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Abstract

As storage systems grow in size, device failures happen more frequently than ever before. Given the

commodity nature of hard drives employed, a storage system needs to tolerate a certain number of disk

failures while maintaining data integrity, and to recover lost data with minimal interference to normal

disk I/O operations. RAID-6, which can tolerate up to two disk failures with the minimum redundancy,

is becoming widespread. However, traditional RAID-6 codes suffer from high disk I/O overhead during

recovery. In this paper, we propose a new family of RAID-6 codes, the Minimum Disk I/O Repairable

(MDR) codes, which achieve the optimal disk I/O overhead for single failure recoveries. Moreover,

we show that MDR codes can be encoded with the minimum number of bit-wise XOR operations.

Simulation results show that MDR codes help to save about half of disk read operations than traditional

RAID-6 codes, and thus can reduce the recovery time by up to 40%.
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I. INTRODUCTION

To satisfy the storage demand of “big data” in data centers, distributed storage systems are

typically constructed from a large number of commodity servers and hard drives. As the capacity

grows, disk failures happen more frequently than ever before. RAID-6 systems, which can tolerate

two disk failures with the minimum redundancy, have been widely used.

Measurement studies in the literature suggest that single disk failures represent 98.08% of

recoveries [1]. When there is one or two disk failures, the system has to run at a reduced

speed. Hence minimizing the time of single failure recovery is important. Since disk I/O time

represents a dominant component in recovery time [2], the most promising approach to improve

the recovery performance is to reduce the amount of data read from each disk [3].

In its general specification, RAID-6 does not impose restrictions on the specific coding method.

In fact, one may apply any maximum distance separable (MDS) codes that can tolerate 2 erasures,

as exemplified by the rather popular MDS array codes with a row parity block on each row.

Many such codes have been designed, such as EVENODD[4], RDP[5], Liberation Codes[6].

The row parity block and data blocks stored in the same row are called a row parity set. If a

single data disk fails, the conventional way of repair is to calculate each block by XORing the

blocks remaining on the surviving disks in the row parity set.

However, for the two existing RAID-6 codes, RDP and EVENODD, Xiang et al. and Wang

et al. showed that if the other coding disk is used in the repair, the failed disk can be recovered

by reading 3/4 blocks from each surviving disk [7][8][9]. Furthermore, Tamo et al. and En Gad

et al. showed that the repair disk I/O can be further reduced if the Q disk is designed carefully

[10][11].

Take Fig. 1 for example. Disks D1, D2 and D3 are the data disks, each holding 4 un-coded

information blocks. Disk D4 is called a P disk, which holds the row parity of data blocks. Disk

D5 is called a Q disk. Fig. 1(a) shows the conventional way to repair D1, which requires reading
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D1 D2 D3 D4 D5

Data Disks Coding Disks
D1 D2 D3 D4 D5

Data Disks Coding Disks

D1 D2 D3 D4 D5

Data Disks Coding Disks
D1 D2 D3 D4 D5

Data Disks Coding Disks

(c) (d)

(e) (f)

(a)

Data Disks Coding Disks
D1 D2 D3 D4 D5

(b)

Data Disks Coding Disks
D1 D2 D3 D4 D5

Fig. 1: An example RAID-6 code with minimum disk I/O for a single failure recovery. When a

data disk or the row parity disk fails, only half of the blocks in each surviving disks are read in

the recovery.

12 blocks. Fig. 1(b) shows a RAID-6 code. The blocks on the Q disk are calculated as the parity

of the blocks with the same mark labeled in the figure. Fig. 1(c)-(f) show the repair strategies

for a single failure of each disk except the Q disk, where shaded blocks are read to repair the

failed disk. For example, as shown in Fig. 1(c), if disk D1 fails, the first two rows of blocks on

the surviving disks are read to memory, so that we can calculate the first two blocks of D1 by

row parities, and then the last two blocks by the parity sets marked with “◦” and “?”, since all

the other blocks in the two parity sets are known. As a result, only 8 blocks are read to repair

D1, saving 33.3% disk I/O over conventional repair.

In this work, we study the problem of minimizing disk I/O for the repair of a single disk

failure with MDS array codes constructed over F2, i.e., all coded blocks can be generated with

bit-wise XOR operations only. Our contributions include the following:
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1) We prove exact lower bounds on the minimum disk I/O: at least (k + 1)r/2 blocks must

be read to recover a data disk or the P disk, and at least kr blocks must be read to repair the Q

disk, where k is the number of data disks and r is the number of rows in the array. Furthermore,

we prove that in the repair of a data disk or the P disk, r/2 blocks of the failed disk must be

repaired by row parity, in order to achieve the minimum disk I/O.

2) We develop an equivalent condition (Theorem 4) for the optimal repair in RAID-6 codes.

With this condition, we find the example repair-optimal code shown in Fig. 1 and construct the

MDR codes, which minimize the repair disk I/O not only for the data disks but also for the

coding disks.

3) We show that MDR codes can be encoded with the minimum number of XOR operations.

We achieve this by utilizing the intermediate result in the calculation of P disk. To our knowl-

edge, MDR codes represent the first family of codes that minimize both repair disk I/O and

computational overhead.

The rest of this paper is organized as follows. We review related literatures in section II and

the specification of RAID-6 codes and basic notations in section III. In section IV, we propose

a generator matrix approach for studying the minimum disk I/O problem. Along this approach,

we prove lower bounds on the minimum disk I/O and develop the equivalent condition for the

optimal repair. In section V, we propose the construction of MDR codes. In section VI, we

show how to minimize the computational overhead with MDR codes. We discuss the drawbacks

of MDR codes in section VII and present the simulation results in section VIII. Section IX

concludes this paper.

II. RELATED WORK

In the design of RAID-6 codes, many researchers focus on minimizing the computational

overhead of encoding, updating, and decoding. For example, the EVENODD codes [4] achieve

near optimal computational complexity in both encoding and decoding, and the RDP codes [5]
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further improve updating complexity. Plank proposed the Liberation codes [6] that are freely

available and achieve either optimal or close to optimal in the encoding, updating, and decoding

complexity.

