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Abstract

In this paper, we consider a scenario where an unmanned aerial vehicle (UAV) collects data from

a set of sensors on a straight line. The UAV can either cruise or hover while communicating with the

sensors. The objective is to minimize the UAV’s total flight time from a starting point to a destination

while allowing each sensor to successfully upload a certain amount of data using a given amount of

energy. The whole trajectory is divided into non-overlapping data collection intervals, in each of which

one sensor is served by the UAV. The data collection intervals, the UAV’s speed and the sensors’

transmit powers are jointly optimized. The formulated flight time minimization problem is difficult to

solve. We first show that when only one sensor is present, the sensor’s transmit power follows a water-

filling policy and the UAV’s speed can be found efficiently by bisection search. Then, we show that

for the general case with multiple sensors, the flight time minimization problem can be equivalently

reformulated as a dynamic programming (DP) problem. The subproblem involved in each stage of the

DP reduces to handle the case with only one sensor node. Numerical results present insightful behaviors

of the UAV and the sensors. Specifically, it is observed that the UAV’s optimal speed is proportional

to the given energy of the sensors and the inter-sensor distance, but inversely proportional to the data

upload requirement.
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I. INTRODUCTION

Recently, wireless communication with unmanned aerial vehicles (UAVs) [1] has been consid-

ered as a promising technology to expand network coverage and enhance system throughput, by

leveraging the UAVs’ high mobility [2] and line-of-sight (LOS) dominated air-ground channels

[3]. One of the key applications is wide-area data collection in wireless sensor networks [4].

Conventionally, each sensor node delivers their monitored data to a fusion center via multi-hop

transmissions. Hence, a sensor node requires to not only transmit its own data, but also relay the

others’. As a consequence, the sensors’ battery may drain quickly and the multi-hop network

connection may be lost. By using the UAVs as mobile fusion centers, every sensor node can

directly send observed data to a UAV. In addition, the LOS channel condition results in higher data

rate for ground-to-air transmissions compared with ground-to-ground transmissions. However,

as UAVs are energy constrained due to the limited on-board battery, it is paramount to shorten

the flight time needed for a data collection mission.

Different from the conventional communication techniques, there is a trajectory optimiza-

tion issue for UAV-aided wireless communications. To improve network connectivity, UAVs’

deployment and movement were optimized to track the network topology in [5]. In [6], offline

path planning of UAVs was addressed for collision avoidance and fuel efficiency. Joint UAV

deployment and trajectory optimization problem was solved in [7] with a quantization theory

approach, and joint trajectory and communication power control for multiple UAVs was studied

in [8]. In addition, UAVs are widely used as mobile relays. Reference [9] studied the throughput

maximization problem for a UAV relay and showed that the uplink power of users should follow

a “staircase” water filling structure. In [10], joint optimization of multi-UAV beamforming and

relay positions for throughput maximization was studied based on stochastic optimization tech-

niques. A round trip “load-carry-and-deliver” protocol was tested and evaluated by experiments in

[11]. Besides serving as relays, UAVs can also be used as mobile base stations (BSs) for emergent

communications. In [12] and [13], BS placement was optimized in the two-dimensional (2D)

space and three-dimensional (3D) space, respectively, to minimize the required number of mobile

BSs while maximizing their coverage. The coverage of UAVs as mobile BSs was analytically

studied in [14] considering inter-UAV interference and beamwidth design.

In addition, there has been a growing research interest in applying UAV for data collection and

dissemination in wireless sensor networks. The aerial link characterization based on practical
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protocols and experiments was given in [15]. Reference [16] considered data collection via uplink

transmission, and proposed to mitigate multi-sensor interference by adjusting the UAV heading

and beamforming. Adaptive modulation strategy was adopted in [17] to improve energy efficiency

of sensor nodes while guaranteeing user fairness. To avoid contention due to simultaneous

data transmissions from multiple sensor nodes, a priority-based frame selection scheme was

proposed in [18]. In [19], wake-up and sleep adaptation was applied for sensor nodes and UAV’s

trajectory optimization was jointly considered to minimize the sensors’ energy consumption.

One dimensional information dissemination problem is considered in [20], where the sensors

are served in cyclical TDMA mode, and the service regions for all sensors are optimized.

It is worthwhile to note that most of the existing works mentioned above focus on enhancing

energy efficiency or spectrum efficiency of sensor nodes, but overlook the fact that the limited

energy of UAVs is one of the fundamental bottlenecks in UAV-aided wireless networks. As a

matter of fact, the dominant energy consumption of a UAV lies in the propulsion control system

that accelerates the UAV and maintains its flight height. In [21], a UAV’s energy consumption

was modeled as a function of flight speed and operation conditions such as climbing, hovering,

and so on. A UAV trajectory optimization problem with detailed propulsion energy consumption

considering both velocity and acceleration was studied in [22]. However, as the UAV’s energy

consumption model is quite complex, the problems are difficult to be optimally solved. Intuitively,

under a certain constraint on the flight speed, flight time minimization is an alternative for energy

consumption minimization [21]. It arises in practical applications such as mission completion

time minimization [23]. Two dual problems: data delivering maximization under a maximum

flight time constraint, and flight time minimization under given load requirement were solved in

[24] based on optimal transport theory. In [25], drone-based antenna array approach with multiple

UAVs was proposed to significantly reduce the service time for ground users. In cellular networks,

the same problem subject to a link quality constraint between ground base station (GBS) and

UAV was studied in [26]. However, in wireless sensor networks, there is still a lack of research

efforts to consider both the UAV and sensors’ energy consumption as well as the quality of

service of the sensor nodes at the same time.

In this paper, we study a flight time minimization problem for a UAV which collects data from

a set of energy constrained ground sensors. Each of the sensors wants to upload a certain amount

of data to the UAV. The UAV can collect data either during flying or hovering. We assume that

the sensors are located on a line and the UAV’s trajectory is divided into non-overlapping data
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collection intervals, each of which is dedicated to data collection from one sensor node. The

objective is to minimize the total flight time of the UAV from an initial point to a destination by

jointly optimizing the division of intervals, the UAV’s speed, as well as the sensors’ transmission

power. The contributions of this paper are summarized as follows.

