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Xiaoshuai Zhang, and Lei Zhang, Senior Member, IEEE

Abstract—Since the coronavirus disease 19 (COVID-19) out-
break, the epidemiological analysis has raised a strong require-
ment for more effective and accurate contact tracing solution.
However, the existing contact tracing solutions either lacked the
evaluation of tracing proximity or the features used for the
tracing proximity evaluation were susceptible to certain negative
environmental factors (e.g., body shielding). In this article,
we propose a novel distance estimation algorithm based on
machine learning for contact tracing: DISTERNING, where we
leverage machine learning algorithms including Learning Vector
Quantization, Regression, and Deep Feed-forward (DFF) Neural
Network, data processing methods, and digital filters to process
the Bluetooth signal information collected by the mobile phone
for contact distance estimation. A contact tracing scheme based
on edge computing is also proposed for algorithm deployment due
to the requirements of the computational power. Compared with
the existing contact tracing solutions, our algorithm considers the
factors that have significant negative influence on the Bluetooth
signal for distance estimation in reality. The evaluation results
show that when the collected Bluetooth signal is influenced
by real-world negative environmental factors, employing our
proposed algorithm DISTERNING can keep the accuracy of the
estimated distance reliable. The output distance can be combined
with some medical models to conduct infection risk assessments.

Index terms— Distance estimation, contact tracing, ma-
chine learning, Bluetooth, pandemic, COVID-19.

I. INTRODUCTION

Since the outbreak in the winter of 2019, the coronavirus
disease 19 pandemic (COVID-19) has been going on for
over 2 years around the world. The enduring COVID-19 has
caused 290,519,852 cases of infection and 5,445,804 death
across 186 countries and territories in addition to tremendous
economy shrink (including US by an annual rate of 4.8%
in the first quarter of 2020 and by a shocking 32.9% in the
second quarter) [1][2] to the date of 4th January, 2022. While
the vaccine has been widely used, other non-pharmaceutical
interventions (NPIs) including social distance [3], contact
tracing, etc., are adopted by many countries to prevent the
widespread COVID-19. As the primary method to alleviate
the COVID-19 epidemic, strict NPIs such as quarantine can
reduce the diffusion of COVID-19 by 99% under the synergy
of vaccines [4]. However, such strict quarantine and lock down
NPI measures may threat industrial production and people’s
work and daily life, which leads to global economy recession
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[5]. Compared with strict NPIs, social distance and contact
tracing as milder NPIs are much more acceptable to prevent
the spread of most respiratory infectious diseases [6].

Contact tracing is considered as an effective tool for mon-
itoring social distance and as one of the most powerful
public health interventions feasible in public places [7]. Digital
contact tracing (DCT), i.e., using mobile phone apps to im-
plement contact tracing and notification between individuals,
has recently been proposed to be a plausible complement of
manual contact tracing within the Test, Trace, and Isolate (TTI)
containment strategies [8]. Existing DCT solutions usually
depend on modules embedded in mobile phone (e.g., Bluetooth
module) or extra hardware (e.g., intelligent reflecting surfaces)
[9]. At present, many countries (e.g., United Kingdom, Sin-
gapore, and China, etc.) have deployed their digital contact
tracing applications to assist epidemiological investigations
which track the infection chain of COVID-19 and implement
control measures to prevent further infections [10].

Current DCT applications deployed in various countries,
including Bluetooth, GPS, and QR code technologies are
mainly applied to realize proximity estimation. TraceTogether
[11] of Singapore uses Bluetooth low energy (BLE) [12] to
track the close contacts of infected persons. TraceTogether can
be installed on mobile phones to scan the surrounding BLE
devices in real time. It records the scanned Bluetooth signal
strength (RSSI, Received Signal Strength Indication) in dBm
for the proximity estimation of distance. Google Apple Contact
Tracing [13] also relies on Bluetooth on mobile phones.
Different from TraceTogether, this system utilizes Bluetooth
to exchange keys representing users identities and considers
all contacts in the Bluetooth broadcasting range as the close
contacts. Once a person is confirmed to be infected, other close
contacts can be notified. This system improves the privacy
security with the help of individual keys but lacks relatively
accurate proximity. China’s health code system is built up on
GPS, cellular base station, WiFi, Bluetooth, and the QR code
provided by the health code app. In this system, a person’s
real-time health status is labelled by the three-color algorithm
(i.e., green, yellow, and red) [14]. The system extracts the
data from GPS, cellular base station, WiFi, and Bluetooth
to monitor the locations and the time periods to deduce the
activities of the infected person, and then adjusts the color of
the health code of the close contacts who have been in the
same place at the same time.

However, the existing digital contact tracing solutions can-
not provide enough proximity estimation accuracy for contact
tracing [15]. Commonly, GPS-based proximity estimation has
a positioning accuracy of 10 meter (m) [16]. The possible 10



TABLE I
A COMPARISON BETWEEN PREVIOUS SOLUTIONS AND PROPOSED NEW ALGORITHM

Name Dependent technology Environmental factors consideration  Proximity estimation  Distance conversion
TraceTogether [11] Bluetooth No Yes, but not accurate No
Google Apple Contact Tracking [13] Bluetooth No No No
China Health Code System [14] GNSS, QR code, Cellular base station, WiFi, Bluetooth No No No
DISTERNING Bluetooth Yes Yes, accurate Yes

m error is too large for contact tracing to detect the prox-
imity between contacts. Bluetooth-based proximity estimation
solutions also cannot provide enough proximity estimation
accuracy for contact tracing under the consideration of cer-
tain negative environmental factors leading to inaccuracy of
proximity estimation in real-world (e.g., body shielding) [17].
The inaccuracy of proximity estimation introduces significant
errors in infection likelihood estimation, and hence, may lead
to the failure of stopping epidemics [15]. Therefore, how to
utilize mainstream mobile devices and their sensors (such
as Bluetooth modules in smartphones) to implement contact
tracing with enough proximity estimation for social distance
detection should be further explored and addressed.

Since most previous Bluetooth-based solutions do not con-
sider negative environmental factors in practice, our research
focuses on Bluetooth-based distance estimation that includes
the consideration of negative environmental factors between
contacts to realize more accurate contact tracing. The esti-
mated social distance can be combined with some medical
research about the relationship between infection risk and
distance (e.g., G. Cortellessa et al. [18]) to rank the potential
cases for contact tracing. In Table I, several exemplars of
mainstream contact tracing solutions, TraceTogether, Google
Apple Contact Tracking, and China Health Code System,
are compared with our algorithm DISTERNING in terms of
the performance of proximity estimation from three aspects
including environmental factors consideration, proximity es-
timation, and distance conversion (i.e., whether the solution
estimates physical distance or not). Compared with the existing
contact tracing solutions, DISTERNING provides a more ac-
curate distance estimation between contacts while considering
real-world environmental factors. Therefore, our proposed dis-
tance estimation algorithm possibly can be combined with the
existing Bluetooth-based contact tracing solutions as a more
reliable data processing and distance estimation component.

Considering the limitations of mobile devices in compu-
tation, we propose a contact tracing scheme based on cloud
training and edge computing. In the scheme, we distribute the
responsibilities of distance estimation and data collection to
edge and users mobile phone respectively. The distribution of
responsibility overcomes the high latency of cloud computing
and low computational power of mobile phone while reducing
the probability of private information leakage [19][20].