Recently, reducing the repair disk I/O attracts more and more attentions. Studies on reducing

disk I/O can be divided into two classes: one is to develop clever algorithms for existing RAID-6

codes, and the other is to design new RAID-6 codes. For the former class, Xiang et al. [7][9]

and Wang et al. [8] used both parity disks to reduce the disk I/O in single disk failure recovery.

They designed efficient recovery algorithms for RDP codes and EVENODD codes. The proposed

optimal recovery strategies can reduce approximately 1/4 disk reads compared with conventional

recovery algorithms. Khan et al. [3][12] proved that the problem of finding minimum repair disk

I/O for a given XOR-based erasure code is NP-hard in general, and Zhu et al. [13] proposed a

polynomial-time approximation algorithm for this problem.

The problem of designing new RAID-6 codes to optimize repair disk I/O has been studied

in the more general context of optimizing disk I/O for distributed storage systems. Inspired

by network coding, Dimakis et al. [14] proved a lower bound on the minimum bandwidth

consumption in the recovery. As the amount of data transmitted is always no more than the

amount of data read, the repair disk I/O is at least the minimum repair bandwidth. Therefore,

Dimakis’ lower bound on the latter directly implies a lower bound on the former, which implies

that reading at least (k + 1)r/2 blocks is necessary for the repair in RAID-6 codes with k data

disks and r rows in the array. According to the study of minimum bandwidth with exact repairs

[15], it is impossible for a (k > 4, r = 2) RAID-6 code to achieve this lower bound in the repair

of every single disk.

However, Tamo et al. and En Gad et al. recently showed that the bound (k+1)r/2 is achievable

for the repair of a data disk. Specifically, Tamo et al. proposed the Zigzag MDS array codes that

minimize the repair disk I/O [10]. Their codes require coding over a field of size at least 3 and

achieve optimal update as well. Furthermore, Zigzag codes have strip size r = 2k−1, and they
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proved that this strip size is optimal for all systematic, update-optimal and repair-optimal MDS

codes. En Gad et al. [11] also proposed a family of RAID-6 array codes over F2 that achieve

the optimal repair disk I/O for a data disk recovery.

Our work differs from the above in the following aspects. First, they only optimized disk I/O

for the repair of data disks, while we consider the repair of every disk. Both of their codes

require reading kr blocks to repair the row parity disk, but MDR codes require reading only

(k+1)r/2 blocks. We further prove that the minimum disk I/O to repair the Q disk is at least kr

in RAID-6 codes with a row parity disk. Second, MDR codes also minimize the computational

overhead, which is not considered in their works. To the best of our knowledge, MDR codes

are the first that minimize repair disk I/O and computational overhead at the same time. Third,

we proposed a generic approach for constructing repair-optimal RAID-6 codes from an initial

code satisfying certain conditions, which can be found by computer search.

Compared with Zigzag codes, a drawback of MDR codes is that we trade-off update disk I/O

for restricting coding operations to over F2, the same as in En Gad’s codes. However, recent

reports show that there are many archive-style storage systems where update operations are rare.

For example, in Windows Azure [16], the storage system is used in an append-only way. We

also trade-off the strip size for the optimal encoding complexity — the strip size of MDR codes

is twice as much as in the Zigzag codes and En Gad’s codes.

TABLE I: Comparison between repair-optimal codes.
Field Size #Disk Repairs

Improved

Strip Size Disk I/O in Update Encoding Complexity

Zigzag codes [10] ≥ 3 k 2k−1 2 —

En Gad’s codes[11] 2 k 2k−1 1/2 · bk/2c+ 2 k + k/2 · bk/2c

MDR codes 2 k + 1 2k (k + 7)/4 k − 1

We summarize the comparison in Table I, where “#Disk Repairs Improved” refers to the
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number of disks that can be repaired with reading (k+1)r/2 blocks, “Disk I/O in Update” refers

to the average number of parity blocks changed in the update of a data block, and “Encoding

Complexity” refers to the number of XORs to compute each block of the Q disk. For encoding

complexity, Zigzag codes require k− 1 additions and up to k multiplications over a field of size

at least 3. We note that the optimal encoding complexity of MDR codes is achieved under the

condition that the P disk is computed at the same time. The repair disk I/O, encoding complexity,

and update disk I/O of MDR codes are analyzed in Sec. V, Sec. VI and Sec. VII, respectively.

III. PRELIMINARIES AND NOTATIONS

A. Erasure Codes and RAID-6 Specification

Erasure codes ensure data reliability by encoding a message of k symbols into n symbols,

so that the message can be recovered even if some symbols are lost. An optimal erasure code

can tolerate the loss of any m = n − k symbols. We can find such an optimal erasure code in

linear codes, which is also called an (n, k)-MDS code. Compared with replication, MDS codes

are storage efficient, since replication requires to store mk symbols instead of k +m symbols

to provide the same reliability against m erasures.

In the specification of RAID-6, there are k + 2 storage nodes each holding the same amount

of data, and up to two node failures can be tolerated. A RAID-6 code can therefore be viewed

as an (n = k + 2, k)-MDS code. RAID-6 requires k data disks to store original information,

and hence is a systematic code. Two coding disks further store coded data. In this work, we

use D1, D2, · · · , Dk to denote the k data disks, and Dk+1, Dk+2 to denote the two coding disks,

which are called P disk and Q disk, respectively.

B. Parity Array Coding Technique

In a parity array code, data stored on each disk is grouped into r blocks of equal length, which

are called a strip. Bit-wise XOR is applied to these blocks to generate parity blocks. Blocks in
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x =
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x Data Codeword=

d1,1

d1,2

d1,3

d1,4

d2,1

d2,2

d2,3

d2,4

d3,1

d3,2

d3,3

d3,4

d4,1

d4,2
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Coding 
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Coding 
Disk
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d1,1

d1,2

d1,3

d1,4

d2,1
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d3,1

d3,2

d3,3

d3,4

d4,1

d4,2

d4,3

d4,4

d6,1

d6,2

d6,3

d6,4

Data Disks

Basic Disks

D1 D2 D3 D4 D6

d5,1

d5,2

d5,3

d5,4

D5

Coding Disks

Fig. 2: Block arrangement in RAID-6 codes with a row parity disk.

disks D1, D2, · · · , Dk+2 are typically arranged into an array of r rows and k + 2 columns. Let

di,j, (1 ≤ i ≤ k + 2, 1 ≤ j ≤ r) denote the j-th block in disk Di, and d be the column vector

[d1,1 d1,2 · · · dk+2,r]
T .