• The formulated UAV flight time minimization problem is intrinsically difficult. We first

consider the single-sensor scenario. While the problem is still difficult when only one sensor

node is present, we reveal some insightful structures for the optimal solution. Specifically, we

present an explicit condition on the feasibility of the problem. When the problem is feasible

and if the data collection interval is given, we show that the optimal power allocation of the

sensor follows a water-filling solution and the optimal speed can be efficiently obtained via

bisection search. The data collection interval can be numerically found via a two-dimensional

search.

• The algorithm for solving the single-sensor case can be extended for solving the general

scenario with multiple sensor nodes. In particular, by judiciously exploiting the problem

structure, we show that the flight time minimization problem with multiple sensors can be

equivalently formulated as a dynamic programming (DP) problem. In each stage of the DP,

the optimal data collection interval for one sensor node is searched and the algorithm for

the single-sensor case is used for finding the UAV’s optimal speed and sensor’s transmission

power.

• Numerical results illustrate the optimal behaviors of the UAV and the sensor nodes under

different scenarios. In particular, the UAV’s optimal speed is proportional to the sensors’

energy budgets and the inter-sensor distance, but inversely proportional to the amount of

data to upload. For the randomly distributed sensors with random amount of data and energy,

the average minimum flight time increases with the average amount of data and decreases

with the average amount of available energy.

The rest of the paper is organized as follows. Section II presents the system model and the

problem formulation. Section III studies the single-sensor case. Then, the multi-sensor problem

is solved in Section IV. Simulations are shown in Section V. Finally, Section VI concludes the

paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a scenario where a UAV flies over a set of N sensors for

data collection. The sensors are located on a line, labeled by S1, S2, · · · , SN . The line model

is motivated by the application scenarios such as a sensor network deployed along a highway,

railway or power line. Each sensor n needs to upload Bn information bits and is subject to a

total energy budget En, where n = 1, 2, · · · , N . The UAV flies at a fixed height H from an

initial point S0 to a destination SN+1, and applies time division protocol to sequentially receive

the uplink data from the sensors. Specifically, the whole range [S0, SN+1] is divided into N

non-overlapping intervals [xn, yn], n = 1, 2, · · · , N satisfying S0 ≤ x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤

xN ≤ yN ≤ SN+1. Each sensor node n uploads its data when the UAV flies in the interval

[xn, yn]. If xn = yn, the UAV hovers above the location xn and receives the data from sensor n.

Otherwise, we assume the UAV flies with a constant speed 0 < vn ≤ vmax from xn to yn and

receives the data during flying. As no sensor uploads data in the interval (yn, xn+1), the UAV

flies with the maximum speed vmax in order to minimize the total flight time. In this paper, the

UAV’s acceleration/deceleration process is ignored for analytical tractability.

S1 S2

UAV

x1 y1

H

SN
yN

Uplink

x2 y2
...

S0 SN+1

Fig. 1. Data collection by a UAV from ground sensors along a line.

A. Data Collection Modes

Since the UAV can receive data when either flying or hovering, we respectively consider the

data collection models for the two cases.
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1) Data Collection during Flying: If vn > 0 and xn < yn, the UAV collects data from the

ground node Sn during [xn, yn]. The flight time or the data collection time is tn = (yn−xn)/vn.

As the transmission distance changes during flying, the transmit power and the data rate should

also adapt to the varying path-loss. The LOS ground-to-air channel model between the UAV and

the sensors with pathloss exponent α ≥ 2 is adopted [15]. With this model, the instantaneous

data rate in the transmission interval [xn, yn] is given by

Rn(t) =
1

2
W log2

(

1 +
pn(t)β

((xn + vnt− Sn)2 +H2)
α
2

)

, (1)

for t ∈ [0, tn] where W is the bandwidth, β is the reference signal-to-noise ratio (SNR) at the

reference distance 1 meter, and pn(t) is the transmission power of the nth sensor, which satisfies

the total energy constraint
∫ tn

0

pn(t)dt ≤ En. (2)

In this paper, we ignore the circuit power of the sensors and consider only the dominant

transmission power. The derived results, however, can be easily extended to that with circuit

power. Besides, since each sensor n requires to upload Bn bits when the UAV flies over [xn, yn],

we have the data upload constraint as
∫ tn

0

Rn(t)dt ≥ Bn. (3)

Notice that there is a feasibility issue for data collection, i.e., with a given amount of sensor’s

energy En, is it feasible to upload Bn bits within the time duration tn? Since the best channel

quality is experienced when the UAV is hovering right above the sensor n, the maximum number

of data bits Bn is related to the hovering mode, which is detailed below.

2) Data Collection when Hovering: If vn = 0 and xn = yn, the UAV hovers above location

xn. Since the channel is unchanged, it is preferred for sensor n to upload data with constant

transmit power and data rate. Denote the transmission time when hovering above the location

xn by tn = Th,n(xn). As the transmission link is static, pn(t) should be a constant in this case.

Thus, sensor n’s energy constraint (2) is simplified as

Th,n(xn)pn(t) ≤ En. (4)

To fully utilize sensor n’s energy budget to minimize the flight time, the transmission power

should be maximized, i.e., pn(t) = En/Th,n(xn). Then, the data constraint (3) is simplified as

1

2
Th,n(xn)W log2

(

1 +
βEn

Th,n(xn)((xn − Sn)2 +H2)
α
2

)

≥ Bn. (5)
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The function on the left hand side of (5) has the following property.

Lemma 1. The function f(x) = x log2(1 + a
x
), a > 0, x > 0 is an increasing function, and

f(x) < a
ln 2

.

Proof. See Appendix A.

Based on Lemma 1, the left hand side of (5) is an increasing function of Th,n(xn). Hence,

the minimum Th,n(xn) satisfies (5) with equality, i.e.,

1

2
Th,n(xn)W log2

(

1 +
βEn

Th,n(xn)((xn − Sn)2 +H2)
α
2

)

= Bn. (6)

The above transcendental equation can be effectively solved by either line search or bisection

search. As the UAV experiences the best channel condition when hovering on top of the user

(xn = Sn), the feasibility condition can be derived based on (6) as follows.

Proposition 1. (Feasibility) For each sensor n, the data constraint (3) is feasible if and only if

Bn <
WβEn

2Hα ln 2
. (7)

Proof. See Appendix B.

