
ar
X

iv
:2

30
9.

12
00

8v
1

 [
cs

.R
O

]
 2

1
Se

p
20

23
©This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer

be accessible.

NanoSLAM: Enabling Fully Onboard SLAM

for Tiny Robots
Vlad Niculescu, Tommaso Polonelli, Member, IEEE, Michele Magno, Senior Member, IEEE,

and Luca Benini, Fellow, IEEE

Abstract—Perceiving and mapping the surroundings are es-
sential for enabling autonomous navigation in any robotic
platform. The algorithm class that enables accurate mapping
while correcting the odometry errors present in most robotics
systems is Simultaneous Localization and Mapping (SLAM).
Today, fully onboard mapping is only achievable on robotic
platforms that can host high-wattage processors, mainly due
to the significant computational load and memory demands
required for executing SLAM algorithms. For this reason, pocket-
size hardware-constrained robots offload the execution of SLAM
to external infrastructures. To address the challenge of enabling
SLAM algorithms on resource-constrained processors, this paper
proposes NanoSLAM, a lightweight and optimized end-to-end
SLAM approach specifically designed to operate on centimeter-
size robots at a power budget of only 87.9mW. We demonstrate
the mapping capabilities in real-world scenarios and deploy
NanoSLAM on a nano-drone weighing 44 g and equipped with
a novel commercial RISC-V low-power parallel processor called
GAP9. The algorithm is designed to leverage the parallel ca-
pabilities of the RISC-V processing cores and enables mapping
of a general environment with an accuracy of 4.5 cm and an
end-to-end execution time of less than 250ms.

Index Terms—SLAM, Mapping, Nano-Drone, UAV, Con-
strained Devices.

SUPPLEMENTARY MATERIAL

Supplementary video at https://youtu.be/XUSVLHJ87J0.

I. INTRODUCTION

The field of autonomous pocket-size robotics systems and

Unmanned Aerial Vehicles (UAVs) experienced rapid growth

in the past years due to the advancement and miniatur-

ization of capable embedded computing platforms creating

new possibilities for IoT applications [1]–[4]. Nano-robots,

and especially palm-size UAVs, weigh only a few tens of

grams and benefit from increased agility compared to their

standard-size counterparts, enabling them to fly in narrow

spaces reliably [5], [6]. Furthermore, their reduced dimensions

make nano-UAVs perfect candidates for safely operating near

humans, especially in cramped indoor environments [7], [8].

In most practical applications, the mission of the nano-UAV is

to follow a path through the environment that is predefined or

V. Niculescu and L. Benini are with the Integrated Systems Laboratory
of ETH Zürich, ETZ, Gloriastrasse 35, 8092 Zürich, Switzerland (e-mail:
vladn@iis.ee.ethz.ch, lbenini@iis.ee.ethz.ch).

T. Polonelli and M. Magno are with the Center for Project-Based Learning
of ETH Zürich, ETZ, Gloriastrasse 35, 8092 Zürich, Switzerland (e-mail:
tommaso.polonelli@pbl.ee.ethz.ch, michele.magno@pbl.ee.ethz.ch).

L. Benini is also with the Department of Electrical, Electronic and Informa-
tion Engineering of University of Bologna, Viale del Risorgimento 2, 40136
Bologna, Italy.

adjusted dynamically during the mission [5], [7]. For instance,

finding the source of gas leaks [9] or localizing and reaching

sensor nodes for data acquisition [10] are only a few examples

of such applications.

The environments where nano-UAVs typically fly are filled

with walls and obstacles, and thus, optimal path planning

requires good knowledge of the surroundings map [5]. Fur-

thermore, in a wide range of applications, the map can change

over time, so preprogramming the map into the nano-UAVs is

not an ideal solution [11]. In smart buildings, for instance,

where the layout of reconfigurable walls can change [12], or

simply in crowded offices where tables, chairs, and furniture

are often moved. Moreover, the arrangement of pallets and

shelves in warehouses can change from one day to another,

and therefore, the UAVs used for inventory need a constantly

updated map for reliable navigation [13]–[15].