Our main contributions in this paper are highlighted as
follows:

1) A machine learning powered Bluetooth distance esti-
mation algorithm with two features (distance classifica-
tion and conversion selection) for contact tracing called
DISTERNING is proposed. The proposed algorithm not

only considers the negative environmental factors caused
by body shielding in contact tracing, but also outputs
the estimated distance for the infection risk evaluation.
The result shows that the average estimated distance
absolute error can be reduced to around 0.3 m with the
consideration of shielding when no noise is added. After
noise is involved, the absolute errors of most distance
ranges can be still kept within 1 m. Since there are far
more medical studies on the relationship between infec-
tion risk and distance of infectious diseases than on the
relationship between infection risk and Bluetooth signal,
the concrete distance value estimated by our proposed
algorithm DISTERNING can be applied to conclude
infection risk by distance directly. Hence, DISTERNING
is more universal and fundamental than other proximity
estimation solutions thus can be used in preventing many
other infectious diseases beyond COVID-19.

2) In view of the different data abundance caused by
contact time, there are several metrics to evaluate the
algorithm’s performance. In this study, accuracy (abso-
lute error between estimated distance and ground truth
distance), latency (execution time on mobile devices e.g.,
smartphones), and stability (estimated distance absolute
error variance for different distance ranges and body
shielding categories) of the algorithm are considered as
key performance indicators (KPIs). Quadrant diagrams
representing different levels of these indicators provide
a reference for users to judge the performance of the
algorithm for different contact duration, and these results
are discussed in Section VI-D.

3) For the proposed Bluetooth-based contact tracing al-
gorithm, short contact time might lead to low data
abundance and large algorithm error, this paper provides
a solution to overcome this problem in Section VI-E.
This provides a reference solution for fulfilling the high-
accuracy requirement with limited data.

4) Due to the needs of machine learning model training and
testing, we collect the mobile phone BLE RSSI data
of two contacts at different distance with considering
different mobile phone positions (under different body
shielding categories). The collected data could be up-
loaded to Github as a new BLE RSSI data set for other
studies in the future.

The rest of this paper is organized as follows. Some recent
studies about contact tracing are introduced and analyzed in
Section II. Then, the deployment scheme of our proposed DIS-
TERNING algorithm is depicted in Section III. An overview
of data collection, data labeling and algorithm architecture
for DISTERNING is presented in Section IV. After that,



we illustrate the functions and implementations of our new
algorithm DISTERNING in Section V and demonstrate our
experimental results in the real environment in Section VI.
In the next Section VII, the challenges and some potential
countermeasures are discussed, which is followed by the final
section to conclude our work.

II. RELATED WORK

In previous studies, researchers analyzed the main negative
environmental factors that Bluetooth signals undergo in real
environments i.e., human body shielding and multi-path effect
[21][22][23]. Some researchers suggest using some Sensors
embedded in mobile phones to mitigate the impact of these
negative environmental factors [24], but these sensors can
misjudge the actual negative environmental factors or fail to
report the actual negative environmental factors (e.g., the light
sensor of the mobile phone might not distinguish whether the
mobile phone is in the backpack or in the pocket). Therefore,
a more accurate solution of distance estimation is needed for
COVID-19 contact tracing based on Bluetooth.

[17][25][26] have proposed machine learning based solu-
tions for contact tracing or distance estimation. Su et al.
[17] applied several machine learning algorithms including
Support Vector Machines (SVM), Random Forest, and Gradi-
ent Boosted Machines (GBM) to realize distance estimation
based on Bluetooth RSSI. Furthermore, they improved the
accuracy of distance estimation by extracting a variety of
Bluetooth signal characteristics. In their solution, the result
is measured by the likelihood that the estimated distance
and the actual distance between the two mobile phones are
both greater than or less than 1.5 m. Even though the use
of machine learning algorithms significantly improves the
likelihood, and the distance range of the contact is accurately
determined, there still exists a maximum possible error of
1.5 m. Meanwhile, this solution needs to obtain numerous
Bluetooth signal characteristics, and some of them (such as the
received Bluetooth signal frequency) have to be collected by
extra tools. Such drawbacks prevent this solution from being
applied for Bluetooth-based contact tracing currently. Sattler et
al. [25] proposed a model that uses a linear classifier to assess
infection risk of contacts. They performed a linear regression
on the risk of infection with RSSI, time characteristics, and
specified risk thresholds to deduce high or low infection risk
on contacts. However, this model does not consider the shield-
ing effect of the body when the mobile phone is put in a pocket
or other different positions. In [26], optimized support vector
machine and Kalman filter are applied for distance regression
from BLE RSSI without considering negative environmental
factors. Although the estimated distance absolute error can
be reduced to 0.4 m, an obvious accuracy drop of distance
estimation is observed when the BLE signal is blocked by
objects.

As investigated above, these BLE-based solutions either
lack of the consideration of different negative environmental
factors in the real world or fail to mitigate the impact of
negative environmental factors. However, the above results
show a promising potential of machine learning in distance

estimation based on BLE. Inspired by previous work, we
proposed DISTERNING.

III. A DEPLOYMENT SCHEME OF DISTANCE ESTIMATION
ALGORITHM ON EDGE

When machine learning methods are integrated in our
proposed algorithm, the execution time for distance estimation
increases as the amount of data to be processed increases
(this result will be demonstrated in Section VI-B). Deploying
such an algorithm for distance estimation on a mobile phone
could occupy a large amount of memory. Meanwhile, the
computational power of the mobile phone cannot meet the
demand of fast distance estimation. A cloud deployment re-
quires cloud computation component which is usually limited
by the transmission bandwidth due to the remote deployment
of workload. Compared to cloud computing, edge computing
has a lower latency and could mitigate the bandwidth limit.
Moving the workload closer to the user reduces the effect of
limited bandwidth at a location [27]. Additionally, in terms
of privacy, the cloud is a potential breaking point if the user
data used for distance estimation is not managed properly.
The edge computing can mitigate the privacy requirement [27]
by providing alternative jurisdiction over the privacy-sensitive
data, and a flexible model of computing and storage solutions.
There are explorations on using user-centric edge computing
[28] and resource sharing scheme powered by blockchain [29]
with mutual authentication between users and the targeted
edge computing instances. By employing the decentralized
safety features, users can better protect their privacy while
using the edge computing for speeding up data processing.

As an infrastructure that could improve the capabilities of
personal portable devices effectively, mobile edge computing
(MEC) [30] could provide sufficient computational resources,
latency, responsiveness, and data security simultaneously when
compared to local and cloud computing [31]. In addition, MEC
reduces the occupation of mobile phone memory sigficantly.
Therefore, we propose a scheme to deploy machine learning
based algorithms on the edge-based computing platform to
reduce the computing latency and ensure the data security.