Hovering mode may be needed when the amount of information bits is large or the amount

of sensor’s energy is small. However, collecting data when hovering may not be the most time

efficient strategy when comparing to collecting data during flying. Therefore, flying and hovering

modes have to be selected depending on the values of Bn and En, which will be incorporated

in our problem formulation.

B. Problem Formulation

In this paper, we aim to minimize the total flight time while guaranteeing that all the sensors’

data are successfully collected. If (7) holds for all n = 1, 2, · · · , N , i.e., the data collection is
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feasible for all the sensors, the problem can be formulated as

min
x,y,v,p(t)

(SN+1 − S0)−
∑N

n=1(yn − xn)

vmax

+
N
∑

n=1

tn (8a)

s.t. (2) and (3), ∀n,

S0 ≤ x1 ≤ y1 ≤ x2 ≤ · · · ≤ yN ≤ SN+1, (8b)

tn =
yn − xn

vn
Ixn 6=yn + Th,n(xn)Ixn=yn , ∀n, (8c)

0 ≤ vn ≤ vmax, ∀n, (8d)

pn(t) ≥ 0, ∀n, t, (8e)

where the optimization variables are the locations x = {x1, x2, · · · , xN},y = {y1, y2, · · · , yN},

the UAV’s speeds v = {v1, v2, · · · , vN}, and the transmission power p(t) = {p1(t), p2(t), · · · , pN(t)}.

The function Ievent is an indicator which equals 1 if the event is true and equals 0 otherwise. It

can be seen that the interval variables x, y for the sensors are coupled in the constraint (8b),

which makes (8) difficult to solve. To tackle the problem, we firstly consider a single-sensor

case, and then show how the solution of the single-sensor case can be extended to the general

multi-sensor case in (8).

Remark 1. We should emphasize here that the proposed solution for the flight time minimization

problem under a line model can be applied to scenarios with sensors in the 2D space. In

particular, the flight time minimization problem for the 2D space model is the same as that for

a line model as long as the visit order of the sensors is given a priori, as illustrated in Fig. 2.

Thus, the solution proposed for the line model can be applied to the 2D space problem by simply

changing UAV’s flight direction above each sensor.

III. FLIGHT TIME MINIMIZATION FOR SINGLE-SENSOR CASE

For the single-sensor case N = 1, without loss of generality, we set S1 = 0 (origin point in

the horizontal axis) and ignore the sensor index for all notations. Then, the problem (8) reduce
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S0
S1

S2

S3

S4

S0 S1 S2 S3 S4

d1

d2

d3
d4

d1 d2 d3 d4

(a)

(b)

Fig. 2. Example of a 2D space problem represented by a line model: (a) a data collection problem in the 2D space with a

given visit order; (b) equivalent representation by a line model.

to

min
x,y,v,p(t)

(S2 − S0)− (y − x)

vmax
+ t (9a)

s.t.

∫ t

0

1

2
W log2

(

1 +
p(τ)β

((x+ vτ)2 +H2)
α
2

)

dτ ≥ B, (9b)

∫ t

0

p(τ)dτ ≤ E, (9c)

S0 ≤ x ≤ y ≤ S2, (9d)

t =
y − x

v
Ix 6=y + Th(x)Ix=y, (9e)

0 ≤ v ≤ vmax, (9f)

p(t) ≥ 0. (9g)

Since the hovering mode has been studied in the previous section, we mainly focus on the

flying mode with v > 0 and x < y. The problem with only the flying mode for the single-sensor
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case is given by

min
x,y,v,p(t)

S2 − S0

vmax

+ (y − x)

(

1

v
−

1

vmax

)

(10a)

s.t.

∫
y−x

v

0

1

2
W log2

(

1 +
p(τ)β

((x+ vτ)2 +H2)
α
2

)

dτ ≥ B, (10b)

∫
y−x

v

0

p(τ)dτ ≤ E, (10c)

S0 ≤ x < y ≤ S2, (10d)

0 < v ≤ vmax, p(t) ≥ 0.

The problem (10) includes the power allocation optimization over p(t), the UAV’s speed

optimization over v, and the data upload interval optimization over x and y. These subproblems

are solved separately as follows.

A. Power Allocation

Suppose that the upload interval [x, y] and the UAV’s speed v are fixed and given. It is

obvious that to minimize the flight time, the sensor should allocate its power to maximize the

uplink throughput on the left hand side of (10b). Thus, let us consider the following throughput

maximization problem

max
p(τ)≥0

∫
y−x

v

0

1

2
W log2

(

1 +
p(τ)β

((x+ vτ)2 +H2)
α
2

)

dτ (11a)

s.t.

∫
y−x

v

0

p(τ)dτ ≤ E. (11b)

Denote s = x + vτ , and thus we have ds = vdτ . By changing the variable from τ to s, the

throughput maximization problem (11) can be reformulated as

max
p(s)≥0

1

v

∫ y

x

1

2
W log2

(

1 +
p(s)β

(s2 +H2)
α
2

)

ds (12a)

s.t.
1

v

∫ y

x

p(s)ds ≤ E. (12b)

Notice that the UAV receives the data from the sensor if and only if p(s) > 0. Otherwise, the

UAV flies with the maximum speed. Therefore, the condition for p(s) > 0 needs to be specified.

We have the following conclusion.
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Theorem 1. Let p∗(s) be an optimal solution of the problem (12). It holds that p∗(s) > 0 for

x < s < y if and only if x, y and v satisfy

(y − x)(max{x2, y2}+H2)
α
2 −

∫ y

x

(s2 +H2)
α
2 ds ≤ βEv. (13)

Moreover, the optimal power allocation p∗(s) is

p∗(s) =
1

γ0
−

1

γ(s)
, (14)

where the water level is

1

γ0
=

vE

y − x
+

1

(y − x)β

∫ y

x

(s2 +H2)
α
2 ds, (15)

and the inverse of channel gain is

1

γ(s)
=

(s2 +H2)
α
2

β
. (16)

The corresponding optimal objective value of (12a) is

Bmax(x, y, v) =
W

2v

(

s log2
β

γ0(s2 +H2)
α
2

+
αs

ln 2
−

αH

ln 2
arctan

s

H

)
∣

∣

∣

∣

s=y

s=x

. (17)

Proof. See Appendix C.

1

( )sg

( )p s

0

1

g

x y 'y0

v

s

Fig. 3. Illustration of water-filling power allocation.