In the scenarios mentioned so far, the drone needs an

accurate environmental map and the ability to localize it-

self within the map [11]. The algorithm class that performs

both tasks is called Simultaneous Localization and Mapping

(SLAM). Among the existing SLAM algorithms, graph-based

SLAM [16], [17] is one of the most adopted variations of

the algorithm due to its high accuracy and capability to refine

the complete trajectory. Moreover, graph-based SLAM models

each trajectory pose (i.e., position and heading) as a graph

node and the odometry measurements as graph edges. Due

to the odometry errors that typically characterize any robotic

platform, the uncertainty in the poses grows as the drone

moves [2], [18]. Hence, upon revisiting a location (i.e., loop

closure), the pose error is higher than at the initial visit.

To mitigate this issue, the robot also acquires environmental

observations (i.e., depth measurements) during the flight [19].

By comparing the observations associated with two different

poses, an accurate rigid body transformation can be derived

between the two, using an approach called scan-matching [19].

While the transformation provided by scan-matching allows

correcting the current pose, graph-based SLAM propagates

this information back to the previously added nodes in the

graph (i.e., graph optimization) and corrects the whole tra-

jectory [16]. In conclusion, the accuracy of the corrected

trajectory depends on the accuracy of the scan-matching and,

therefore, on the observations’ accuracy [20]. In most common

applications, the observations consist of depth measurements,

typically provided by LiDARs or stereo cameras [21], [22].

Although SLAM paired with LiDARs is widely used in

applications with standard-size UAVs, these solutions require

large amounts of computational resources and memory, which

http://arxiv.org/abs/2309.12008v1
https://youtu.be/XUSVLHJ87J0

2

are not available on nano-UAVs [6], [19]. Furthermore, even

the most compact LiDARs used with standard-size UAVs are

about one order of magnitude heavier1 than the maximum

payload of nano-UAVs [23].

The recent release of lightweight (i.e., 42mg), low-

resolution, and energy-efficient depth sensors based on Time

of Flight (ToF) technology has changed the status quo in the

feasibility of SLAM for nano-UAVs [24]. With the aid of such

sensors, recent works demonstrated SLAM on nano-UAVs,

but only under the assumption that the complex SLAM could

be offloaded to an external base station [19]. This approach

reduces the flight time due to the significant power consump-

tion introduced by the radio communication with the base

station [7]. Even more serious issues are the latency associated

with the wireless communication protocol and the limited

radio link range, which typically constrains the operating

area within a few tens of meters in indoor environments [7].

Furthermore, because of the limited measurement capabilities

of the early ToF sensors (i.e., a single distance value per sensor

and a narrow FoV) [5], the existing systems that enable SLAM

with nano-UAVs can only map simple-geometry environments

such as long flat corridors. In contrast to the existing works,

we exploit the novel VL53L5CX ToF sensor, which features

an 8×8 resolution and provides a 64-pixel depth map with a

Field of View (FoV) of 45◦. By mounting four such sensors

on the nano-UAV (i.e., front, rear, left, right), we achieve a

cumulative FoV of 180◦. Furthermore, spinning the drone by

45◦ results in a full angular coverage (i.e., 360◦), providing

superior loop-closure performance compared to the previous

ToF-based solutions and achieving centimeter-precision scan-

matching accuracy, similar to the LiDAR-based approaches.

Despite the sparse information provided by the ToF sen-

sors, scan-matching remains a computationally intense and

memory-hungry problem. Furthermore, the computational re-

quirements are further exacerbated by the graph optimization

performed by the graph-based SLAM, which is independent of

the depth observations. Standard-size UAV systems used for

SLAM typically employ powerful embedded computers such

as Qualcomm Snapdragon, Nvidia Jetson TX2, or Xavier [22],

which have a power consumption of a few tens of watts,

about two orders of magnitude higher than the power budget

nano-UAVs typically have for computation. Recent trends in

microcontroller design emphasize parallel processing, hard-

ware accelerators, and energy efficiency. The GAP9 System

on Chip (SoC) from GreenWaves Technologies2 exemplifies

these trends, being suited for specialized applications with

nano-UAVs. With advanced parallel capabilities provided by

the RISC-V cores, power optimization, and sensor integration,

GAP9 empowers nano-UAVs with real-time edge computing,

extended flight times, and enhanced data processing. GAP9

is based on the Parallel Ultra-Low-Power (PULP) computing

paradigm [25], has a small form factor, and a power consump-

tion below 180mW.