Fig. 1 describes the deployment scheme that includes the
privacy-preserving DCT solution and the proposed distance
estimation machine learning algorithm. In the deployment
scheme, the distance estimation model is trained on cloud
by developers in the lab using the RSSI and distance data
measured in real-world and then deployed in the edge server
as requested by users, as shown in step 1. When a person
is diagnosed by COVID test institution, a COVID test report
is transmitted to the patient, as shown in step 2. Next, the
patient sends his/ her encrypted Bluetooth ID to the privacy-
preserving DCT solution and transmits encrypted Bluetooth ID
and distorted proximity data (RSSI) to edge in step 3. Then,
in the fourth step, the DCT solution transmits the exposure
notification to contacts. After that, the contacts transmit their
encrypted Bluetooth IDs and distorted proximity data to the
edge, and the data is inputted into the distance estimation
model on the edge for distance estimation as shown in step 5.
Finally, the estimated distance is converted to the infection risk
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Fig. 1. Contact tracing schematic diagram.

by combining with the appropriate medical distance-infection
risk model, and the infection risk is transmitted to contacts as
denoted in step 6. Through the cloud training and the edge
deployment, the computation speed for distance estimation
is much faster compared with the local deployment (on the
mobile phone). Furthermore, since the edge server only pro-
vides better computational power for distance estimation using
distorted proximity data from encrypted ID, the protection of
user privacy is also improved.

The data transmission between the edge and mobile phones
of users can be supported by Long Term Evolution (LTE),
which is supported by nearly all smart phones. It provides 75
Mbps upload bandwidth and 300 Mbps download bandwidth
within 5 km coverage [32]. The transmitted BLE broadcasting
packet is 31 bytes including the RSSI and timestamp [33].
Assuming the packet is transmitted 4 times per second, and
the walking speed is 1 m per second, the contact duration is 9
seconds within the distance range 4.5 m (i.e., go close and then
away), and 8928 bits are stored temporarily and then uploaded
to the edge for one contact in the contact duration. The time
required to upload the 8928 bits data is in milliseconds (0.12
milliseconds), which is negligible to a smart mobile phone that

is connected to 4G communication networks. The notification
from the DCT solution and institution can be realized by the
mobile phone APP. The communication between the cloud and
the edge is only required for the initial model deployment and
the model update.

In this paper, we focus on the development of the distance
estimation algorithm deployed on the edge, and use the
collected data to train and test the algorithm.

IV. A DISTANCE ESTIMATION ALGORITHM INTEGRATED
BY LEARNERS

In DISTERNING, we combine clustering with supervised
information and classification algorithms and use the data
collected through experiments in the real environment to train
and test an integrated learner algorithm. The data collected in
the experiment is divided into two parts: a training set for
training the algorithm of distance estimation and a testing
set for testing our algorithm. After testing, Gaussian noise
is added to the original data of the testing set to simulate
the effect of other negative environmental factors to verify
the robustness of our algorithm to verify the robustness of
algorithm. Considering the overall operating equipment of the



algorithm, the trained machine learning algorithm model is
deployed on the mobile phone to examine the actual running
time recorded in Section VI-B.

As discussed in Section II, for the environmental factors,
the body shielding and multi-path effect significantly influence
the Bluetooth signal. The result of [22] shows that multi-path
effect has a positive effect on reducing the signal attenuation
caused by shielding and thus increases distance detection
accuracy. Therefore, multi-path effect is not considered as a
negative environmental factor and hence, is not considered
in the algorithm. This algorithm mainly considers the signal
absorption caused by body shielding. For other minor factors
such as shielding caused by pass-by between contacts and
the small difference on RSSI for different BLE chips with
the same setting power since the transmitting power might
not be exactly the same, Gaussian noise is added to the
testing data to simulate these random factors [34][35]. For
larger objects between contacts (such as walls), these objects
can block the droplets from contacts and reduce the risk of
infection. The significant shielding effect of the wall on RSSI
will make a larger distance estimation by algorithm resulting in
a low infection risk assessment, which is aligned with the real
situation. Meanwhile, for other smaller objects on the signal
propagation path, their influence is simulated by adding noise
to the data set.

A. Raw Data Collection

For the contact tracing algorithm based on the Bluetooth
signal strength, the most important environmental factor is the
human body’s shielding on the Bluetooth signal strength when
the mobile phone is placed in different positions relative to
the human body, as shown in Table II. During the collection
of the original data, the human body’s shielding effect on
the Bluetooth signal is summarized in the following three
conditions:

e There is no human body shielding between the two
mobile phones, which is marked as 'no shielding’.

o One of the two mobile phones is on one side of the human
body, and the other mobile phone is on the other side.
This condition is marked as ’half shielding.

¢ One of the two mobile phones is located on the front (or
back) of the human body, and the other mobile phone
is located on back (or front). This is marked as ’full
shielding’.

TABLE I
THE CATEGORIES OF BODY SHIELDING

Shielding Phone 1 Phone 2 Body between
category position position two phones
No shielding — — No
Half shielding  Left/Right side  Right/Left side Yes
Full shielding Front/Back Back/Front Yes

Since two people need to use two mobile phones, the
three possible body shielding categories for each person can
be combined to form six shielding categories (combinations)
shown in Fig. 3.

¢ No shielding-no shielding (e.g., two phones are held by

two persons’ hands separately).

o No shielding-half shielding (e.g., one phone is in hand,

and the other one is placed in the pocket).

e No shielding-full shielding (e.g., one phone is in hand,

the other one is placed in the backpack).

o Half occluded-half occluded (e.g., two phones are put in

two persons’ pockets separately).

« Half shielding-full shielding (e.g., one phone is put in the

pocket, the other one is put in the backpack).

o Full shielding-full shielding (e.g., two phones are placed

in two persons’ backpacks separately).

In current studies, maintaining a social distance of more
than 2 m is considered as the effective distance to reduce the
infection risk of COVID-19 [36]. For this reason, the distance
estimation range of the algorithm should be greater than 2 m.
In free space, the effective transmission distance of BLE is
usually 10 m, and the signal strength decays logarithmically
with the distance. In the experiment, when the BLE transmitter
is set to the maximum power, RSSI changes significantly
with the distance in the range of less than 4.5 m. However,
when the distance range is greater than 4.5 m, the relationship
between RSSI and distance falls into the stable part of the
logarithmic curve, hence, there is no obvious change in RSSI
for different distances. Therefore, we choose the distance
range at which the Bluetooth signal strength attenuates the
fastest to satisfy the social distance requirement, that is, O
to 4.5 m as the distance range of the design. Within this
distance range, starting from 0 m, one experimenter stands
still while the other moves at 0.5 m intervals in the direction
shown in Fig. 2. Two people use two mobile phones to
collect the Bluetooth signal strength and phone timestamps
when the Bluetooth broadcast packet is received under the
six shielding combinations mentioned above at each distance.
For the RSSI collected on two mobile phones in each body
shielding category at each distance, a total of 50 pairs of RSSI
data are collected. In order to consider the fluctuation of RSSI
in reality and get as much data as possible for testing and
training, each RSSI recorded by one mobile phone is combined
with each RSSI recorded by another mobile phone to form a
new pair of data. Therefore, the total number of data in each
body shielding category at each distance is therefore expanded
into 2500 pairs.

B. Generation of Training Set and Testing Set

When the electromagnetic wave encounters an obstacle on
the propagation path, a fan-shaped shadow area is formed
behind the obstacle, in which the signal strength is attenuated.
‘When the obstruction is close to the receiver or the transmitter,
the signal strength received by the receiver is different. There-
fore, we use the RSSI difference collected by the two mobile
phones to characterize the influence caused by the position
of the obstruction. This difference is utilized as an input
to the machine learning algorithm to convert RSSI features
to distance features. In order to show the overall impact of
shielding and distance on RSSI, the average value of each
pair of RSSI data is used to characterize this impact as another
nput.



Moving direction

w w

I | | | |

I 1 1 1 1
Om 1m 2m

Fig. 2. Distance arrangement of data collection.