The results in Theorem 1 are interpreted in Fig. 3. In this figure, the red solid curve represents

the inverse of the channel gain 1
γ(s)

, the blue dash-dotted line represents the water level 1
γ0

, and
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the area between the two curves represents the total energy budget. If x, y and v satisfy the

condition (13), we have p(s) > 0 for x < s < y. However, if x, y′ and v do not satisfy the

condition (13) as shown in the figure, there must be another set of x, y and v where y < y′

so that p(s) > 0 for x < s < y. Therefore, the data upload must be within the range [x, y].

Theorem 1 explicitly gives the feasible region of x, y, v for optimal data collection.

For the free space LOS channel model with α = 2, the condition can be further simplified by

calculating the integration. In particular, we have
∫ y

x

(s2 +H2)
α
2 ds

∣

∣

∣

∣

α=2

=

∫ y

x

(s2 +H2)ds

=
y3 − x3

3
+ (y − x)H2

= (y − x)

(

x2 + xy + y2

3
+H2

)

. (18)

Replacing the term
∫ y

x
(s2+H2)

α
2 ds by the above expression, the condition (13) can be expressed

as the following two conditions:

(a) |x| ≤ |y| and 2y3 + x3 − 3y2x ≤ 3βEv,

(b) |x| ≥ |y| and 3x2y − 2x3 − y3 ≤ 3βEv,

and the water level can be expressed as

1

γ0
=

vE

y − x
+

x2 + xy + y2

3β
+

H2

β
. (19)

B. UAV’s Speed Optimization

With the optimal power allocation, the maximum throughput Bmax(x, y, v) in (17) has the

following property.

Theorem 2. The maximum throughput Bmax(x, y, v) is a decreasing function of v.

Proof. See Appendix D.

Based on Theorem 2, the feasibility of any solution (x, y, v, p(t)) is guaranteed if the minimum

speed satisfies (13). The minimum speed can be written as a function of x and y, i.e.,

vm(x, y) = min

{

vmax,
1

βE

(

(y − x)(max{x2, y2}+H2)
α
2 −

∫ y

x

(s2 +H2)
α
2 ds

)

}

. (20)
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When α = 2, the minimum speed can be rewritten as

vm(x, y) =



















2y3+x3−3y2x
3βE

, if |x| ≤ |y| and 2y3 + x3 − 3y2x ≤ 3βEvmax,

3x2y−2x3−y3

3βE
, if |x| ≥ |y| and 3x2y − 2x3 − y3 ≤ 3βEvmax,

vmax, otherwise.

(21)

According to Theorems 1 and 2, for given x, y and the optimal power allocation, the opti-

mization over v can be formulated as

min
v

(S2 − S0)

vmax

+ (y − x)
(1

v
−

1

vmax

)

(22a)

s.t. Bmax(x, y, v) ≥ B, (22b)

vm(x, y) ≤ v ≤ vmax. (22c)

Problem (22) can be solved in two steps. Firstly, we check the feasibility of problem (22).

Based on Theorem 2, if Bmax(x, y, vm(x, y)) ≥ B, (22) is feasible, and we go to the second

step. As the objective function (22a) is a decreasing function of v, the optimal speed, denoted by

v∗(x, y), is the maximum feasible speed that satisfies (22b) in [vm(x, y), vmax]. Since Bmax(x, y, v)

is a decreasing function of v, v∗(x, y) can be found by bisection search algorithm. In summary,

the algorithm to obtain the optimal v and p(s) for given x and y where x < y in problem (10)

is summarized in Algorithm 1.

Algorithm 1 Calculate v and p(s) for given (x, y) in problem (10)

Input: β,H,W, α,B,E, δ, x and y where x < y.

Output: v∗, p∗(s).

1: Calculate vm(x, y) according to (20).

2: if Bmax(x, y, vm(x, y)) ≥ B then

3: Find the maximum v ∈ [vm(x, y), vmax] that satisfies Bmax(x, y, v) ≥ B by bisection

search.

4: Set v∗ = v, and p∗(s) is calculated according to (14)-(16).

5: else

6: Problem (10) for given x and y is infeasible.

7: end if

In this algorithm, line 2 examines the feasibility of the problem. If the inequality does not hold,

there is no feasible solution for the given parameters, and the algorithm terminates. Otherwise,
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bisection search is launched as in line 3. When the bisection search terminates, the optimal

solution is recorded in line 4.

Remark 2. It is interesting to remark that the maximum throughput in (12) can be re-written

as

Bmax(x, y, v) = Emax
p(s)

1
y−x

∫ y

x
1
2
W log2

(

1 + p(s)β

(s2+H2)
α
2

)

ds

v
y−x

E
, (23)

where p(s) is constrained by 1
y−x

∫ y

x
p(s)ds ≤ v

y−x
E which should be satisfied with equality

to achieve the maximum. The term on the right side of the operator max can be viewed as

the energy efficiency (achievable data rate per unit power) with “average power budget” v
y−x

E.

Therefore, Theorem 2 says that the energy efficiency is a decreasing function of the power budget

in fading channels. It extends the result from the AWGN channel [27] to the UAV LOS channel.

C. Data Collection Interval Optimization

Finally, we consider the problem of determining x and y in problem (10), which can be written

as

min
x,y

(S2 − S0)

vmax

+ (y − x)
( 1

v∗(x, y)
−

1

vmax

)

(24a)

s.t. S0 ≤ x < y ≤ S2, (24b)

where v∗(x, y) is the optimal solution of (22). As v∗(x, y) is a complex function of x and y, there

is no efficient algorithms other than two-dimensional line search to solve the problem (24). By

sampling m points in the range [S0, S2] with identical inter-point distance, the total number of

search pairs (x, y) where x < y is
m(m+1)

2
. Thus, the complexity of the two-dimensional search

is O(m2).

IV. FLIGHT TIME MINIMIZATION FOR MULTI-SENSOR CASE

In the multi-sensor case, the data upload intervals for the sensors correlates with one another.