This paper proposes NanoSLAM, the first fully deployable

framework that enables SLAM onboard nano-UAVs, per-

1The Craziflye 2.1 weights 27 g and supports a maximum payload of 15 g,
while a lightweight LiDAR such as UST-10/20LX from Hokuyo weighs 130 g.

2https://greenwaves-technologies.com/

forming the whole computation and environmental perception

without relying on any external infrastructure or computation

offload. Furthermore, by exploiting novel and low-power depth

sensors in combination with the parallel capabilities of GAP9

SoC, our system achieves accurate indoor mapping compara-

ble with SoA results from bigger and more computationally

capable drones, commonly referred to as MAV or standard-

size UAV [1]. Exploiting the parallel capability and energy

efficiency of GAP9, we executed scan-matching and SLAM

in real-time onboard the nano-UAV, which was not performed

by any previous work. The contribution of this paper can be

summarized as follows:

(i) an optimized parallel implementation of the graph-based

SLAM algorithm that runs in the GAP9 SoC in real-time in

less than 250ms. We comprehensively examine the various

stages of the SLAM algorithm, providing an in-depth analysis

of the optimizations made to each stage. Additionally, we

evaluate the algorithm’s execution time and memory require-

ments. (ii) a parallel implementation and evaluation of the Iter-

ative Closest Point (ICP) algorithm, an SoA in scan-matching,

running onboard in 55ms. (iii) a custom plug-in companion

board for the commercial Crazyflie 2.1 nano-UAV that extends

the sensing capabilities of the drone with 4 ToF matrix

sensors, allowing it to perform scan-matching and autonomous

navigation. (iv) a communication protocol that orchestrates the

integration and data exchange between the drone’s stock MCU

and the GAP9 SoC, dictating how to store that graph, exchange

graph poses, add edges, and perform graph optimization. (v) an

extensive in-field experimental evaluation that proves our

system’s closed-loop mapping functionality, which exploits

NanoSLAM to achieve a trajectory error reduction by up to

67% and a mapping accuracy of 4.5 cm.

II. RELATED WORK

In the field of robotics, several essential components are

indispensable for facilitating autonomous navigation on di-

verse unmanned vehicles. These components encompass real-

time environment perception [26], onboard computational

capabilities for prompt mission inference [11], [27], and,

pertinent to the focus of this paper, the competence to map and

explore unknown environments [28]. Mapping an environment

is generally done by employing different combinations of

sensors [2], such as LiDARs, stereo cameras, laser scanners,

or radars. Subsequently, environmental and spatial informa-

tion collected from these sensors is paired with estimation

methods, including particle filters [11], Extended Kalman

Filters (EKFs), covariance intersection that enables position

estimation, and, finally, SLAM [29] that combines the position

information with environmental observations to generate a

layout of the environment. As discussed in the literature [30],

[31], SLAM consists of two components: the front-end pro-

cessing represented mainly by feature extraction and loop

closure, which is largely dependent on the sensors used, and

the sensor-agnostic pose-graph optimization, in charge of the

back-end processing [32].

As the name suggests, visual SLAM (vSLAM) uses images

to extract depth information [33]. It can use simple monocular

https://greenwaves-technologies.com/

3

cameras (e.g., wide angle, fish-eye, and spherical cameras),

compound eye cameras (e.g., stereo and multi cameras), and

RGB-D cameras such as depth or ToF cameras [33]. While

SLAM can be enabled at a low cost with relatively inexpensive

and limited cameras, the process involves large data volumes

and is often marred with limited mapping accuracy [34]. On

the other side, LiDARs are significantly more precise for depth

estimation and are commonly used for applications involving

high-speed moving vehicles such as self-driving cars and

drones [35]. LiDAR-based systems typically provide sparse

samples organized into high-precision 2D or 3D point clouds.

Even if they yield accurate mapping results when combined

with SLAM, LiDARS are generally expensive and heavy,

weighing a few hundred grams [35].