Most implementations of RAID-6 array codes use the first coding disk Dk+1 as a row parity,

i.e., ∀j = 1, · · · , r, dk+1,j = d1,j+d2,j+ · · ·+dk,j , where addition is over the finite field F2. This

makes it easily extendable from RAID-5 by simply adding another coding disk. Fig. 2 illustrates

the general idea of how parity blocks are calculated in such codes. Due to the similarity between

the row parity disk Dk+1 and the data disks D1, D2, · · · , Dk, we call them the basic disks.

C. Notations

For a positive integer n, we use [n] to represent the set {1, 2, · · · , n}. For an m-by-n matrix

A, a row index set R ⊂ [m] and a column index set C ⊂ [n], we use A|R,C to denote the

sub-matrix of A induced by the R rows and C columns. We refer to a RAID-6 code supporting

k data disks with r rows in the array as a (k, r) RAID-6 code. For simplicity, we assume r is

even.
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A1 A2 A3 A4

d1,1 ~ d1,4

d2,1 ~ d2,4

d3,1 ~ d3,4

d4,1 ~ d4,4

d1,1 ~ d1,4

d2,1 ~ d2,4

d3,1 ~ d3,4

d4,1 ~ d4,4

Generator Matrix

x =

d5,1 ~ d5,4

d6,1 ~ d6,4

x Data Codeword=

Fig. 3: A RAID-6 code with a row parity disk is uniquely determined by its generator sub-

matrices A1, A2, · · · , Ak.

IV. THE GENERATOR MATRIX APPROACH

In this section, we use the generator matrix to formulate the problem of minimizing repair

disk I/O, and develop an equivalent condition for optimal repair.

Let di denote the column vector of the r blocks [di,1 di,2 · · · di,r]T in disk Di. The generator

matrix is illustrated in Fig. 3, where the shaded elements of the matrix are ones and the other

elements are zeros. As we consider RAID-6 codes with a row parity disk, we have dk+1 =

d1+d2+ · · ·+dk. Therefore, to design a RAID-6 code, we only need to specify how the coding

disk Dk+2 is coded. According to the generator matrix, dk+2 can be written as

dk+2 = A1d1 + A2d2 + · · ·+ Akdk

where A1, A2, · · · , Ak are square matrices of size r.

We call A1, A2, · · · , Ak the generator sub-matrices. An XOR-based RAID-6 code with a row

parity disk is uniquely determined by its generator sub-matrices.

RAID-6 requires that the system can be reconstructed from any two disk failures. According

to the study of Blaum and Roth [17], the code described by matrices A1, A2, · · · , Ak satisfies
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such RAID-6 specification if and only if A1, A2, · · · , Ak satisfy the following conditions, which

we refer to as the MDS property:

• Ai is non-singular for all i ∈ [k]

• Ai + Aj is non-singular for all i, j ∈ [k], i 6= j

A. A Matrix Representation of the Minimum Disk I/O Problem

With two parity disks, each data block di,j can be represented by the sum of other data blocks

in multiple ways. This makes it difficult to find the minimum repair disk I/O. In fact, Khan

[3] showed that solving this problem for an XOR-based code is NP-hard in general. In this

subsection, we rewrite this problem in terms of the generator sub-matrices A1, A2, · · · , Ak.

The problem of finding minimum disk I/O is essentially the same as representing the lost

data blocks by a set of surviving data blocks of minimum size. A key observation is that all

representations are based on the following equation in terms of parity-check matrix H

Hd =

 I I · · · I I 0

A1 A2 · · · Ak 0 I




d1

d2
...

dk+2


= 0 (1)

Each row of H describes an equation that can be interpreted as a representation of each block

involved in it. Take the case of r = 2, k = 2 as an example, the first row of the parity-check

matrix

 I2×2 I2×2 I2×2 0

A1 A2 0 I2×2

 is [1 0 1 0 1 0 0 0], which means d1,1 + d2,1 + d3,1 = 0

and equivalently, any one of d1,1, d2,1, d3,1 can be represented as the sum of the other two. In

fact, each representation is equivalent to an equation that can be derived as a linear combination

of the rows in equation (1). This observation leads to the following theorem.

Theorem 1: Let N̂(A) denote the number of non-zero columns in matrix A, then the minimum
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disk I/O to recover the row parity disk Dk+1 equals

min
X

N̂([I +XA1 I +XA2 · · · I +XAk X])

where X is a square matrix of size r. The minimum disk I/O to recover the coding disk Dk+2

equals

min
X

N̂([X + A1 X + A2 · · · X + Ak X])

Proof: According to our previous analysis, every representation is a linear combination of

rows in equation (1), which can be described as: [v1 v2 · · · v2r]Hd = 0. To recover the disk

Dk+1 is equivalent to represent the lost data dk+1 by r equations. Group the equations into the

form Vr×2rHd = 0 and rewrite Vr×2r = [Y Z], where Y, Z are square matrices of size r:

[Y Z]

 I I · · · I I 0

A1 A2 · · · Ak 0 I




d1

d2
...

dk+2


=

k∑
i=1

(Y + ZAi)di + Y dk+1 + Zdk+2 = 0

In order to solve dk+1, its coefficient matrix Y must be invertible. Block di,j is used in the

recovery if and only if the j-th column of the coefficient matrix of di contains some 1’s.

Therefore, the total number of blocks used in the recovery equals the number of non-zero

columns in the matrix [Y + ZA1 Y + ZA2 · · · Y + ZAk Z]. For a column vector z,

Y −1z is a zero vector if and only if z = 0, since Y −1 is of full rank. Therefore, left-multiplying

the matrix with Y −1 does not change its number of zero columns, and the case of recovering

Dk+1 is proved with X = Y −1Z. For the case of Dk+2, Z must be non-singular, and the statement

can be derived by left-multiplying the matrix with Z−1 and letting X = Z−1Y .