In particular, if a sensor’s data upload interval is wide, the one next to it can only have a short

data upload interval. To deal with the inter-sensor correlation, we adopt the DP approach [28]

to solve the flight time minimization problem for multiple sensors. Firstly, the basic concept of

the DP algorithm is briefly reviewed as follows.
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A. Brief Introduction to DP Algorithm

The DP algorithm deals with decision making problems in dynamic systems which can be

divided into stages. The dynamic system expresses the evolution of the system states sk ∈ Sk

under the influence of state-dependent control actions uk ∈ Uk(sk) taken at discrete instances of

time (stage) k. The system state updates as sk+1 = fk(sk, uk). There is an additive cost gk(sk, uk)

in each stage. The objective is to minimize the total cost by finding the optimal control actions

for a given initial state, i.e., minu0,u1,··· ,uK−1

{

∑K−1
k=0 gk(sk, uk) + gK(sK)|s0

}

. This problem can

be solved by the DP algorithm [28, Prop. 1.3.1, Vol. I], i.e., proceeding the following backward

in time from stage K − 1 to stage 0

JK(sK) = gK(sK), ∀sK ∈ SK ,

Jk(sk) = min
uk∈Uk(sk)

{

gk(sk, uk) + Jk+1(fk(sk, uk))
∣

∣sk
}

, ∀sk ∈ Sk, k = K − 1, · · · , 0,

where Jk(sk) is termed as the optimal cost-to-go, i.e., the minimum cost for the (K − k)-stage

problem that starts at stage k with state sk and ends at stage K.

B. DP-based Flight Time Minimization

Now, we apply the DP algorithm to solve the flight time minimization problem (8). Firstly,

the objective function (8a) can be rewritten as

min
x,y,v,p(t)

SN+1 − S0

vmax
+

N
∑

n=1

(

tn −
yn − xn

vmax

)

= min
x,y

[

SN+1 − S0

vmax
+

N
∑

n=1

min
vn,pn(t)

(

tn −
yn − xn

vmax

)]

, (25)

where the minimization over vn, pn(t) for a given pair xn < yn corresponds to the single-sensor

flying case (10) and can be efficiently solved by Algorithm 1. If xn = yn, i.e., the UAV hovers

at location xn, the minimization takes the value with tn = Th,n(xn) as the solution for (6). Thus,

according to the results in Sections II-A2), III-A, and III-B, we can define a cost function as

gn(xn, yn) = min
vn,pn(t)

(

tn −
yn − xn

vmax

)

=



















Th,n(xn), if xn = yn,

(yn−xn)
(

1
v∗n(x̃n,ỹn)

− 1
vmax

)

, if xn < yn and (22) is feasible,

+∞, elsewhere,

(26)
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for all n = 1, 2, · · · , N , where x̃n = xn−Sn, ỹn = yn−Sn are the horizontal coordinates relative

to Sn, v∗n(x̃n, ỹn) is the optimal feasible solution of (22) that can be calculated via Algorithm 1,

and Th,n(xn) is the minimum hovering time obtained by solving (6). If xn < yn while (22) is

infeasible, we set the cost as infinity.

Based on the above cost function, we formulate the flight time minimization problem as a DP

problem. In particular, we have

- index of stage: n,

- system state in stage n: the end point of data upload for sensor n−1, denoted by sn = yn−1.

The state space is Sn = [S0, SN+1],

- control action in stage n: the data upload interval for sensor n, i.e., (xn, yn). The action

space is Un(sn) = {(xn, yn)|sn ≤ xn ≤ yn ≤ SN+1},

- state update rule: sn+1 = fn(sn, xn, yn) = yn,

- per-stage cost: gn(xn, yn), n = 1, 2, · · · , N as defined in (26), and gN+1(sN+1) =
SN+1−S0

vmax
.

As a result, the problem (25) can be rewritten as

min
x,y

[

N
∑

n=1

gn(xn, yn) + gN+1(yN)

]

, (27)

which can be solved by recursively calculating the cost-to-go function stage-by-stage as

JN+1(sN+1) = gN+1(sN+1) =
SN+1 − S0

vmax

, ∀sN+1, (28)

Jn(sn) = min
sn≤xn≤yn≤SN+1

{gn(xn, yn) + Jn+1(yn)}, ∀sn, n = N,N − 1, · · · , 1. (29)

Then, the minimum flight time can be obtain in the last step, i.e.

Tmin = J1(S0). (30)

In addition, if the optimal control actions for (29) are (x∗
1, y

∗
1), (x

∗
2, y

∗
2), · · · , (x

∗
N , y

∗
N), the

optimal solution for the problem (25) is x
∗ = {x∗

1, x
∗
2, · · · , x

∗
N},y

∗ = {y∗1, y
∗
2, · · · , y

∗
N}. Thus,

the optimal solution of the original problem (8) is x
∗,y∗ joint with the optimal speeds v∗n, n =

1, 2, · · · , N obtained by solving (22) and the optimal power allocation in (14).

It is remarkable that the computational complexity for the calculation of the cost-to-go func-

tions Jn(sn) can be reduced by exploring the property of (29).

Proposition 2. Concerning the DP algorithm (28) and (29), for any given n and sn, if the optimal

solution (x∗
n, y

∗
n) for the minimization problem in (29) satisfies x∗

n > sn, we have Jn(s
′
n) = Jn(sn)

for all s′n ∈ [sn, x
∗
n].
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Proof. See Appendix E.

According to Proposition 2, to reduce the computational complexity, the calculation of Jn(sn)

for a given n can be launched from the initial point S0 to the destination SN+1. When an optimal

solution (x∗
n, y

∗
n) for a given sn is found and satisfies sn < x∗

n, the calculation of Jn(s
′
n) for

s′n ∈ [sn, x
∗
n] can be omitted as the optimal solutions are equivalent to (x∗

n, y
∗
n).

V. NUMERICAL RESULTS

Some numerical results are shown in this section. In the numerical simulations, we set H = 100

m, the reference SNR at transmission distance 1 m is set to β = 80 dB [20], and the channel

bandwidth W = 20 kHz. According to the state-of-the-art in the industry [2], we set the maximum

speed vmax = 26 m/s.

A. Single-sensor Case Study

The optimal result for the single-sensor case versus different values of data upload requirement

B and sensor energy constraint E with S0 = −5000 m, S1 = 0 m, S2 = 5000 m are depicted

in Figs. 4 and 5, respectively. It can be seen that the optimal transmission interval (x, y) is

symmetric, which corresponds to the shortest average transmission distance from the sensor to

the UAV. In Fig. 4, when B > 5.7 Mb, the optimal solution is hovering above the sensor to

receive data. When 2.5 Mb < B < 5.7 Mb, both the length of data upload interval and the UAV’s

speed decreases as the data upload requirement increases. The decrease of data upload interval

increases the channel gain between the UAV and the sensor, and the decrease of the UAV’s

speed increases the transmission time. When B < 2.5 Mb, the UAV can fly with the maximum

speed while successfully receive all the uploaded data. In this range, the minimum data upload

interval is depicted, and its length decreases as the data upload requirement decreases as the

time required for data upload decreases.