Today, SLAM is useful in many applications [31] such

as navigating a fleet of mobile robots to arrange shelves in

a warehouse [13], parking self-driving cars in empty spots,

autonomous race competitions [36], or delivering packages by

navigating drones in unknown environments [6]. Many avail-

able tools already provide plug-and-play SLAM solutions that

could be paired with other tasks such as sensor fusion, object

tracking, path planning, and path following [36]. Although the

mapping task seems to be a solved research problem in the

literature, it relies on strong assumptions, such as memory

availability of several gigabytes and powerful processor, e.g.,

the Intel i7 family [35], [37]. Moreover, carrying heavy

and power-hungry 3D scanners, such as stereo cameras and

LiDARs, is not considered a limitation for conventional robotic

applications [35]–[37]. However, these assumptions do not

hold for miniaturized and low-power robotic platforms, where

the hardware cost is a concern, the payload is limited to a few

tens of grams, and the computation power budget is limited

to hundreds of mW [7], [11], [38]. Hence, enabling onboard

mapping on this tiny class of devices is still an open problem.

This paper focuses on nano-UAVs as a specific application

scenario to empirically validate the efficacy of our lightweight

NanoSLAM approach. However, the challenges discussed in

enabling mapping on nano-UAVs can be extended to the

broader domain of micro-robotics and, more generally, to

low-cost and resource-constrained devices [39]. Standard-

size UAVs distinguish themselves from Micro-Aerial Vehicles

(MAVs) and nano-UAVs in their physical dimensions, weight,

total power consumption, and onboard processing capabil-

ities [39]. For the latter two, the sensing and processing

power budget represents about 1
10 of the power consumed

by the motors [7]. Presently, the majority of cutting-edge

advancements in robotic perception and mapping have been

showcased on standard-size UAVs and MAVs, which possess

a power budget ranging from 50W to 100W and a total mass

of ≥ 1 kg [40]. Consequently, these vehicles can be equipped

with high-performance onboard computing platforms, such as

GPUs featuring gigabytes of memory [40]. Conversely, nano-

UAVs, typically based on low power MCUs, weigh less than

50 g with a power budget in the range of 5W – 10W, with

only 0.5W – 1W being allocated for powering the sensors,

all the electronics, and the computational units [7], [39]. Low-

power MCUs usually offer limited memory capacity, typically

ranging from 100 kB to 1MB, posing a significant constraint

for visual-based perception and mapping [7], [11].

Previous studies conducted on MAVs and UAVs have

commonly utilized miniature, conventional 360◦ LiDAR sen-

sors [42] or depth stereo cameras [40] to perform mapping. For

instance, Kumar et al. [43] integrated single-layer LiDAR sen-

sors with inertial measurement units for indoor mapping tasks

using a DJI Phantom 3 drone. This setup required an additional

desktop-class Intel i5 processor onboard. The LiDAR sensor

employed measures 62mm×62mm×87.5mm, weighs 210 g,

and consumes approximately 8.4W. Similarly, Gao et al. [44]

integrated a multi-layer LiDAR sensor with a desktop-class In-

tel i7 processor to enable 3D mapping of indoor environments.

The LiDAR sensor they use consumes 8W and measures

103mm× 103mm× 72mm with a weight of 509 g. Another

approach by Fang et al. [45] uses an RGBD camera combined

with a particle filter to navigate through obstructed shipboard

environments. Their platform is 58 cm×58 cm×32 cm in size,

carries over 500 g of instrumentation, and is operated by a

high-performance octa-core ARM processor. Table I provides

an overview of SoA mapping strategies in the UAV field,

encompassing sensor types, mapping accuracy, and power

consumption of the computing platforms. For example, Causa

et al. [35] proposed a scalable mapping strategy based on

LiDAR and GNSS, utilizing a standard-size UAV weighing

3.6 kg with off-board processing. Shen et al. [22] focused on

onboard intelligence, utilizing a power-hungry Nvidia Xavier

(30W) and a VLP-16 LiDAR. Huang et al. [2] entrusted the

mapping algorithm and onboard processing to a Jetson TX2,

equipped with a multi-core CPU and a GPU. Additionally,

Chang et al. [37] proposed a robust multi-robot SLAM system

designed to support swarms, but the results were validated

offline using an Intel i7-8750H processor. Although these

approaches demonstrated good mapping capabilities in the

range of 5 to 20 cm, they involve large and heavy sensors

that require power-intensive processing.