To calculate the minimum disk I/O for repairing a data disk Di, i ∈ [k], we may first treat disk

Di as the row parity disk by eliminating sub-matrix Ai in the parity-check matrix H , and then

applying Theorem 1. For example, consider the case of recovering D1, we may left-multiply
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equation (1) with

 I 0

A1 I

, so that the parity-check matrix H is transformed into:

 I I · · · I I 0

0 A2 + A1 · · · Ak + A1 A1 I


Then the minimum disk I/O can be calculated in a similar way as in Theorem 1.

B. A Lower Bound on the Minimum Recovery Disk I/O

In this subsection, we use the generator matrix approach to prove the lower bound on the disk

I/O of repairing a single disk failure in any RAID-6 codes with a row parity disk. Note that

Dimakis et al. [14] have proved an achievable lower bound on the minimum repair bandwidth for

functional repair, which implies that the number of blocks read is at least (k + 1)r/2. Theorem

2 strengthens this result for exact repair in RAID-6 codes in two aspects: 1) for the repair of

the Q disk, we prove that the minimum disk I/O is at least kr; 2) Dimakis’ theorem assumes

each disk transmits the same amount of information. We drop this assumption and prove that

each surviving disk must read at least r/2 blocks to repair a basic disk.

Theorem 2: The minimum disk I/O to recover a basic disk Di, i ∈ [k+1], is at least (k+1)r/2.

Further, the amount of data read from each surviving disk must be no less than r/2. To recover

the coding disk Dk+2, the minimum disk I/O is at least kr.

Proof: Firstly, consider the case of repairing disk Dk+1. Let X be a matrix that maximizes

the number of zero columns in matrix [I +XA1 I +XA2 · · · I +XAk X]. According

to the MDS property, for any i, j ≤ k, i 6= j, matrix

 I I

Ai Aj

 is of full rank, which implies

matrix

 I +XAi I +XAj

Ai Aj

 is non-singular, and therefore, the rank of matrix [I + XAi

I +XAj] must be r. So the total number of zero columns in [I +XAi I +XAj] is at most
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r. Similarly, as matrix

 I 0

Ai I

 has full rank, we can conclude that the total number of zero

columns in [I +XAi X] is no more than r. Let zi, i ∈ [k] denote the number of zero columns

in I+XAi, and zk+1 denote the number of zero columns in X . From the following optimization

problem:

max
∑k+1

i=1 zi

subject to: zi + zj ≤ r ∀i, j ≤ k + 1, i 6= j

we can see that the maximum total number of zero columns is (k + 1)r/2 for k ≥ 2, and the

optimal value is achieved only with z1 = z2 = · · · = zk+1 = r/2. According to Theorem 1, the

minimum disk I/O is at least (k + 1)r/2 and is only achieved by reading r− r/2 = r/2 blocks

from each surviving disk.

Secondly, for the case of repairing a data disk Di, i ∈ [k], we may consider disk Di as the

row parity disk with generator sub-matrices {Ai, Aj + Ai | i, j ∈ [k], i 6= j}. The same result

can be concluded in a similar way.

Finally, consider the case of repairing the coding disk Dk+2. We can see that the indices of

zero columns in X + A1, X + A2, · · · , X + Ak, X can not be the same, since if X + Ai and

X + Aj has a zero column at the same position, the matrix X + Ai +X + Aj = Ai + Aj has

a zero column, which conflicts with the MDS property that Ai + Aj is nonsingular. Similarly,

if X + Ai and X has a zero column at the same position, we will obtain Ai is singular, which

conflicts with the MDS property. Therefore, there are at most r zero columns in matrix

[X + A1 X + A2 · · · X + Ak X]

According to Theorem 1, the minimum disk I/O to repair Dk+2 is at least kr.
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C. An Equivalent Condition for Optimal Repair

From the above analysis, we conclude that the minimum disk I/O to repair coding disk Dk+2

is kr, which is achieved by reading all data blocks. Thus we only need to consider the case of

repairing a basic disk.

In particular, a repair strategy is represented by the set of blocks read from each surviving disk.

Let Ci,j denote the rows index set of blocks read from disk Di to repair disk Dj . For example,

if d2,1, d2,3, d2,4 are read from disk D2 to repair disk D1, then C2,1 = {1, 3, 4}. According to

Theorem 2, |Ci,j| = r/2. The following theorem shows that we actually do not need so many

sets to describe a repair strategy. In an optimal strategy, the row indices for each basic disk must

be the same.

Theorem 3: In the repair of a basic disk Dj, j ∈ [k + 1], the minimum disk I/O is achieved

only by reading the same rows of the surviving basic disks, i.e., C1,j = C2,j = · · · = Cj−1,j =

Cj+1,j = · · · = Ck+1,j . Namely, r/2 lost blocks must be recovered by row parity.

Proof: Without loss of generality, suppose we are repairing disk D1. We need to prove that

C2,1 = C3,1 = · · · = Ck+1,1. We may regard each block di,j as a random variable and consider

their entropy. For simplicity, assume each block contains only 1bit, i.e., H(di,j) = 1.

In the repair of D1, let S be the set of blocks read from D2, D3, · · · , Dk+1. Let T be the set

of blocks read from Dk+2, and Ri(i ∈ [r]) be the i-th row of basic disks D1, D2, · · · , Dk+1.

Consider the entropy of blocks D1 ∪ S. As Dk+1 is the row parity disk, blocks from different

rows are independent. In particular, we have H(D1, S) =
∑r

i=1 H(Ri∩ (D1∪S)). For each row

i, H(Ri∩ (D1∪S)) = |Ri∩ (D1∪S)|− 1 only if D1∪S contains the entire row Ri. Otherwise,

H(Ri ∩ (D1 ∪S)) = |Ri ∩ (D1 ∪S)|. Noting that | ∩k+1
l=2 Cl,1| indicates the number of rows fully

contained in D1 ∪ S, we have

H(D1, S) =
r∑

i=1

|Ri ∩ (D1 ∪ S)| − | ∩k+1
l=2 Cl,1| = (k + 2)r/2− | ∩k+1

l=2 Cl,1|

As |C2,1| = |C3,1| = · · · = |Ck+1,1| = r/2, if the row indices C2,1, C3,1, · · · , Ck+1,1 are not the
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same, | ∩k+1
l=2 Cl,1| < r/2 and H(D1, S) > (k + 1)r/2. As D1 can be reconstructed with S ∪ T ,

H(S, T ) = H(D1, S, T ) ≥ H(D1, S) > (k + 1)r/2

which is a contradiction since there are only (k + 1)r/2 blocks in S ∪ T . Therefore, the row

indices C2,1, C3,1, · · · , Ck+1,1 must be the same.