AAEAR

(a) no shielding-no (b) no shielding-half (c) no shielding-full (d) half

shielding shielding shielding

Fig. 3. The demonstration of different body shielding categories.

The absolute difference and mean value of each pair of RSSI
data are calculated as the training and testing data. For each
body shielding category at each distance, 2500 pairs of new
data containing these two features are generated. Meanwhile,
each pair of data also includes the distance and the body
shielding category label when it is measured. In these newly
generated data, 2000 pairs are used as the training set, and
500 pairs are used as the testing set.

C. Design of DISTERNING Algorithm Architecture

The design of DISTERNING is illustrated as four algo-
rithm components in Fig. 4, including input generation, RSSI
data classification, conversion from RSSI features to distance
features and final distance result selection. In the above
four components, the machine learning algorithms and data
processing methods are applied. The input of the algorithm
is the RSSI difference and the mean value. Meanwhile, the
output is the estimated average contact distance and minimum
contact distance during the contact time between the patient
and the contacts. The different components of DISTERNING
adopt a cascading structure consisting of a classifier, distance
regression, bias correction, a distance data filter, and distance
feature selection. Since the applied machine learning algorithm
is relatively complex as it involves multiple levels, this brings
difficulties to the training of the machine learning algorithm as
an entirety. Therefore, in the process of training and testing,
each component is trained and tested separately. After each
component is tested, they are integrated together to construct
the entire algorithm. Finally, the test set is inputted into the
algorithm to test its overall performance in terms of latency,
distance estimation accuracy, and stability.

When the trained machine learning algorithm is applied, the
user’s mobile phone as a data collector only needs to collect
the RSSI from the received Bluetooth broadcast packets,
the corresponding Bluetooth name or assigned ID and the
mobile phone timestamp. This process does not require reading

ftetit

shielding- (e) half shielding- (f) full shielding-full
half shielding full shielding shielding

other information on the mobile phone, which is beneficial
for privacy-preserving. When contact tracing is required, the
collected RSSI data, Bluetooth name or assigned ID and the
timestamp are uploaded to edge, and the inputs of DISTERN-
ING are generated in the same way as the training/testing set
generation. Finally, some distance features of the correspond-
ing Bluetooth ID are deduced from the inputs.

V. DISTERING IMPLEMENTATION

This section discusses the concrete function design and
implementation of each block. As shown in Fig. 4, machine
learning methods such as learning vector quantization (LVQ),
regression, and DFF neural networks are applied to realize the
component functions of the algorithm. In addition, other data
processing methods like filtering are introduced to improve the
distance estimation accuracy. The performance of each block
is reflected on its output to the testing set as the input, and
the overall performance is reflected on the final output of the
algorithm.

When the algorithm is deployed in practice, the collected
RSSIs from receivers and transmitters in the contact duration
of two contacts are divided into several raw data pairs. Each
raw data pair contains one RSSI from the receiver and one
RSSI from the transmitter. The two RSSIs have the closest
timestamp in the time scale, and their absolute difference and
mean are calculated as one pair of the input. Assuming the
BLE broadcasts at the maximum rate i.e., 4 times per second,
the time interval between two broadcasting packets is 0.25
seconds. The timestamp provided by the mobile phone has a
millisecond precision [37], which can meet the time matching
requirement. The input set consists of all generated input pairs.
Note that the input pairs have the same form as the pairs in
the training set and the testing set.
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A. Classifier

The classifier shown in Block 1 of Fig. 4 is used to classify
the input set into 54 categories corresponding to different
body shielding and ground truth distance. Then classifier
outputs the RSSI mean with the classification label to the
next block. As a widely used machine learning algorithm for
multiple classification, LVQ has the advantage of powerful
classification ability and relative low requirements of storage
space and calculation especially when it is applied to classify
multi-dimensional data. Because of LVQ’s characteristics of
high efficiency and low computing cost, it is applied to realize
the classification function.

The distance label in outputs will not be used in the next
stage, but it will be used in the bias correction stage and
can improve the performance of LVQ for the body shielding
classification compared to classifying the input data into

6 body shielding categories directly (i.e., single prototype
vector for each shielding category). This is because instead of
using single prototype vector for each shielding classifications,
multiple prototype vectors are applied for each body shielding
category. Therefore, there are 54 categories corresponding to
all combinations of 6 shielding and 9 distance range (i.e.,
54 categories). After training, the input data is classified
according to the prototype vector with the smallest Euclidean
distance as shown in Equation (1.1)-(1.5):

g;i € G={0.5m,--- ,4.5m}, (1.1

thH:{hl,'“,hG}, (1.2)

ei,gj,hk = Hdz - ng,hk ) 1= 17 N, (13)
G H

€imin = minU U {6i,g,~,hk} , (1.4)

9i hk



di,gizgj,hi:hk <~ Py; hiy Ci,gjhi, = Ciymin, (1.5)

where d; is the two-dimensional input data vector (represented
by bold and operate as column vectors) consisting of RSSI
difference and RSSI average. py, n; is the two-dimensional
prototype vector including the shielding category and the
classified distance label. g; and h; represent the ground truth
distance and shielding category label while g; and h; are the
labels of the input data vector d,. n is the size of the input
data. G and H are the sets of classified distance and shielding
category where h; to hg are the shielding categories. ey;
and e; iy, are the Buclidean distance and minimum Euclidean
distance between the input vector and prototype vector, and
Equation (1.5) represents the category map from prototype
vector to data vector with classified label.

The performance of the LVQ learner is reflected by ROC
(Receiver Operating Characteristic) and AUC (Area Under
the Curve) of the learner. Compared with the overall error
rate of the learner, the classification performance of each
shielding category is more worthy of consideration. ROC,
as a common performance metric of two-class learners, can
reflect the generalization ability of the learner for classification
problems. Therefore, this concept is applied to our design to
indicate the classification performance of the LVQ learner for
each shielding class. Since the classification of body shielding
categories is a multi-classification problem, in order to enable
ROC to be applied to the performance measurement for each
shielding classification, we rearrange all the RSSI data in
the testing set according to the Euclidean distance from each
prototype vector from small to large (i.e., in the order from
the most likely to the least likely to be this category) as shown
in Equation (1.6):

D= {d17 tee 7dn}7 €1,min << €n,min- (16)

If the classification result of an input data vector in testing
set is consistent with its shielding label, the vector is con-
sidered to be true positive sample; otherwise, the vector is
considered to be a false positive sample as in Equation (1.7)-
(1.10):

Ntp

TP = U {diﬂi:git Nhi=h;, } s

i=1

(1.7)

nfp

PP = U {digi2g:, Uhithi, } 5

=1

(1.8)

Nin

TN = | {igimat, omimn, }

i=1

(1.9)

MNfn

FN = U {di7gi¢9;tmhi¢h;t}’
i=1

(1.10)

where T'P and F'P are the true and false positive input data
sets, and T'N and F'N are the true and false negative sets.
gi, and h;, are the ground truth distance and truth shielding
categories while g; and hj, are the complement of g;, and
h;, with respect to G and H. nyy, nyp, Ny and ny, are the
size of sets.

In order to verify the performance improvement of multiple
prototype vectors compared to single prototype vector, the
AUC:s of two types of learners are shown in Table III, where
the six body shielding categories are marked as A-F. The two
axes of the ROC curve are calculated according to Equation
(1.11-1.12):

TP
= 1.11
TPR TP+ FN’ (11
FP
FPR= —— 1.12
R TN + FP’ (1-12)

where TPR and F'PR are the true positive rate and false
positive rate.

