations of free parameters (e.g., approaches that
aim to characterize and assess the shape of the decision function
of learned models). In addition, unsupervised preclassification
of the feature space has shown promising results recently [95].
Besides, other machine learning one-class approaches (e.g.,
ensembles of one class random forests [96]) can be considered
as an interesting opportunity. Regarding alternative techniques
for function estimation, Gaussian process regression [97] has
shown distinctive accuracies recently, when compared to other
machine learning regression techniques (e.g., [98]). At the same
time, it is generally crucial to rely on techniques that ensure a
high transferability of trained learning machines. In the context
of multispectral image classification, the authors of [99] showed
recently that, e.g., SVM can be considered as a viable approach.

From a conceptual point of view, an intensive exchange
with the earthquake engineering community appears exigent.

Definition of typologies that need to be estimated in a standard-
ized way and commitment of benchmark accuracies that need
to be met would allow a rigorous evaluation of approaches. This
may contribute to a further determination of the role of remote
sensing within this emerging application field.

APPENDIX A

This section is used to visualize some basic processing steps
of the image segmentation procedure (Fig. 12). Based on joint
usage of the UF data set, multispectral, and height information,
an initial optimal segmentation layer is obtained. Validity mea-
sures are applied to modeled segments and segmentation results
are adjusted according to predefined criteria. Subsequently, a
multiscale optimization is conducted and an optimal multiscale
segmentation level is finally identified from the outcomes.

APPENDIX B

Fig. 13 shows the general principle of nonlinear SVM. Data
are mapped with a kernel function from the input space x to
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X

(d)

Fig. 13. Idealized procedure for generation of a nonlinear decision function by SVM. (a) Dataset with two classes (red and blue dots) that are nonlinearly separable
in x are mapped through a nonlinear transformation ¢(+) into a space of (b) higher dimensionality . (c) Linear separation becomes possible in that space and a
hyperplane (cyan) with maximum margin is fitted, which corresponds to a (d) nonlinear decision function in .

a space of higher dimensionality #, where a linear separa-
tion becomes possible. The solution corresponds to a nonlinear
separation in the original input space.

In Fig. 14, three different formulations of SVM are visu-
alized. Those correspond to multiclass classification problems
[Fig. 14(a)], one-class classification problems [Fig. 14(b)] and
regression problems [Fig. 14(c)].

I. MULTICLASS CLASSIFICATION WITH C-SVM

The C-SVM method was introduced by the authors of [100]
to cope with class overlap or the existence of noise in the train-
ing data in multiclass problems. This technique represents a
modification of the maximum margin approach using relaxed
separation constraints that allow for the possibility of instances
on the incorrect side of the respective margin boundary. Let us
consider a data set with labeled instances {x; , y;}._,, with
x; € R% and y; € {—1,+1}. The data is mapped through a
nonlinear transformation ¢(+) to a space with a higher dimen-
sion. An appropriate determination of ¢(-) ensures that the
transformed samples are more likely to be linearly separable
in the higher dimensional space [77]. Then, the minimization
objective of C-SVM is formulated as

. 1 -
MiDw ¢, b {2||W||2 + OZ&}

i=1

12)

subject to

13)
(14)

yi (p(x),w+b)>1-& Vi=1,...,n
>0 Vi=1,...,n

where w represents the normal perpendicular to the optimal
separating hyperplane and b is the nearest distance to the ori-
gin (O) of the coordinate system. These parameters constitute
a linear classifier in 4, which separates the labeled samples of
different classes with maximum margin. To enhance generaliza-
tion capabilities and reduce over-fitting, positive slack variables
&, are introduced to account for labeled samples lying on the
incorrect side of the respective margin boundary [Fig. 14(a)].
The constant C' determines the trade-off between maximizing
the margin and the number of incorrectly classified samples
(training errors). An optimal parameterization of C can be
determined empirically. It can be noted that (12) is constituted
by two distinctive terms that are clearly interpretable: the objec-
tive is to minimize simultaneously both the norm of the model
weights ||w?||, which is equivalent to the maximization of the
margin, and the committed errors Z?zl & [801].