Therefore, in the recovery of a basic disk Dj , j ∈ [k+1], we may use Cj ⊂ [r] to denote the

index set of blocks read from the surviving basic disks and Rj ⊂ [r] to denote the index set of

blocks read from the Q disk. The following theorem rewrites the condition of optimal repair in

terms of generator sub-matrices.

Theorem 4: For a (k ≥ 2, r) RAID-6 code described by generator sub-matrices A1, A2, · · · , Ak,

each basic disk Di, i ∈ [k + 1] can be repaired by a repair strategy Ri, Ci, |Ri| = |Ci| = r/2 if

and only if there exists a matrix Bk+1, such that the series of matrices Bj = Aj +Bk+1, j ∈ [k]

and Bk+1 satisfy the following conditions:

1) For each i ∈ [k + 1], the sub-matrix Bi|Ri,Ci
is non-singular, and

2) For any i, j ∈ [k + 1], i 6= j, Bj|Ri,Ci
= 0.

Proof: Please refer to the appendix for the proof.

According to the definition of Bi, i ∈ [k] in Theorem 4, the generator sub-matrices Ai, i ∈ [k]

can be derived as Ai = Bi + Bk+1. Therefore, a RAID-6 code can also be described by the

Bi, i ∈ [k + 1] matrices. Note that the series of Bi matrices is not unique for a RAID-6 code.

Theorem 4 states that if a RAID-6 code can be repaired with minimum disk I/O, it must has a

series of Bi matrices satisfying the two conditions 1) and 2).

Fig. 4 illustrates this idea. We represent the example RAID-6 code shown in Fig. 1 with

B1, B2, B3, B4. The repair strategy for disk D1 is reading the first two rows, thus R1 = C1 =

{1, 2} and C1 = {3, 4}. As the sub-matrix B1|R1,C1
is non-singular and the corresponding sub-

matrices of B2, B3 and B4 are zero, D1 can be repaired with optimal disk I/O.
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Fig. 4: An example illustrating the equivalent condition of optimal repair.

Recall that dk+1 =
∑k

i=1 di, we have

dk+2 =
k∑

i=1

Aidi =
k∑

i=1

Bidi +Bk+1

k∑
i=1

di =
k+1∑
i=1

Bidi

As for i, j ∈ [k], Ai + Aj = Bi +Bj , the MDS property is equivalent to

• Bi +Bj is non-singular for all i, j ∈ [k + 1], i 6= j

V. CONSTRUCTION OF MDR CODES

In this section, we propose the recursive construction approach that derives MDR codes. The

approach starts with a repair-optimal RAID-6 code with small k and r that satisfies the following

condition:

P1) For each i ∈ [k − 1], Bi is non-singular;

P2) Ri = Ci, ∀i ∈ [k + 1].

We will construct a (k′ = k + 1, 2r) RAID-6 code with optimal repair disk I/O which also

satisfies conditions (P1) and (P2). Denote the new code with matrices B′i, i ∈ [k′+1], and repair
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strategy R′i, C
′
i, i ∈ [k′ + 1].

B′i =



 Bi +Bk+1 0

0 Bi +Bk+1

 if i ∈ [k′ − 1]

 0 Ir×r

0 0

 if i = k′

 0 0

Ir×r 0

 if i = k′ + 1

R′i = C ′i =


{x|x ∈ Ri or x− r ∈ Ri} if i ∈ [k′ − 1]

[r] if i = k′

[2r]\[r] if i = k′ + 1

Theorem 5: The constructed (k′ = k+1, 2r) code is a RAID-6 code with optimal repair disk

I/O and satisfies conditions (P1) and (P2).

Proof: We first prove the constructed code B′i, i ∈ [k′+1], is a RAID-6 code by showing that

B′i+B′j is non-singular for any i, j ∈ [k′+1], i 6= j. As the code Bi is a RAID-6 code, Bi+Bj has

full rank for any i, j ∈ [k+1], i 6= j. The possible results of B′i+B′j are

 Bi +Bj 0

0 Bi +Bj

,

 Bi +Bk+1 Ir×r

0 Bi +Bk+1

,

 Bi +Bk+1 0

Ir×r Bi +Bk+1

,

 0 Ir×r

Ir×r 0

, which are all non-

singular. Therefore, the constructed code is a RAID-6 code.

Second, we use Theorem 4 to show that the constructed code can recover from single disk

failure with repair strategy R′i, C
′
i, i ∈ [k′ + 1]. According to the hypothesis, Ri, Ci, i ∈ [k + 1]

is the optimal recover strategy for code Bi, we have Bk+1|Ri,Ci
= 0 for i ∈ [k] by Theorem 4.

October 29, 2018 DRAFT



18

K=1 K=2 K=3

0 0 I

0

00

0

0 I

0 0

0 0

1 0

0 1

0 0 0I

0 0

00 0

0 0

I 0

1
1B 1

2B 2
2B2

1B 2
3B 3

2B3
1B 3

3B 3
4B

1
2

1
1 BB 

1
2

1
1 BB 

2
3

2
1 BB 

2
3

2
1 BB 

2
3

2
2 BB 

2
3

2
2 BB 

Fig. 5: The construction of MDR codes.

For i, j ∈ [k],

B′j|R′i,C′i =

 Bj|Ri,Ci
+Bk+1|Ri,Ci

0

0 Bj|Ri,Ci
+Bk+1|Ri,Ci

 =

 Bj|Ri,Ci
0

0 Bj|Ri,Ci


which is non-singular if i = j, and zero matrix otherwise. For i ∈ [k′−1], as Ri = Ci, I|Ri,Ci

= 0.