For most body shielding categories, the AUCs of the two
learners are similar. However, for the shielding categories D
and E, there is relatively significant difference on AUC for
two types of learner. The comparison of the ROC curves
for two LVQ learners in terms of shielding class D and E
is depicted in Fig. 5. Furthermore, the average AUC of the
learner with multiple prototype vector for different shielding
categories is greater than the average AUC of the learner with
single prototype vector. The results imply that the distance
label can effectively improve the performance of the classifier
for body shielding classification.

TABLE III
AUC REUSULTS OF TWO LVQ LEARNERS CONTAINING MULTIPLE OR
SINGLE PROTOTYPE VECTORS FOR EACH BODY SHIELDING CATEGORY

Shicldi ‘ AUC-multiple AUC-single
teiding category prototype vector  prototype vector
A 0.8250 0.8185
B 0.7498 0.7929
C 0.8444 0.8815
D 0.9447 0.8793
E 0.7295 0.6622
F 0.8985 0.9094
Average 0.8320 0.8239

B. Distance Regression

The distance regression shown in Block 2 of Fig. 4 converts
RSSI into distance through regression. In this process, the
input is the vector r;; consisting of mean RSSI with the
classified shielding category label of the input data vector as
shown in Equation (2.1)-(2.2):

1
digih; = (1Bia = Ripl, 5 (Ria + Rip). giha),  (2.1)
01 00 1
Tin, = [O 0 0 J di g, n = (i(Ri,A + Ri ), hi),
2.2)
where I%; 4 and R; p are the received RSSI from two mobile
phones.

For the 6 body shielding categories, each shielding category
has a corresponding distance regression equation, which is
selected from three candidate regression equations according
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Fig. 5. ROC comparison of the categories D and E of body shielding with
two types of LVQ learner.

to the maximum correlation coefficient on the training set by
the method of ordinary least squares as in Equation (2.3):

R} = max(R}, R?, R)
R? = max(R?, R?, Ré) , (2.3)
max(R?, R?, R)

ax + b,
2
ax? + bz +c, R%

fhi (‘T) =

where a, b, and ¢ are constants to be determined. fp,(z)
is the regression equation of the shielding category h;, and
R%,Rf,RIQ, are the correlation coefficients of linear, inverse
proportional and polynomial regression equations.

The first dimension of input vector is considered as the
independent variable of the trained regression equation to
convert RSSI to distance as shown in Equation (2.4):

disti,g“hi = fhi([l O] ri,h),

where dist; 4, p, is the regressed distance.

To ensure that the regression equation obtained by training
has high accuracy, Kalman filter is used to eliminate the noise
before training, shown in Algorithm 1. In the filtering process,

(2.4)

the RSSI mean r;,7 = 1,...,n in all pairs of training set
forms the observation matrix O = (ry,...,r,). Its average
value and variance are regarded as the expectation p, and
the variance o2 of the observation matrix normal distribu-
tion N (p,,02). The differences between every two adjacent
RSSIs in observation matrix consist of the measure matrix
M = (ro—m1,...,7n—7n—1). The average value and variance
of M are used as the expectation /i, and variance o2, of the
measure matrix normal distribution N (fi,,, 02,). The variance
af,i of these two distributions is considered as the error of
the corresponding quantity. The expectations i, and errors
of their distributions are used to derive the prediction matrix
distribution N (pp,, 07,) which is formed by predicted RSSIs
denoted by P = (Predicty, ..., Predicty,). The variance of
the prediction matrix is initialized to 0 and iterated under
the influence of the observation matrix and the measurement
matrix. The state matrix S = (States,...,State,—1) is
composed of intermediate variables generated in the filtering
process, which is used to connect the observation matrix, the
measurement matrix and the prediction matrix as shown in

Equation (2.5)-(2.6)
N(H’Siﬂ U?,;) = N(,Upm sz,) + N(,uma U?n)

(2.5)
= N(/’Lpi—l + ,um’ Ugi,1 + Ufn)a
N(pp,,05,) = N(ps, 508, ,) X N(po, 07)
Pi> Y p; Si—17 7851 0sr~ o
_ N(o§i71u0+03usi71 a?iilag ) (2.6)
o2 o2 o i3

After the Kalman filter, the prediction matrix (i.e., the filtered
RSSIs) is outputted as in Fig. 6, and these filtered RSSIs are
regressed with their ground truth distance labels.

Algorithm 1 Kalman filter for RSSI
1: Initialization: O, M, P, S;

2: Predict; = rq

L2

3: qm =0
4: 1 =2

5: repeat

6: State;_y = Predict;_1 +1r; —ri_1;

7: 31‘,—1 = 012:7:_1 + o2,; based on Equation (2.7)

P 2

. el — . %0 . Si—1 .

8:  Predict; = State;_1 X e +7; X e
2 gzi—lxgi ’ : ’

9 0, = Ugi_1+gg; based on Equation (2.8)

10: i+=1;

11: until ¢ > n
Output: predict matrix P

C. Bias Correction

In an ideal situation, there is no classification error in the
LVQ classifier and the regressed distance fluctuate around its
ground truth distance label (i.e., the average value is very close
to the ground truth distance label). However, classifier and
regression are not perfect. The errors caused by classification,
regression, and environmental factors in real world make the
average regressed distance have a certain bias compared with
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its ground truth distance label. The bias changes with the
distance range and the body shielding categories so that a filter
could not adapt to this varied bias. Therefore, bias correction
is introduced as a dynamic mechanism to reduce this bias.

The workflow of the bias correction shown in Block 3 of
Fig. 4 is demonstrated in Fig. 7. The bias correction takes
the input vector ¢; 4, p, consisting of regressed distance of
the input data vector and the distance label as its input. The
regressed distance is adjusted by adding bias which is the
difference between the average regressed distance and the
distance label of data of each category as shown in Equation
(3.1)-(3.6):

Cig;,hy, = (distig; nis G5)s (3.1)
Njk
ngvhk = U {Civgjvhk}’ (3.2)

i=1

Classified and regressed distance data of
each shielding and distance class input

Mean for data in
each shielding and distance class

True
Mean_distance = distance label?

| False

Bias error calculation:
bias = distance_label - mean distance

v

Error correction:
distance data + bias

v

Corrected distance output

Distance output

Fig. 7. Workflow of the bias correction.