In Fig. 5, the optimal result versus E is opposite to that versus B. In particular, when E < 0.3

J, the UAV also needs to hover above the sensor to receive data. When 0.3 J < E < 1.7 J, both

the length of the data upload interval and the UAV’s speed increases as the amount of energy

increases. While for E > 1.7 J, the UAV can fly with the maximum speed, and the minimum

length of the data upload interval decreases as the amount of energy increases.
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Fig. 4. Optimal solution (x, y, v) versus B for the single-sensor case, with S0 = −5000 m, S1 = 0 m, S2 = 5000 m, and

E = 1 J.
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Fig. 5. Optimal solution (x, y, v) versus E for the single-sensor case, with S0 = −5000 m, S1 = 0 m, S2 = 5000 m, and

B = 3 Mb.
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Fig. 6. Optimal solution (xn, yn, vn) for N = 10 sensors with En = 1.2 J for all n = 1, 2, · · · , N , B1 = · · · = B4 = B6 =

B10 = 3 Mbits, B5 = 2.5 Mbits, B7 = B9 = 3.5 Mbits, and B8 = 7 Mbits.

B. Multi-sensor Case Study

Then, the data collection for multiple sensors is studied by simulation. In particular, the UAV

flies from S0 = 0 m to SN+1 = 10000 m, during which N = 10 sensors are deployed. The

locations of the sensors Sn, n = 1, · · · , 10 are fixed as 500m, 2500m, 4500m, 6500m, 7000m,

7500m, 8000m, 8500m, 9000m, and 9500m, i.e., the first four sensors are 2000m apart from one

another (sparsely deployed), and the last six sensors are 500m apart from one another (densely

deployed). We study the impact of required data and energy limitation respectively.

In Fig. 6, the amount of energy in each sensor is set identical, En = 1.2 J for all n =

1, 2, · · · , N , and the amount of data to be transmitted varies. We set B1 = · · · = B4 = B6 =

B10 = 3 Mbits, B5 = 2.5 Mbits, B7 = B9 = 3.5 Mbits, and B8 = 7 Mbits. It can be seen that

as the first four sensors are sparsely located, the upload intervals are disconnected. The reason

is that it is not energy-efficient when the transmission distance is large. In this case, the UAV

collects data from a sensor in a short range and then flies towards another with the maximum

speed. For the last six sensors, as the amount of data to be transmitted increases from sensor

S5 to sensor S8 and then decreases from S8 to S10, the UAV’s speed firstly decreases and then

increases accordingly so that the required data can be uploaded successfully. Particularly, As the



20

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

Location (m)

S
pe

ed
 (

m
/s

)

 

 

v
n

S
n

x
n

y
n

Fig. 7. Optimal solution (xn, yn, vn) for N = 10 sensors with En = 1.2 J for all n = 1, 2, · · · , N , B1 = · · · = B4 = B6 =

B10 = 2 Mbits, B5 = 2.5 Mbits, B7 = B9 = 3.5 Mbits, and B8 = 3.8 Mbits.

amount of data in sensor S8 is extremely large, the UAV hovers above it to collect data with

maximum data rate, so that the overall flight time is minimized.

In Fig. 7, we change the values of the amount of data bits as B1 = · · · = B4 = B6 = B10 = 2

Mbits, B5 = 2.5 Mbits, B7 = B9 = 3.5 Mbits, and B8 = 3.8 Mbits. Firstly, as the data bits in

sensors S1, · · · , S4 are limited, the UAV can successfully receive all the data bits when flying

with maximum speed. In addition, as the data bits in sensor S8 are reduced compared with Fig. 6,

the hovering mode is not necessary any more. As the amount of data bits is still the largest, the

speed is quite low.

Then, we set the amount of data in each sensor to be the same, i.e., Bn = 3 Mbits for all

n = 1, 2, · · · , N , while E1 = · · · = E4 = 3.6 J, E5 = 3.2 J, E6 = E10 = 1.8 J, E7 = E9 = 0.8

J, and E8 = 0.2 J to evaluate the impact of the energy constraint. It can be seen that with

sufficient amount of energy for the first four sensors, the UAV can fly with maximum speed

while successfully receiving all the data. For the last six sensors, as the amount of energy firstly

decreases and then increases from sensor S5 to sensor S10, the optimal speed also decreases

at first and then increase. In particular, as the eighth sensor is quite energy stringent, the UAV

hovers above it with zero speed to collect its data. In addition, the transmission intervals for the

first four sensors shift towards the initial point so that more space can be reserved for the last
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Fig. 8. Optimal solution (xn, yn, vn) for N = 10 sensors with Bn = 3 Mbits for all n = 1, 2, · · · , N , and E1 = · · · = E4 = 3.6

J, E5 = 3.2 J, E6 = E10 = 1.8 J, E7 = E9 = 0.8 J, and E8 = 0.2 J.

six sensors which has limited energy budget.

Next, we reset the amount of energy as E1 = E2 = E3 = E7 = E9 = 1.0 J, E4 = 1.2 J,

E5 = 3.2 J, E6 = E10 = 2.0 J, and E8 = 0.6 J and re-run the simulation, the result is shown

in Fig. 9. It can be found that the UAV serves the first three sensors with medium speed, as the

limited amount of energy cannot support the maximum speed. Similarly, as the energy in sensor

S8 is sufficient to support data collection during flying, the hovering mode is not necessary.

Compared with Figs. 6-7, the energy constraint has similar impact as the data requirement.