The minimization objective of (12) is reformulated from its
primal form to its dual form by introducing Lagrange multi-
pliers, so that it can be solved with quadratic programming
techniques efficiently [74]. Finally, a decision function is given
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(b)

e—insensitive cost function

(©)

Fig. 14. Different formulations of SVM. (a) C-SVM provide a linear decision function with relaxed separation constraints, which allow for labeled samples lying
on the incorrect side of the hyperplane (modified adaption from the authors of [76]). (b) v-OC-SVM treat the origin of the feature space (O) as the only available
sample of the nontarget class first, and fit a hyperplane with maximum margin from the origin (modified adaption from the authors of [81]). (¢) In SVR, all samples
outside a fixed tube with size ¢ (i.e., support vectors) are penalized by applying a cost function. Here, Vapnik’s € cost function is deployed, which accounts for a

linear penalization (modified adaption from the authors of [74], [80]).

that allows assigning a class label to an instance of unknown
class membership x,

f(x4) =sgn ZyiaiK (x5, %) + b (15)
i=1

with «; being the Lagrange multipliers and K being a kernel
function. The Lagrange multipliers are determined by opti-
mization and feature nonzero values for instances lying on
the margin—the support vectors [77], [78], [100]. The ker-
nel function K is expressed as the dot product of mapped
instances K (x;,x;) = ¢(x;), ¢(x;). Hence, the outcome of
the decision function (15) only relies on the dot product of
the vectors in the input space y. This allows to avoid an
explicit projection to a space of higher dimensionality, since
this formulation yields the same result (also known as the
kernel trick). This property of the SVM algorithm enables a
very efficient computation of decision functions for data with
a very high dimensionality. A number of different kernels with
varying characteristics exist. However, in environmental appli-
cations, it is common to use Gaussian RBF kernels, which take
the form K (x;,x;) = exp(—||x; — x;]|?/20?), due to their

interpretability (they express local similarity) in accordance
with favorable performance properties [71].

II. ONE-CLASS CLASSIFICATION WITH v-SVM

v-OC-SVM were introduced by the authors of [101] as sup-
port vector method for novelty detection. It can be deployed
in situations where the objective is to identify only one or few
classes of interest from all classes present in the data, simulta-
neously having only labeled samples of the classes of interest
available.

Generally, the strategy of »-OC-SVM is to capture the sup-
port region (i.e., where the density is large) without the need of
prior assumptions about the distribution of the data. Therefore,
the target class is described by a function that maps the major-
ity of instances to a region where the function is nonzero. To
achieve this, the origin of the feature space is first treated as the
only available member of the nontarget class (i.e., as an outlier).
Then, a hyperplane with maximum margin separation from the
origin is identified [Fig. 14(b)]. To separate the data from the
origin, the minimization objective is as follows:

. 1 1
wingwr e {3070+ 5 3 60} 06)
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subject to with quadratic programming techniques [74], [80], [97], [103].
Subsequently, the final estimation function is given by
(W, (x)) >p—§& Vi=1,...,1 a7
&E>0 YVi=1, ..., 1 (18)

where w represents a vector, which is perpendicular to the
hyperplane, and p is the distance to the origin. Parameter v €
(0, 1] controls the trade-off between an upper bound of frac-
tion of margin errors (as can be seen from (16), outliers in the
training data are handled by slack variables analogous to the
C-SVM framework) and a lower bound of fraction of support
vectors (i.e., model complexity) [81], [102]. Again, by utilizing
Lagrange multipliers and a kernel function, the final decisions
function to assign a class label to an instance of unknown class
membership x, is obtained by

f(x4) =sgn (Zz a; K (x,%4) —p) .

In practice, v-OC-SVM can be used in problems when more
than a single specific class of interest is considered at a time by
employing an ensemble of one-class classifiers. Thereby, each
classifier is trained on a specific class of interest. When man-
ifold classifiers assign a class label to an instance, a heuristic
can be applied to the outputs (e.g., a winner-take-all rule based
on prior or posterior probabilities) to determine the final class
membership [82].

19)

IIT. FUNCTION ESTIMATION WITH SVR

SVR allows approximating a function from training data,
when the statistical level of measurement of the target vari-
able corresponds to an interval or ratio scale. In accordance
to the presented SVM framework, SVR defines a linear model
over samples that are mapped to a higher dimensional space
via a nonlinear function. A common SVR formulation deploys
Vapnik’s e-insensitive cost function, in which errors up to ¢ are
not penalized, and further errors are subject to a linear penal-
ization [Fig. 14(c)]. Thereby, SVR determines weights w by
minimizing a regularized functional

1
mingwg.6:.0 4 5IW+HC Y (6 +€) (20)

subject to
yi— (¢ (x;),w)y+b)<e+& Vi=1,...,n (21
(¢ (xi), W) +b)—y; <e+& Vi=1,...,n (22
E,65>0 Vi=1,...,n (23)

where §; and £ are positive slack variables, which quantify the
distances of the labeled training samples that lie outside of the
e-insensitive tube to the boarder of the tube [Fig. 14(c)]. The
regularization parameter C' determines the trade-off between
the flatness of the function and the tolerance to observed
errors. Similar to the previous formulations, the minimization
objective can be solved by introducing linear restrictions (21)-
(23) into (20) using Lagrange multipliers «;, calculate the
Karush—Kuhn-Tucker conditions, and solve the dual problem

fx) =) (i —a]) K (x5,%,) +b. (24)
i=1
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