1
1 .
bggvhk = n_]k [_1 1] ngvhk : ) (3.3)
njkxl
di3t17g1,h1 diStnn,gl,hl bgl,h1
diStl’ggﬁa T 0 bgg,hs
1 0
M = B , (3.5)
0O 0 1
1 ... 1
a17917h1 anllvgl7h1
a1,99,he bgg,he

where C,. 1, is the set of the input vector corresponding to
the classified distance g; and the shielding category hy, and
njk 18 its size. by, p, represents the bias of the category, and
the last matrix in Equation (3.3) is an all-ones matrix with a
size of n;, x 1. B is the bias matrix including the regressed
distance of all categories and the calculated bias with the size
of 54 x (max(size(Cg, p,), - ,512e(Cgy ne)) +1). The size
of regressed distance of each category might be different due
to the different size of the classification for each category, and
the vacancy in each row is occupied by 0. M is the matrix
to add the regressed distance with bias including a unit vector
and all-ones in the last row. A is the corrected distance matrix
involving the corrected distance a; g, p,,-

D. Distance Data Filter

After the bias in the distance data is corrected, other noises
in the distance data still affects the final distance feature
extraction. Therefore, four Butterworth filters including three
low-pass filters and one high-pass filter shown in Block 4 of



Fig. 4 are applied to reduce these noises. An example of a
Butterworth low-pass filter is shown in Equation (4.1):

QN

H(s) = — ,
H S—Q ej [mr(N+421— 1)/2N])
=1

4.1)

where ., H(s), s are the cut-off frequency, system function,
and frequency while N is the order of the filter. Additionally,
the cut-off frequencies of the four used filters are normalized
to unit, and trial-and-error method is implemented on training
set to determine the cut-off frequency of each filter by reducing
the cut-off frequency from unit. In the process of changing cut-
off frequency, the mean and minimum values of the filtered
distance are calculated until the mean and minimum of the
filtered distance have the least difference from the mean and
minimum of the ground truth distance.

In this stage, the input is the corrected regression distance
as shown in Equation (4.2):

9 7Njk

- U U U e

k=1j=11i=1

4.2)

where a(t) is the input sequence consisting of the corrected
distance.

Since the noise frequency mainly affects the accuracy of dis-
tance estimation varies with the distance between the contacts,
the cut-off frequency of the filter is also different. This varied
noise is caused by multiple reasons, such as the fluctuation of
RSSI and the error caused by the processing in former blocks.
Furthermore, the logarithmic relationship between RSSI and
distance also introduces different frequency noise on distance
regression. For the fixed fluctuation on RSSI, the regressed
distance changes gently when the contacts are close due
to the rapidly changing part of the logarithm relationship
between RSSI and distance. The regressed distance changes
significantly when the contacts are far apart due to the stable
part of the logarithm relationship. The significant change in
regressed distance leads to more high-frequency noise with
a higher smallest frequency, whereas the gentle change in
regressed distance leads to more high-frequency noise with
a lower smallest frequency.

Because of the different frequency noise, four situations of
the distance relationship between two contacts are discussed
to choose different cut-off frequencies for the applied filters.
Firstly, when two contacts are relatively close (e.g., 0.5-1.5
m), the distance regression of the algorithm contains more
high-frequency noise with a lower smallest frequency, which
has a major influence on the distance characteristics. Secondly,
when the contacts are at a middle distance (e.g., 1.5-2.5 m),
the smallest frequency of the high-frequency noise having
the main influence on the distance characteristics increases.
Thirdly, with the distance between contacts increasing (e.g.,
2.5-3.5 m), the smallest frequency of the high-frequency noise
in the regressed distance that has the main influence further
increases. Lastly, when the contact persons are far away (e.g.,
3.5-4.5 m), the distance filtered by the low-pass filter cannot
directly extract the required distance features. Therefore, a pair
of filters including a high-pass filter and a low-pass filter are

used to obtain more accurate estimated distance features from
the distance data.

In our proposed algorithm, the three low-pass filters have
three cut-off frequencies marked as low, medium, and high,
respectively. Meanwhile, the high-pass filter uses the same
cut-off frequency with the highest cut-off frequency of the
three low-pass filters. When the distance between contacts are
far away, the average values of the filtered distance through
the low-pass filter with the highest cut-off frequency and
the high-pass filter are added together to perform the overall
frequency distance estimation so that it is large enough to
approximate the large ground truth distance. To calculate the
estimated distance characteristics i.e., mean distance and min-
imum distance, the average values of the distance data filtered
by three low-pass filters, respectively, the sum of the average
distance value filtered by the low-pass filter with the highest
cut-off frequency and the high-pass filter are considered as
four candidates for the mean distance. Five candidates of the
minimum distance are composed of the average values of the
distance data through the three low-pass filters respectively
subtracting the standard deviations, the average value of the
distance data filtered by the low-pass filter with the highest
cut-off frequency, the sum of the average value of the distance
data filtered by the low-pass filter with the same highest cut-off
frequency and the average value of the distance data filtered
by the high-pass filter with the same highest cut-off frequency.
These candidates of the mean and minimum distance are the
outputs of this stage as shown in Equation (4.3)-(4.5):

f € F = {low,middle, high} , 4.3)
F 1 n
Q= U {nza(t) * th7f(t)} U
fEF t=1 @.4)
{ Z % (hLppigh(t) + hHP(t))} )
F 1 n
U — Za * thf )
fEF n t=1
*hppr(t))

Sl

1 1
$n 2 *thf ﬁza

a(t) «hrp hzgh(t)} U

t

2
4.5)

where F is the set of marks indicating the cut-off frequency of
filters. Q and R are the sets of mean distance candidates and
minimum distance candidates. hrp () represents the low-
pass filter with its mark while hy p(t) is the high-pass filter.

1

S
M:

a(t) (hLthqh()+hHP(t))}7

1

E. Distance Feature Selection

The distance feature selection shown in Block 5 of Fig.
4 is used to select one value from the four candidates of
average distance and one value from the five candidates of
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Fig. 8. Loss of the applied DFF neural network for the mean and minimum
distance estimation.

minimum distance as the final estimated average distance
and minimum distance respectively. However, this selection is
established on finding the inherent pattern of these distance
candidates, which might change with the distance between
contacts, so such a pattern is quite complicated to be ana-
lyzed. As an effective data analysis tool, the neural network
can be adopted to construct a structure conforming to any
data change patterns. Therefore, in this algorithm, two Deep
Feed-forward (DFF) neural networks adopting the error Back
Propagation (BP) training algorithm for fitting the data change
patterns of the average distance candidates and the minimum
distance candidates are built to select the estimated average
and minimum distance from the distance candidates. The input
set X = Q U R consists of all the candidates of average
distance and minimum distance. Since the average distance
candidates and the minimum distance candidates have two
common elements, there are a total of seven inputs imported
into the two neural networks. The two neural networks output
the probabilities corresponding to the four average distance

candidates and the probabilities corresponding to the five
minimum distance candidates. Then, the value with the largest
probability from the four average distance candidates and the
value with the largest probability from the five minimum
distance candidates are selected as the estimated average and
minimum distance, respectively as shown in Equation (5.1)-
(5.2):

Q
mean = ¢;, P(g;) = max U {P(q)},
qeQ

5.1

R
minimum = r;, P(r;) = max U {P(r)},
reR

5.2)

where ¢; and r; are the estimated average and minimum
distance with the largest probability P(g;) and P(r;).

The DFF neural network structure used for the judgment of
the average distance and the minimum distance is composed
of 4 layers of neurons, including an input layer, two hidden
layers and an output layer (Table IV). The neurons in each
layer adopt a fully connected structure. The tanh function is
used as the activation function of the hidden layer since the
tanh function has high sensitivity. The activation function of
the output layer is softmax which can output a probability
value in the range between 0 and 1.

TABLE IV
THE STRUCTURE OF THE DFF NEURAL NETWORKS

S Mean Minimum
tructure distance network  distance network
Input layer nodes 7 7
Hidden layer 1 nodes 28 35
Hidden layer 2 nodes 20 20
Output layer nodes 4 5
Hidden layer activation tanh tanh
Output layer activation softmax softmax

Since the input of the neural network depends on the output
of the previous stage, after the previous stage is trained,
the training set is inputted to the previous stage, and the
corresponding output is obtained as the training set of this
stage. In the training process, the output labels of the training
set for judging the average distance and the minimum distance
are composed of 4 and 5 bits one-hot codes, respectively. Each
bit corresponds to the candidates of the average distance and
the minimum distance. In each set of one-hot codes, the mean
and minimum distance value marked as 1 is the candidate with
the least difference from the mean and minimum ground truth
distance among the distance candidates.