Thus B′k+1|R′i,C′i =

 0 I|Ri,Ci

0 0

 = 0. For the same reason, we have B′k′+1|R′i,C′i = 0. Thus disk

Di, i ∈ [k′ − 1] can be recovered by the strategy R′i, C
′
i. For the case of i = k′ and i = k′ + 1,

we can see that R′i, C
′
i satisfy the optimal repair conditions of Theorem 4.

Finally, condition (P2) is directly satisfied from the construction, and condition (P1) is also

satisfied, since for i ∈ [k′ − 1], B′i =

 Bi +Bk+1 0

0 Bi +Bk+1

 is non-singular according to

the previous analysis.

In order to generate MDR codes with this approach, we need an initial repair-optimal RAID-6

code satisfying (P1) and (P2). The following (k = 1, r = 2) RAID-6 code can be applied:

B1 =

 0 1

0 0

 , B2 =

 0 0

1 0


R1 = C1 = {1} , R2 = C2 = {2}
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We can verify that this code satisfies the requirement of our approach. The resulting MDR codes

are shown in Fig. 5 for the case k = 1, 2, 3.

VI. ACHIEVING THE MINIMUM ENCODING OVERHEAD WITH MDR CODES

Besides disk I/O overhead, another important metric of a RAID-6 code is coding complexity.

In this section, we will show that we can achieve the minimum encoding complexity with MDR

codes.

A. Encoding Complexity

The encoding complexity considers the number of XORs to generate the coding disks P, Q.

As the row parity disk P can be directly computed using k − 1 XORs for each block, we only

need to consider computing the Q disk. A direct way to compute the Q disk is to calculate

dk+2 =
∑k

i=1Aidi. But with the knowledge of row parity disk, we may calculate the Q disk

with fewer XOR operations.

We accomplish this in a recursive way. Let yt denote the number of XORs to calculate the Q

disk in the case k = t. Let Bi, i ∈ [t + 1] represent the (t − 1, 2t−1) MDR code and B′i, i ∈ [t]

represent the (t, 2t) MDR code constructed from Bi. Let d′i, i ∈ [t+2] denote the blocks in disk

Di,

d′t+2 =
t−1∑
i=1

 Bi 0

0 Bi

 d′i +

 Bt 0

0 Bt

 t−1∑
i=1

d′i +

 0 I

0 0

 d′t +

 0 0

I 0

 d′t+1

Carefully checking the above formula, we can see that calculating the upper half of the first

two terms is equivalent to calculating the Q disk in the (t− 1, 2t−1) MDR code, with the upper

half of d′i, i ∈ [t− 1] as the data blocks. According to the induction hypothesis, if we know the

corresponding P disk of the (t− 1, 2t−1) MDR code, we can calculate the first two terms with

2yt−1 XORs. Fortunately, we are able to acquire this information, i.e., the value of
∑t−1

i=1 d
′
i, in

the calculation of the P disk of the (t, 2t) MDR code. Thus, we have

yt = 2yt−1 + 2t−1 + 2t−1
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Fig. 6: The MDR code with k = 3. The Q disk is calculated as the parity of blocks containing

the same number.

Note that for the initial case k = 1, blocks in the P disk and Q disk are replications of data

blocks, which means y1 = 0. Solving this recursive equation, we obtain yt = (t− 1)2t. As there

are r = 2t blocks in the coding disk, the average number of XORs to compute one coded block

is k − 1, which is optimal [6].

Example. Consider the (k = 3, r = 8) MDR code shown in Fig. 6. We use this example to

explain how the Q disk can be calculated with k − 1 = 2 XORs for each block. For the first

block in the Q disk, we may directly compute it with d5,1 = d1,2 + d2,3 + d3,5, which takes 2

XORs. For the third block in the Q disk, d5,3 = d1,1 + d1,4 + d2,1 + d3,7. As we may catch the

intermediate result d1,1 + d2,1 in the computation of P disk, we can see that d5,3 can also be

computed with 2 XORs.

B. Recovery Complexity

The recovery complexity counts the average number of XORs to regenerate a failed block in

a single disk failure recovery.

Theorem 6: With MDR codes, a failed basic disk can be recovered by k − 1 XORs for
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computing each lost block.

Proof: Please refer to the appendix for the proof.

Note that if only the Q disk fails, we are currently unable to recover it with k − 1 XORs,

since applying the method in Sec. VI-A requires computing the P disk at the same time, which

results in 2(k − 1) XORs for rebuilding each block of the Q disk.

VII. DISCUSSIONS

We have seen in previous sections that MDR codes achieve optimal repair disk I/O and

encoding complexity. To achieve this, however, we need a large update disk I/O and a large strip

size, which will be discussed in this section.

A. Update Disk I/O

Update disk I/O refers to the number of parity blocks that are affected by changing the content

of a data block. As the number may vary for updating different data blocks, we focus on the

average value here. In terms of the parity-check matrix H , the update disk I/O equals the average

number of ones in each column of H .

For a (k, 2k) MDR code, let xk denote the average number of ones in each column of matrices

Ai = Bi + Bk+1, i ∈ [k]. Then k2kxk is the total number of 1’s in the matrix [A1 A2 · · · Ak].

According to the construction in Sec. V, we have

k2kxk = 2(k − 1)2k−1xk−1 + (k + 1)2k−1

And for the case of k = 1, we have x1 = 1. Solving this recursive equation,

kxk = (k − 1)xk−1 +
k + 1

2

= (2− 1)x1 +
k∑

i=2

i+ 1

2
=

1

2
(k(k + 1)/2 + k)

October 29, 2018 DRAFT



22

we obtain xk = (k + 3)/4 for k ≥ 2. Note that xk is actually the average number of parity

blocks in the Q disk that are affected by the updating. As there is a row parity block affected

as well, the update disk I/O of MDR codes is xk + 1 = (k + 7)/4.

B. Strip Size

Here we use the term “strip size” to denote the number of rows in a RAID-6 array code.

According our construction, the MDR codes have strip size 2k. The other two repair-optimal

codes, Zigzag codes [10] and En Gad’s codes[11], have strip size 2k−1. Tamo et al. proved that,

in order to achieve both optimal repair and optimal update at the same time, the minimum strip

size is 2k−1 [10]. If the assumption of optimal updating is dropped, however, the minimum strip

size for optimal repair is unknown yet. Inspired by the works [10, 11], we carried out a brute-

force search (based on Theorem 4) for the minimum strip size and verified that the minimum

strip size is indeed 2k−1 for 2 ≤ k ≤ 4. For k = 5, the strip size is no less than 2k−1 − 2 = 14.