Implementing SLAM on nano-UAVs or any miniaturized

and low-power hardware [46] is non-trivial due to the large

memory and computation requirements typically associated

with scan-matching or graph optimization. Moreover, alterna-

tives such as offloading heavy computation tasks to an external

computer is often an unpractical solution. In [2], authors show

how the communication latency of a cloud-based multi-robot

SLAM solution can reach up to 5 s, an unacceptable value

in most nano-UAV uses cases. The severe limit imposed by

continuous remote communication poses limits to the mapping

speed and the overall system reliability [2], which further

demonstrates the need for having a fully onboard SLAM even

on resource-constrained nano-UAVs.

One approach to address the computational challenge in-

volves parallelizing different processes on ultra-low power

parallel SoCs [25], [46]. Utilizing embedded accelerators or

multicore MCUs for processing, leveraging single instruction

multiple data (SIMD) calculations, can enhance performance

in certain scenarios [25], [47]. To this end, novel PULP SoCs

have emerged in recent years, offering clusters of cores within

100mW of power consumption. Rossi et al. [25] present the

basis of the commercial SoC GAP family from Greenwaves,

which has already demonstrated its capabilities in the field

4

Work On-board processing Sensor Latency
Map

accuracy
Field test

Power
Consumption

System
Weight

Nano-UAV and MAV

This work Yes (Cortex-M4)
4× ToF 64-pixel

VL53L5CX
247 ms 4-8 cm Yes 350 mW 44 g

[6] No 4× ToF VL53L1x Post-processing 10-20 cm Yes - 27 g

[5] Yes (Cortex-M4) 4× ToF VL53L1x <10ms No Map Yes 240mW 31.7 g

[19] No (Intel i7 station) 4× ToF VL53L1x 214ms 5-15 cm No - 31.7 g
[41] No 4× ToF VL53L1x Post-processing 4.7 cm No - 401 g

Standard-size UAV

[35] No LiDAR - 5-20 cm Yes - 3.6kg

[22] Yes (Xavier) VLP-16 LiDAR 49ms 2.14m No 30W >2kg

[2] Yes (Jetson TX2) RP-LiDAR ∼1 s - Yes >10W >2kg

[37] No (Intel i7 station) LiDAR Post-processing 15-20 cm Yes - -
[40] Yes (Jetson TX2) Intel RealSense D435 ∼120ms - Yes 7.5W 1.3kg

TABLE I: System and performance comparison between this paper and the State-of-the-Art (SoA) works present in the literature.

On-board processing, sensing elements, mapping accuracy, and system setups are compared.

of nano-UAVs for accurate localization [11] and autonomous

navigation [7]. In particular, GAP9 is selected for the scope

of this paper to carry the intensive computation.

To attain an optimal solution, the sensor selection needs to

consider an optimal trade-off between power consumption, ac-

curacy, and weight. In [48], the authors explore the possibility

to use visual-based perception to enable obstacle avoidance

and mapping on nano-UAVs. However, today, this direction

does not seem to be promising due to the low performances

of miniaturized RGB cameras and the large amounts of data

they generate – which needs to be processed by resource-

constrained processors [7], [49]. In their work [49], Tijmons et

al. propose a stereo vision-based obstacle avoidance system for

a flapping wing UAV, which demonstrates promising results

with an onboard processing frequency of 15Hz. This approach

aligns with common methodologies employed in standard-

size UAVs. However, their implementation needs an additional

microcontroller (i.e., STM32F405) exclusively dedicated to

image processing and the sensor board alone requires an

energy consumption of 484mW. It is worth noting that while

the authors of [49] tested their system in real environments,

they do not report any statistical analysis of the success rate.