C. Average Performance Evaluation

We further evaluate the average performance with random data requirement, random energy

and random locations. The amount of data in each sensor follows uniform distribution with a

mean value B̄, the amount of energy in each sensor follows uniform distribution with a mean

value Ē, and each pair (Bn, En) is set to satisfy the feasibility constraint (7). The sensors

are uniformly distributed in the range [S0, SN+1] = [0, 10000] m. The results are illustrated in

Figs. 10 and 11. It can be seen in Fig. 10 that when the average amount of energy is sufficient,

the average flight time grows almost linearly with the increase of B̄. But when the amount

of energy is deficient (e.g., Ē = 0.15 J), the average flight time grows exponentially with the
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Fig. 9. Optimal solution (xn, yn, vn) for N = 10 sensors with Bn = 3 Mbits for all n = 1, 2, · · · , N , and E1 = E2 = E3 =

E7 = E9 = 1.0 J, E4 = 1.2 J, E5 = 3.2 J, E6 = E10 = 2.0 J, and E8 = 0.6 J.
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Ē = 0.30 J
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Fig. 10. Average flight time versus average amount of data with random data requirement, random energy and random locations.



23

0 0.5 1 1.5
5

10

15

20

25

30

35

40
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Fig. 11. Average flight time versus average amount of energy with random data requirement, random energy and random

locations.

increase of B̄. This is due to the different relations between the flight time and the amount of

data in hovering mode and flying mode. In energy sufficient case, the UAV collects data mainly

in flying mode. While in energy constrained case, it collects data mainly in hovering mode.

In Fig. 11, it is observed that when the amount of data is small, the average flight time is

constant over all examined values of Ē, which means that the UAV can fly with the maximum

speed and collect data during flying. In addition, it is expected with the increase of Ē, the curves

converges to a fixed point with minimum flight time, i.e., the UAV flies with the maximum speed.

However, the figure shows that the convergence is slow, especially for large values of B̄. For

the case with B̄ = 5.0 Mb, the curve firstly goes down exponentially, and then linearly with

close-to-zero slope.

Finally, we compare the proposed algorithm with the following two baselines: (1) hovering

only policy, i.e., the UAV flies with the maximum speed to the top of each sensor and hovers

for data collection; (2) always collecting algorithm developed based on [20], i.e., the whole

range is divided by S0 = z0 ≤ z1 ≤ · · · ≤ zN−1 ≤ zN = SN+1, and the sensor n uploads data

during interval [zn−1, zn] with the constant power pn(t) = vnEn/(zn − zn−1). The transmission

intervals are optimized in a way similar to our proposed DP algorithm. Different from the always

collecting algorithm, our algorithm allows non-consecutive intervals so that the UAV can fly over
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Fig. 12. Performance comparison with random data requirement, random energy and random locations.

poor channel regions with the maximum speed to save time. The result is shown in Fig. 12. It can

be seen that given an average energy, there is a performance gap between the proposed algorithm

and the hovering only policy. Therefore, collecting data during flight can save some time even

if the data rate is lower than hovering mode. Concerning the always collecting algorithm, it

performs almost the same as the proposed algorithm when the average data amount is small, but

the performance gap increases when the data amount becomes large. The reason is that in the

always collecting algorithm, the average data rate is lower due to larger distance compared with

the proposed algorithm. Such a low data rate can support a high speed for small data amount,

but not for large data amount in which case the UAV has to fly with very low speed to guarantee

successful data collection.

VI. CONCLUSION

In this paper, we have solved the flight time minimization problem for completing the data

collection mission in a one-dimensional sensor network. The analysis on hovering mode provides

the feasibility condition for a successful data collection. The analysis on the single-sensor case

reveals the optimal solution structures. Firstly, the optimal power allocation follows the classical

water-filling policy. Secondly, the maximum amount of data bits that can be successfully uploaded

during UAV’s flying is a decreasing function of the UAV’s speed, which results in a simple
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bisection method to find the optimal speed. For the multi-sensor case, we have shown that the

division of data collection intervals can be optimized via the DP algorithm. According to the

numerical results, is has been observed that the behavior of the UAV relies on the locations, the

data amount and the energy amount of sensors. With a sufficient amount of energy, the UAV

can fly with maximum speed. Otherwise, its speed is proportional to the sensors’ energy budgets

and the inter-sensor distance, but inversely proportional to the amount of data to be uploaded.

One possible extension of this work would be sensors’ visit order optimization when the

sensors are deployed on a 2D space. Also, considering sensors’ mobility and channel fading

would be an interesting direction of future research.

APPENDIX A

PROOF OF LEMMA 1

Since

f ′′(x) = −
a2

x(x+ a)2
< 0, (31)

f ′(x) is decreasing. Therefore,

f ′(x) = log2

(

1 +
a

x

)

−
a

x+ a
> f ′(+∞) = 0, (32)

which indicates that f(x) is increasing. In addition,

lim
x→+∞

f(x) = lim
x→+∞

a log2

(

1 +
a

x

)
x
a

= a log2 e. (33)

Hence, f(x) < a log2 e =
a

ln 2
.

APPENDIX B

PROOF OF PROPOSITION 1

As

Th,n(xn)

2
W log2

(

1 +
βEn

Th,n(xn)((xn − Sn)2 +H2)
α
2

)

<
WβEn

2((xn − Sn)2 +H2)
α
2 ln 2

≤
WβEn

2Hα ln 2
, (34)

where the first inequality holds according to Lemma 1, and the gap can be arbitrarily small as

Th,n(xn) tends to infinity. In the second inequality, the equality holds when xn = Sn. Hence, if
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Bn < WβEn

2Hα ln 2
, there is always a feasible transmission mode so that Bn bits can be successfully

transmitted.

If Bn ≥ WβEn

2Hα ln 2
on the contrary, the left hand side of (5) is always less than Bn. Therefore,

the equation (6) is not feasible.

APPENDIX C

PROOF OF THEOREM 1

The Lagrangian function of the problem (12) is expressed as

L =
W

2v

∫ y

x

log2

(

1 +
p(s)β

(s2 +H2)
α
2

)

ds− λ

(

1

v

∫ y

x

p(s)ds−E

)

. (35)

By setting ∂L
∂p(s)

= 0, we get the optimal power allocation expressed as (14), where γ0 = 1
λ

is

the water level so that (12b) is satisfied with equality, and the channel gain is

γ(s) =
β

(s2 +H2)
α
2

, (36)

which is equivalent to (16).

Based on (14) and (36), it can be found that p∗(s) > 0 must hold in a continuous interval.

Next, we derive the necessary and sufficient condition for p∗(s) > 0 for all x < s < y.