We conjecture that for a repair-optimal RAID-6 code over F2, the minimum strip size is at least

exponential to the number of data disks k.

In practice, the impact of large strip sizes is that we need a large memory to cache these

blocks during the repair process. We note that, for a (k, r = 2k) MDR code, we may carry out

the repair by caching only r/2+ 2 blocks, because r/2 lost blocks are recovered by row parity,

which can be computed one by one, with one block for the intermediate result and another for

the current block read from the disk. Assume the block size is set to 512 Bytes [18], the memory

overhead of MDR codes with 16 data disks is about 512B ×216/2 = 16MB, which is acceptable.

VIII. SIMULATION

A. Simulation Setup

To evaluate the performance of MDR codes, we use the popular disk simulator Disksim [19]

to simulate the recovery process of a RAID-6 system.
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In the simulation, we set up 10 disks in all, which are connected to an interleaved I/O bus.

Our simulation module acts as an I/O driver of a RAID-6 system, which directly generates I/O

requests and handles the request completion interrupts from each individual disk. The logical

layout is rotated among stripes of the disk array. As I/O tasks on different disks can be executed

simultaneously, we pipeline the recovery of sequential stripes, i.e., we write the recovered blocks

of the last stripe at the same time of reading blocks of the current stripe. To simulate the workload

during an online repair, we also generate random I/O requests to surviving disks.

We implement three different recovery algorithms: the conventional recovery algorithm that

uses the row parity, the RDOR [7] recovery algorithm for the RDP code and our recovery

algorithm for the MDR codes. Performance of the conventional recovery algorithm is used as

a benchmark, so that we use the performance ratio of the other recovery algorithms to the

conventional algorithm to measure the improvements.

Two metrics are tested. One is recovery time, and the other is the average access time of the

surviving disks, which is measured as the sum of the response time of each I/O request and thus

reflects the load on each disk.

B. Impact of Strip Size

We vary the block size from 512B to 8KB, so that the strip size changes from 32KB to

512KB. Simulations are carried out with 8 disks in the array, and both online repair mode and

offline repair mode are tested.

Fig. 7(a) shows the average access time with different strip sizes. As disk access time of

the recovery process is not affected by I/O requests of the other application process, we only

show the result of online repair mode. We can see that, compared with the conventional repair

algorithm, the RDOR algorithm reduces access time to about 80% ∼ 85%, and our codes further

reduce the access time to 65% ∼ 70%. As strip size grows, access times decrease for all the

three recovery algorithms due to sequential reads, but the improvement ratio does not exhibit
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Fig. 7: Simulation results.

any characterizable trend.

Fig. 7(b) shows the recovery time with different strip sizes. When the recovery process is

carried out in the off-line mode, both the RDOR and our recovery algorithm can hardly reduce

the recovery time. This is because we pipeline the disk read and write, and multiple disk reads

at different disks can be executed simultaneously. Hence disk write becomes the bottleneck. The

recovery time ratio decreases slightly as strip size grows. This is because we can not pipeline

for recovering the first strip, whose recovery time is reduced by reading less blocks from the

surviving disks.

October 29, 2018 DRAFT



25

C. Impact of the Number of Disks

We increase the number of disks from 5 to 10 to evaluate its impact on the performance of

these recovery methods.

Fig. 7(c) shows the online average access time with different number of disks. As the number

of disks grows, the access time of RDOR does not show a tendency, while the access time of our

codes decreases. This is because the ratio of read disk reads by RDOR depends on the smallest

prime that is larger than the number of systematic disks k and at the proper primes, the ratio

approaches 75% as k increases. On the other hand, our ratio approaches 50% as k increases.

For the recovery time, Fig. 7(d) shows a similar result.

IX. CONCLUSION

We studied the problem of minimizing disk I/O for every single disk repair in a RAID-6

system, including not only the repair of a data disk but also the repair of a coding disk. We

solved this problem by proving a lower bound on the minimum repair disk I/O and constructing

the MDR codes that achieve this bound. We also showed that the MDR codes achieve the

minimum computational overhead among all RAID-6 codes when the P disk is calculated at

the same time. The construction approach is a generic one, which may be used to generate

new repair-optimal RAID-6 codes with different initial codes. The main drawback of MDR

codes is that its strip size is 2k, which is twice as much as that of Zigzag codes and En Gad’s

codes. Inspired by these codes, we recently modified the construction method for MDR codes

and constructed a new family of RAID-6 codes with strip size 2k−1, which achieve the optimal

repair disk I/O in the repair of every disk and can be encoded with k XORs per each coding

block.

We implemented our codes and tested their performance through simulations. Results show

that our codes can efficiently reduce the reading overhead of surviving disks to about half of

that in the conventional way, and the total recovery time can be reduced by up to 40%.
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APPENDIX

A. Proof of Theorem 4

Proof: For the “if” part: Consider the repair of disk Di, i ∈ [k+1]. As we read the Ci rows

of surviving basic disk, we can rebuild the Ci blocks of Di with row parity. For a r-dimension

column vector d and a index set C ⊂ [d], we use d|C to denote the column vector formed by

the C elements of d. According to the definition of Bj, j ∈ [k+1], we have dk+2 =
∑k+1

j=1 Bjdj .

Consider the Ri rows of this equation:

dk+2|Ri
=

k+1∑
j=1

(Bj|Ri,Ci
dj|Ci

+Bj|Ri,Ci
dj|Ci

) = Bi|Ri,Ci
di|Ci

+
k+1∑
j=1

Bj|Ri,Ci
dj|Ci

where the second equality is because Bj|Ri,Ci
= 0 for j 6= i. As the blocks dk+2|Ri

, dj|Ci
are

read (or calculated by row parity) and Bi|Ri,Ci
is non-singular, we can see that blocks di|Ci

can

be recovered.