Furthermore, the authors acknowledge the limited robustness

of their system in non-ideal flight conditions, such as the pres-

ence of small obstacles. Another practical example is provided

by [7], where the authors introduce a grayscale camera-based

navigation solution that is deployed onboard a nano-UAV to

facilitate autonomous navigation and obstacle avoidance. A

CNN is used for perception and exhibits reliable performance

in detecting obstacles, allowing the drone to adjust its forward

velocity or heading. However, in unfamiliar environments,

particularly when executing 90◦ turns, the CNN’s performance

drops drastically, resulting in a high probability of collision

when the drone exceeds 0.6m s−1 [7]. Additionally, their

solution often struggles to avoid collisions with unknown

obstacles placed in narrow environments such as corridors.

Thus, vision-based approaches are not optimal solutions to

enable onboard depth estimation with nano-UAVs, which is

why we employ sensors that directly measure the depth.

Since the commercially available LiDAR exceeds the power

and weight constraints of pocket-size UAVs, alternatives have

been investigated. Recent studies have shown potential in

enabling autonomous navigation with depth sensors based

on the ToF technology. In [24], the authors investigate the

possibility of using a commercial multi-zone ToF sensor

that exhibits good measurement accuracy when measuring

distances smaller than 2m. Moreover, [26] used a lightweight

64-pixel ToF sensor for robust obstacle avoidance in indoor

and outdoor scenarios, with a maximum speed of 1.5m/s. At

the time of writing, two commercially available depth sensors

stand out: the VL53L5CX from ST Microelectronics and the

ToF IRS2381C REAL3 from Infineon. The latter boasts an

impressive resolution of 38,000 pixels and a maximum range

of 4 meters. However, it requires an external illuminator,

consumes up to 680mW for the entire circuitry, and has a

weight exceeding 10 g. On the other hand, the VL53L5CX

offers a lower resolution of 64 pixels but is significantly

lighter, weighing only 42mg. Additionally, its prior utilization

in the nano-UAV field [11], [24] serves as a compelling

motivation for selecting it for this paper.

As depicted in Table I, the existing literature offers only a

limited number of studies proposing mapping solutions that

use UAVs and have been successfully evaluated in field [2].

Notably, [37], [40] achieve their objectives without relying

on external infrastructure. However, within the nano-UAV

domain, even fewer works tackle the mapping challenge [6],

[19], [41], and they offload the computation to an external base

station. Furthermore, the existing works performing mapping

with nano-UAVs are not able to reach the same level of

accuracy as standard-size UAVs within the literature.

To the best of our knowledge, this paper introduces the

first system that enables entirely onboard SLAM execution to

enable accurate mapping of general environments, providing

a comprehensive methodology, implementation, and field re-

sults. Our study demonstrates the system’s functionality even

with low-power miniaturized sensors that weigh only 44 g.

The achieved accuracy aligns with the SoA for MAVs and

standard-size UAVs, with a mapping error down to 4.5 cm. The

proposed system facilitates advanced autonomous capabilities

in nano-UAVs, paving the way for enabling additional features

such as optimal path planning and multi-agent collaboration.

5

III. ALGORITHMS

This section presents a lightweight localization and mapping

methodology that leverages the scan-matching and graph-

based SLAM algorithms, targetting pocket-size robotic plat-

forms and emerging low-power processors. Our solutions can

enable any robotic platform of similar size or bigger to perform

low latency SLAM in real-time, given depth measurement ca-

pabilities enabled by sensors such as 8×8 STMicroelectronics

VL53L8CX described in Section II.

A. Scan Frames and Scans

Our objective is to conduct 2D localization and mapping uti-

lizing depth sensors. Therefore, we assume a system equipped

with ns depth sensors (e.g., ToF) that provide measurements

in the 2D plane with a resolution of nz pixels (i.e., zones)

per sensor. Figure 1 shows an example of such a system with

ns = 4 and nz = 8, illustrating the drone, the ToF depth

sensors, and how the distance measurements can be projected

in the world frame. The world frame, body frame, and sensor

frame are represented with W , D, and S, respectively.