1) Sufficiency:

Suppose that p∗(s) > 0 for x < s < y. As s2 ≤ max{x2, y2} for any x < s < y, we have

γ(s) =
β

(s2 +H2)
α
2

>
β

(max{x2, y2}+H2)
α
2

. (37)

As p∗(s) > 0, we have 1
γ0

> 1
γ(s)

holds for all x < s < y. To guarantee this, 1
γ0

must be larger

than or equal to the maximum value of 1
γ(s)

, i.e.,

1

γ0
≥

(max{x2, y2}+H2)
α
2

β
. (38)

On the other hand, according to (12b), i.e.,

1

v

∫ y

x

p∗(s)ds =
1

v

∫ y

x

(

1

γ0
−

(s2 +H2)
α
2

β

)

ds

=
y − x

v

1

γ0
−

1

v

∫ y

x

(s2 +H2)
α
2

β
ds

≤ E, (39)

we have

1

γ0
≤

vE

y − x
+

1

y − x

∫ y

x

(s2 +H2)
α
2

β
ds. (40)
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According to (38) and (40), we have

(max{x2, y2}+H2)
α
2

β
≤

vE

y − x
+

1

y − x

∫ y

x

(s2 +H2)
α
2

β
ds, (41)

which is equivalent to (13). Therefore, the sufficiency is proved.

In addition, to maximize the throughput, (39) must be satisfied with equality, which results in

equality condition in (40). Hence, (15) is obtained.

2) Necessity:

Suppose (13) (or equivalently (41)) holds true. We let 1
γ0

equals to the right hand side of (40).

Then, (39) is satisfied with equality, which guarantees that the power allocation is optimal as all

the energy budget is fully utilized. Based on (41) and the equality of (40), we have

1

γ0
≥

(max{x2, y2}+H2)
α
2

β
>

(s2 +H2)
α
2

β
(42)

for all x < s < y. Therefore, we have p∗(s) = 1
γ0
− (s2+H2)

α
2

β
> 0 for x < s < y, and hence, the

necessity is proved.

The optimal throughput can be obtained by substituting p(s) in (12a) with (14) and deducing

as follows

Bmax(x, y, v) =
W

2v

∫ y

x

log2
β

γ0(s2 +H2)
α
2

ds

=
W

2v

(

s log2
β

γ0

∣

∣

∣

∣

y

x

−
α

2

∫ y

x

log2(s
2 +H2)ds

)

=
W

2v

(

(

s log2
β

γ0
−

α

2
s log2(s

2 +H2)
)

∣

∣

∣

∣

y

x

+
α

2

∫ y

x

sd
(

log2(s
2 +H2)

)

)

=
W

2v

(

s log2
β

γ0(s2 +H2)
α
2

∣

∣

∣

∣

y

x

+
α

ln 2

∫ y

x

s2

s2 +H2
ds

)

=
W

2v

(

s log2
β

γ0(s2 +H2)
α
2

∣

∣

∣

∣

y

x

+
α

ln 2

∫ y

x

(

1−
H2

s2 +H2

)

ds

=
W

2v

(

s log2
β

γ0(s2 +H2)
α
2

+
αs

ln 2
−

αH

ln 2
arctan

s

H

)
∣

∣

∣

∣

y

x

. (43)

APPENDIX D

PROOF OF THEOREM 2

Based on (12a) and (12b), to achieve the maximum throughput, all the energy should be fully

used, i.e.
∫ y

x

p(s)ds = vE. (44)
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Replacing p(s) in the above equation by (14), we have

1

γ0
=

vE

y − x
+

1

y − x

∫ y

x

1

γ(s)
ds. (45)

According to the first line of (43), we have

Bmax(x, y, v) =
W

2v

∫ y

x

log2
γ(s)

γ0
ds

=
W

2v

(
∫ y

x

log2
1

γ0
ds−

∫ y

x

log2
1

γ(s)
ds

)

=
W

2v

(

a1 log2

(

1

a1

(

vE + a2

)

)

− a3

)

, (46)

where

a1 = y − x, (47)

a2 =

∫ y

x

1

γ(s)
ds, (48)

a3 =

∫ y

x

log2
1

γ(s)
ds. (49)

Define a function

g(u) = u

(

a1 log2

(

1

a1

(E

u
+ a2

)

)

− a3

)

. (50)

Since

g′′(u) = −
a1E

2

u(E + a2u)2
< 0 (51)

for all u > 0, g′(u) is a decreasing function of u. Therefore,

g′(u) = a1 log2

(

1

a1

(E

u
+ a2

)

)

− a3 −
a1E

E + a2u

> g′(+∞)

= a1 log2

(

a2
a1

)

− a3

= (y − x) log2

(

1

y − x

∫ y

x

1

γ(s)
ds

)

−

∫ y

x

log2
1

γ(s)
ds

≥ 0, (52)

where the first inequality holds due to the monotonicity of g′(u), and the second inequality holds

due to the concavity of log function. Based on (52), we conclude that g(u) is an increasing

function of u. Since Bmax(x, y, v) =
1
2
Wg( 1

v
), it is a decreasing function of v.
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APPENDIX E

PROOF OF PROPOSITION 2

As (x∗
n, y

∗
n) is the optimal solution for the minimization problem in (29), we have

Jn(sn) = min
sn≤xn≤yn≤SN+1

{gn(xn, yn) + Jn+1(yn)}

= gn(x
∗
n, y

∗
n) + Jn+1(y

∗
n). (53)

For a given s′n ∈ [sn, x
∗
n], as s′n ≥ sn, we have [s′n, SN+1] ⊆ [sn, SN+1]. Therefore,

Jn(s
′
n) = min

s′n≤xn≤yn≤SN+1

{gn(xn, yn) + Jn+1(yn)}

≥ min
sn≤xn≤yn≤SN+1

{gn(xn, yn) + Jn+1(yn)} = Jn(sn). (54)

Secondly, as s′n ≤ x∗
n, we have s′n ≤ x∗

n ≤ y∗n ≤ SN+1. Hence,

Jn(s
′
n) = min

s′n≤xn≤yn≤SN+1

{gn(xn, yn) + Jn+1(yn)}

≤ gn(x
∗
n, y

∗
n) + Jn+1(y

∗
n) = Jn(sn). (55)

Combining (54) and (55), we prove that Jn(s
′
n) = Jn(sn) for all s′n ∈ [sn, x

∗
n].
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