For the “only if” part: Assume there is a (k, r) repair-optimal RAID-6 code described by the

generator sub-matrices A1, A2, · · · , Ak with repair strategy Ri, Ci, i ∈ [k+1]. Let Ak+1 = 0 for

simplicity. As disk Di can be recovered by reading Ri blocks from the Q disk and Ci blocks

from each surviving basic disk, di can be represented by these read blocks. Similar to the proof

of Theorem 1, as every representation is derived as a linear combination of rows of equation

(1), we can use matrix [Y Z] to denote the linear combination such that Y + ZAi = I and di

is solved through the equation
∑k+1

j=1(Y + ZAj)dj + Zdk+2 = 0. Let E denote the universal
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set {1, 2, · · · , r}. In this equation, the coefficients of unread blocks must be zero, which means

(Y + ZAj)|E,Ci
= 0 for j ∈ [k + 1], j 6= i, and Z|E,Ri

= 0. Subsequently, for j ∈ [k + 1], j 6= i

(Y + ZAj)|E,Ci
= Y |E,Ci

+ Z|E,Ri
Aj|Ri,Ci

+ Z|E,Ri
Aj|Ri,Ci

= Y |E,Ci
+ Z|E,Ri

Aj|Ri,Ci
= 0

Therefore, Z|E,Ri
Aj|Ri,Ci

= Y |E,Ci
= (I+ZAi)|E,Ci

. Consider the Ci rows of the this equation,

Z|Ci,Ri
Aj|Ri,Ci

= I|Ci,C
+ Z|Ci,E

Ai|E,Ci

= Ir/2×r/2 + Z|Ci,Ri
Ai|Ri,Ci

+ Z|Ci,Ri
Ai|Ri,Ci

= Ir/2×r/2 + Z|Ci,Ri
Ai|Ri,Ci

where the last equality is because Z|E,Ri
= 0. Namely, we obtain that for j ∈ [k + 1], j 6= i,

Z|Ci,Ri
(Aj + Ai)|Ri,Ci

= Ir/2×r/2

which means the sub-matrix (Aj + Ai)|Ri,Ci
are invertible and the same for j ∈ [k + 1], j 6= i.

Note that Ak+1 = 0. When i 6= k + 1, we have (Aj + Ai)|Ri,Ci
= (Ak+1 + Ai)|Ri,Ci

= Ai|Ri,Ci

for j ∈ [k], j 6= i, which implies Aj|Ri,Ci
= 0 and Ai|Ri,Ci

is invertible. When i = k + 1, we

have A1|Rk+1,Ck+1
= A2|Rk+1,Ck+1

= · · · = Ak|Rk+1,Ck+1
is invertible.

We define the r-by-r matrix Bk+1 as Bk+1|Rk+1,Ck+1
= A1|Rk+1,Ck+1

and the other parts of

Bk+1 are all zero, i.e., Bk+1|Rk+1,E
= 0 and Bk+1|E,Ck+1

= 0. Let Bi = Ai + Bk+1, for i ∈ [k].

Note that for i ∈ [k], Bk+1|Ri,Ci
= 0 since otherwise A1|Ri,Ci

= A2|Ri,Ci
6= 0, conflicting the

fact Aj|Ri,Ci
= 0 for i 6= j. We now verify the series of matrix Bi satisfy the two properties.

Property 1) holds because Bk+1|Rk+1,Ck+1
= A1|Rk+1,Ck+1

is non-singular and for each i ∈ [k],

Bi|Ri,Ci
= Ai|Ri,Ci

+Bk+1|Ri,Ci
= Ai|Ri,Ci

is non-singular.

Property 2) holds because for the case i = k + 1, j ∈ [k], Bj|Rk+1,Ck+1
= Aj|Rk+1,Ck+1

+

A1|Rk+1,Ck+1
= 0; for the case i ∈ [k], j = k + 1, Bk+1|Ri,Ci

= 0; for the case i, j ∈ [k], i 6= j,

Bj|Ri,Ci
= Aj|Ri,Ci

+Bk+1|Ri,Ci
= 0.
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B. Proof of Theorem 6

Proof: For repairing a basic disk Di, i ∈ [k+1] with the MDR codes, we can use the row

parity to compute block di,j for j ∈ Ci, which needs k− 1 XORs. So we only need to consider

the case of computing a block di,j, j /∈ Ci. Let di|Ci
denote the column vector composed of

these blocks.

As shown in the proof of Theorem 4, we use the following equation to calculate di|Ci
:

dk+2|Ri
= Bi|Ri,Ci

di|Ci
+

k+1∑
j=1

Bj|Ri,Ci
dj|Ci

According to the construction of MDR codes, we can see that Bi|Ci,Ci
= I holds for the initial

case and is preserved in the construction. Let B′′j , j ∈ [k] be the (k − 1, 2k−1) MDR codes,

R′′j , C
′′
j be the corresponding repair strategy. Let yk denote the number of XORs to compute∑k+1

j=1 Bj|Ri,Ci
dj|Ci

. If i = k + 1,

k+1∑
j=1

Bj|Ri,Ci
dj|Ci

=
k−1∑
j=1

B′′j dj|Ci
+B′′k

k−1∑
j=1

dj|Ci

which is equivalent to calculating the Q disk of the (k − 1, 2k−1) MDR codes, which takes

(k − 2)2k−1 XORs according to the analysis in Sec. VI-A. If i < k + 1,

k+1∑
j=1

Bj|Ri,Ci
dj|Ci

=
k−1∑
j=1

 B′′j |R′′i ,C′′i 0

0 B′′j |R′′i ,C′′i

 dj|Ci
+

 B′′k |R′′i ,C′′i 0

0 B′′k |R′′i ,C′′i

 k−1∑
j=1

dj|Ci

+

 0 Ir/2×r/2

0 0

 dk|Ci
+

 0 0

Ir/2×r/2 0

 dk+1|Ci

Note that the first two terms can be calculated recursively with 2yk−1 XORs. Thus, yk =

2yk−1 + 2k−1. Combining the two cases, we have yk = (k − 2)2k−1. As di|Ci
= dk+2|Ri

+∑k+1
j=1 Bj|Ri,Ci

dj|Ci
, we can see that di|Ci

can be calculate with yk +2k−1 = (k− 1)2k−1 XORs.

As there are 2k−1 blocks in di|Ci
, the average number of XORs to repair each block is k− 1.
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