The training result of the neural network for mean distance
estimation is reflected by the loss function on the testing set
according to Equation (5.3):

M
1 T
Loss = i Z(yz -pi)yi —pi)",

=1

(5.3)

where y; is the one-hot code vector corresponding to the
distance candidate with the least difference from the ground
truth distance with the size of 1 x ¢ where c is the number of
distance candidate. p; is the selection probability matrix with



size 1 X ¢ for each candidate outputted by the neural network.
M is the number of all combinations for each body shielding
category at each distance, and the superscript T means the
transpose of the matrix. By calculating the loss function on
the training set and the testing set shown in Fig. 8, the neural
network can converge to a low loss without obvious overfitting.
It means that the neural network can select the final values of
average and minimum distance from the distance candidates
precisely.

VI. RESULTS AND DISCUSSION
A. Robustness Testing

In practice, other possible negative environmental factors
other than human body shielding. As discussed before, some
researchers have verified the possibility of modeling obstacles
by Gaussian noise. Meanwhile, the transmitting power of BLE
chips can be set to the same while the actual power might not
be exactly identical. The small difference in RSSI as a result
of the inconsistent power is also simulated by the Gaussian
noise. Therefore, Gaussian noise is added to the collected raw
data of the testing set. Then, the raw data is used to generate
the input of the DISTERNING algorithm to test the robustness
of the algorithm. Additionally, some existing researches have
proposed solutions for the RSSI difference of BLE chips [25].

As shown in Fig. 9, standard normal noise with different
truncating ranges is added to the original data and inputted
into the input data generation module of the DISTERNING
algorithm. The absolute differences between the estimated
average distance and the average ground truth distance and
between the estimated minimum distance and the minimum
ground truth distance are calculated as errors. The errors for
various shielding categories and different distance ranges are
plotted as a probability density distribution function (PDF).
We apply Truncated Normal Distribution (TND) with different
bounds, such as [—3, 3] means the truncating range for TND is
from -3 dBm to 3 dBm, and the range [—0, 0] means there is
no noise added. Overall, our machine learning-based algorithm
shows strong robustness to negative environmental factors.
When the noise truncating range increases, the errors of the
estimated mean distance and minimum distance are almost
kept within 1 m, and for most cases, the errors are in the
range of 0-0.5 m. Since above 1 meter is considered as a safe
social distance according to the particle image of droplets from
contacts at different distances [36][38], the algorithm can pro-
vide an accuracy that can meet the application requirements.
Meanwhile, the noise immunity of the algorithm also proves
the feasibility of adding noise to distort data to enhance privacy
protection.

B. Execution Time and Calculation Complexity

The calculation complexity of the algorithm (i.e., the num-
ber of calculations) is determined by the number of additions
and subtractions and the number of cycles that the algorithm
performs for the distance estimation. The calculation com-
plexity C'(n) of the algorithm is represented by Big-O time
complexity notation [39] as Equation (6.1):

C(n) = 405n + 2097, (6.1)
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Fig. 9. Probability density distribution function of estimated distance error
with truncated standard normal noise.

which includes 216n + 1039 additions or subtractions, 135n +
1054 multiplications or divisions and 54n + 4 square roots.
Note that we have assumed that each addition, multiplication
and square root operations have the same complexity for
simplifying the analysis [40].

To test the execution time of the machine learning algorithm
on the mobile device, we run the algorithm on a mobile phone
(HUAWEI Honor V10) by a phone-based python interpreter
QPython to fit the running time with the calculation complex-
ity. The result shown in Fig. 10 illustrates that the running time
of the proposed algorithm on the mobile phone is positively
proportional to the calculation complexity. With the calculation
complexity increasing, the execution time of our machine
learning algorithm on the mobile phone might increase to
ten seconds which is unacceptable for some quick responsive
demands. Therefore, it is recommended to deploy the machine
learning algorithm in edge and only use the mobile phone as
a data collection device to achieve the low latency and high
execution speed (Section III).
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C. Distance Estimation Error and Data Abundance

In addition to noise, the abundance of data amount for
each body shielding category at each distance also affects the
accuracy of the estimated distance. This relationship is shown
in Fig. 11 through the fitting curve of the errors and calculation
complexity, as higher data abundance can result in higher
calculation complexity. Since the calculation complexity is
related to the number of the distance ranges where the input
data is collected and the number of body shielding categories
included at each distance, it is possible that the total data
amount of the two sets of data is the same, but the data
abundance is different. For example, one group of input data
contains the data collected at three distances, each distance
includes three shielding categories, and the amount of data
for each shielding category is 60. Meanwhile, the other group
of input data contains the data collected at two distances, each
distance includes three shielding categories, and the amount of
data for each shielding category is 90. These two sets have the
same total amount of data, but the data abundance is different
i.e., the first group has 60 data sets for each shielding category
at each distance, while the other group has 90 data sets for
each shielding category at each distance.

In order to characterize the influence of data abundance
on errors, we consider all possible distance ranges and body
shielding categories. We assume that all body shielding cate-
gories are included at each distance, and the data amount for
each shielding category at each distance is fixed. Firstly, we
fix the lower limit of the distance range at 0 m and decrease
the upper limit from 4.5 m at an interval of 0.5 m. When the
upper limit is changed, we calculate the error (the difference
between the estimated distance and the ground truth distance)
and calculation complexity. Therefore, for one lower limit,
there are several errors and complexities corresponding to
different upper limits. Then, we increase the lower limit by 0.5
m and repeat the same process until the lower limit gets to the
largest distance i.e., 4.5 m, so that there are several errors and
complexities for a fixed data amount. Finally, we increase the
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Fig. 11. Fitting for error and error variance with calculation complexity.

data amount and repeat the same process mentioned above
to calculate the average error, error variance, and average
calculation complexity for each data amount. The average error
represents the accuracy of the algorithm, and the error variance
shows the stability of the algorithm for different distance
ranges and shielding categories. The relationship between the
average error and the average calculation complexity is shown
in Fig. 11a. Meanwhile, the variance of the error is fitted with
the average calculation complexity to show the stability of
the algorithm depicted in Fig. 11b. As the data abundance
gradually increases (i.e., the amount of data for each distance
and shielding category increases from 50 to 500 with the
interval of 50), the estimated distance error and error variance
gradually decrease. It indicates that the accuracy and stability
of the estimated distance converge with the data abundance.

D. Quadrant of Latency, Accuracy and Stability

Since the running time is positively correlated with the
calculation complexity, and the data abundance affecting the
accuracy of the algorithm is also related to the calculation



complexity, the user might need to weigh the estimated
distance accuracy of the algorithm, the stability and delay of
the estimated distance to figure out a balance in actual use.
Therefore, the estimated mean and minimum distance error
(accuracy), as well as distance error variance (stability) and
calculation complexity (latency) are divided into three levels:
low, middle and high (labeled as L, M and H) as shown in
Fig. 12. The three levels corresponding to the three parameters
respectively represent low, middle, high accuracy, low, middle,
high stability, and low, middle and high latency.

When the amount of data for each shielding category at each
distance is increased gradually, the maximum and minimum
errors and the error variance are obtained. The boundary values
of the three levels are calculated by adding the minimum error,
minimum error variance and minimum calculation complexity
by one-third of the difference between the maximum and
minimum values. Since these boundary values are not fixed,
users can define the boundaries of these levels by themselves
when they use the algorithm. Here we just show Fig. 12 as a
reference.

E. Data Expansion for Lower Error

Since the error of the distance estimated by the algorithm
is negatively correlated with the data abundance, a higher
data abundance is required to obtain a higher precision of the
estimated distance. However, in real environments, the time for
two contacts to meet might be short, which makes it possible
to obtain an unsatisfactory estimated distance by directly using
the machine learning algorithm. Due to the robustness of the
algorithm for truncating Gaussian noise, when the amount of
data is insufficient, adding Gaussian noise to the collected
data to generate new data can expand the amount of data and
hence to improve the accuracy of the estimated distance. In
our experiments, the original data volume is 25, 100, 200 and
300 for each shielding category and distance in the testing set.
When new data is generated by adding truncating standard
normal noise in the range of [—3,3], the estimated average
distance and minimum distance, average distance variance
and minimum distance variance tend to converge as shown
in Fig. 13. In actual use, if the data abundance is low, the data
can be expanded by adding noise until the average distance
and minimum distance estimated by the algorithm no longer
change significantly.

VII. CHALLENGES AND COUNTERMEASURES
A. Battery Power Consumption and Time Cost

When using our proposed DISTERNING algorithm, the
mobile phones BLE needs to be set in the state of scanning and
broadcasting. Although there is no need to establish a link and
the BLE greatly optimizes its power consumption, it still drains
the battery. However, the power consumption of the hardware
can be reduced by changing the broadcasting and scanning
frequency in different situations (e.g., reducing the frequency
of scanning and broadcasting when the surrounding devices
are not scanned). When the machine learning algorithm is
performed on a mobile phone, the calculation process also
reduces the battery life. Therefore, distributing data collection

and data processing to mobile phone and edge respectively
can effectively improve the battery life of mobile phones. The
calculation can be done elsewhere such as mobile edge, while
the mobile phone is only utilized to collect RSSI data. When
an exposure notation is received, the mobile phone uploads
the collected data to the edge for distance estimation.

In addition, the machine learning algorithm takes time to
be run on the mobile phone. When the data is large, the
calculation might take a long time. Therefore, for contact
tracing that has some constraints on time, it is recommended
to apply the division strategy to data collection and data
processing. This can be solved by edge/cloud deployment (see
Section III).

B. Security and Privacy

Another major challenge is the information transmission and
information storage between different organizations in DIS-
TERNING deployment scheme. The information (including
Bluetooth signal information and estimated distance informa-
tion) and its transmission might introduce some privacy issues.
Although encrypting the users’ ID and distorting transmitted
data by adding noise are used in this paper to solve this
problem, further research is needed for the data protection
between users and edge devices. Additionally, the noise added
introduces some errors to the algorithm thus a trade-off be-
tween accuracy and privacy security is required. The research
also serves as a foundation for distributed DCT solutions
such as BeepTrace [41][42][43], which provides a highly
secured and privacy-preserving solution through blockchain
technology for data sharing.

C. Data Storage Capacity

When the strategy of separating the data collection terminal
from the data storage terminal is adopted, as the number of
users increases, more data needs to be stored temporarily
on the edge. Moreover, COVID-19 has a certain incubation
period, so the Bluetooth signal data collected by mobile
phones of contacts should be stored in the mobile phone for a
period of time. During this period, the mobile phone might
continue receiving new data, which requires the phone to
have enough reserved storage space for new data. If both data
collection and data processing are completed by mobile phone,
except for Bluetooth signal information, the mobile phone also
needs to store the estimated distance and algorithm. This might
occupy a large amount of storage space on the mobile phone.

Therefore, as mentioned in Section III, adopting the strategy
of separating data collection and processing would signifi-
cantly reduce the storage usage of mobile phones. However, a
more efficient data storage strategy is required for both edge
and mobile phones to temporarily store Bluetooth signal data.

D. Deployment Scope of BLE

As a new generation of Bluetooth technology, BLE has been
widely deployed on mobile phones by major manufacturers in
the sector of mobile communication, but a small number of old
phones might not support BLE. This problem might trouble
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Fig. 12. Quadrant diagram for mean error, mean error variance, minimum error, minimum error variance.

the elderly and minors since they might be less concerned
about the update of mobile phones.

However, our solution can not only use the BLE on the
mobile phone for data collection but also fit other more gen-
eral communication modules with broadcasting and scanning
functions on different mobile phones. Contact tracing based
on these communication modules (e.g., WiFi) can be trained
using the same architecture of the machine learning algorithm
proposed in DISTERNING to generate corresponding appli-
cations, which provides a solution for the scope challenge.
In addition, other hardware or wearable devices with short-
distance communication functions can also be developed as
front-end data collection devices.

VIII. CONCLUSION

In this paper, DISTERNING - a contact distance estimation
algorithm based on machine learning and Bluetooth low en-
ergy (BLE) is proposed to solve the infection risk assessment
problem of COVID-19 digital contact tracing, and a scheme
based on edge computing and cloud training is designed for
the deployment of the algorithm. By training the distance
estimation model in the cloud and deploying on edge, the
scheme can provide stronger computational power than mobile
device deployment and lower transmitting latency than cloud
deployment. The edge server only computes the estimated
distance using encrypted and distorted data transmitted from

users, and there is no user data storage on the edge so that
privacy security is improved. Our DISTERNING algorithm
can extract distance features from RSSI data to calculate the
contacting distance value between two contacts. Meanwhile,
our algorithm considers the shielding on RSSI caused by the
human body when the mobile phone is placed in different
positions of the human body in the real situation. Furthermore,
other potential negative environmental factors in reality are
simulated by adding noise to the original data. After a series of
machine learning algorithms and data processing methods such
as filtering, the algorithm finally outputs the estimated average
distance and minimum distance between contacts. Then the
two values are transmitted together with the contact time
recorded by the mobile phone to the hospital or other medical
professional institutions for contact infection risk assessment.
The experimental result of the estimated distance shows that
when the input data set contains shielding and noise, the error
of the estimated distance for most cases could still be kept
within 1 m. In the case of a small amount of input data, new
data can be generated by adding noise to improve the accuracy
of the estimated distance.

The proposed algorithm provides a low-cost and portable
approach to distance estimation between contacts using Blue-
tooth. Since the hardware to underpin our solution is universal
smartphones, and the Bluetooth RSSI is easy to be obtained,
the applied scope of our proposed algorithm is not only
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the contact tracing of COVID-19 but also other infectious
diseases to serve for the infection risk assessment of contacts.
Furthermore, for other distance estimation tasks such as labor
intensity estimation and population density evaluation, the
proposed algorithm DISTERNING can also be considered as
a cost-effective tool.

The main challenges to the deployment of the algorithm are
the power consumption of the hardware BLE it relies on, the
encryption and data distortion method for privacy protection
in data transmission and storage, the data storage capacity,
and the deployment scope of BLE. In future work, we plan to
solve the problems we face and further optimize our current
design. The DISTERNING algorithm might be developed into
a new application or combined with other existing solutions
of contact tracing for COVID-19 and beyond.
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