Let xk = (xk, yk, ψk) be the state of the drone (i.e.,

pose) expressed in the world coordinate frame at the discrete

timestamp k. Furthermore, we use α ∈ {1, 2, . . . ns} to index

among ToF sensors and β ∈ {1, 2, . . . nz} to index among the

zones of each sensor. The distance provided by sensor α for

the zone β at instant k is marked as dαβk . Equation 1 shows

the distance measurement projection dαβk acquired at pose xk
into the world coordinate frame W . Indeed, the distance dαβk
provided by the sensor is not the absolute distance to the

object but the projection of the absolute distance on the OX
axis of the sensor frame Sα. Thus, tan(θβ) · d

αβ
k represents

the y-coordinate of the obstacle in the same sensor frame,

where θβ is the angle of each sensor zone. Translating the

obstacle’s coordinates to the origin of the drone’s body frame

B and rotating it to the world frame W leads to the second

term of Equation 1. The translation is performed by adding

the offset (oαx , o
α
y) to the obstacle’s position – note that the

offset is expressed in D, and it is different for each sensor.

R represents the 2D rotation matrix and the sum ψk + γα
represents the angle between Sα and W , where ψk is the

heading angle between D and W ; γα represents the rotation

of the sensor frame w.r.t D and for the example in Figure 1,

γα ∈ {0◦, 90◦, 180◦, 270◦}. Lastly, we use the coordinates of

the pose (xk, yk) to perform another translation and obtain

the coordinates of the obstacle expressed in the world frame

W . At every timestamp k, the ToF sensors provide at most

nsnz distance measurements – ns sensors × nz zones – as

some distance measurements might be invalid and therefore

not considered. Projecting the nsnz points using Equation 1

leads to the collection {(pαβx , pαβy) | α ≤ ns;β ≤ nz} that we

call a scan frame.

(

pαβx (k)
pαβy (k)

)

=

(

xk
yk

)

+R(ψk+γα)

(

dαβk + oαx
tan(θβ) · d

αβ
k + oαy

)

(1)

The 2D point collection in the scan frame could be further

used as input for the scan-matching algorithm. However, the

cardinality of a scan frame (i.e., the number of 2D points) is

Fig. 1: Illustration of the four ToF sensors onboard the drone

and the coordinate frames of the world, drone, and sensors.

still too small to enable accurate scan-matching. We overcome

this issue by stacking nsf consecutive scan frames in a set

that we call a scan and define as Sk = {(pαβx (k̃), pαβy (k̃)) |

α ≤ ns;β ≤ nz; k ≤ k̃ < k + nsf}. When the acquisition

of a new scan is triggered, the robot starts appending new

scan frames until it reaches the count of nsf . The resulting

cardinality of a scan is nsfnsnz points (minus the invalid

pixels), which we call the scan size. Moreover, every scan Sk
has an associated scan pose xk, which is the drone’s pose

when the scan acquisition starts.

Let f be the Field of View (FoV) of one ToF depth sensor,

which leads to a cumulative FoV of nsf , generally smaller

than 360◦. To virtually increase the FoV and achieve full

coverage, the drone also spins by
360−nsf

ns
degrees in place

around the z-axis while acquiring the scan. For example, given

the scenario in Figure 1 and assuming an FoV of 45◦ for each

sensor, the drone should spin other 45◦ during the scan to

cover the surroundings completely. With this mechanism, scan-

matching can determine the transformation between two scans

Sp and Sq , which also applies to their associated scan poses

xp and xq . The scan size is a balance between scan-matching

accuracy and memory usage, determined by the limitations of

the system.

B. Scan-matching

Scan-matching is the process of determining the optimal

rigid-body transformation between two scans. This transfor-

mation consists of rotation and translation, and with an ideal

noise-free scenario, it should result in perfect overlapping with

the other scan. Since scans and poses are strictly correlated, the

transformation resulting from scan-matching also applies to

the poses. When the drone is near a previously visited position,

scan-matching can derive an accurate transformation w.r.t. a

6

Listing 1 The stages of the ICP algorithm. N ICP
iter represents

the number of iterations and R∗, t∗ the final solution after the

algorithm executes.

for k in range(NICP
iter):

Compute correspondences

for i in len(Sp):

correspondence[i] ← argminj‖pi − qj‖

Calculate the transformation

R∗, t∗ ← Equation 2

Apply transformation to scan Sp

Sp ← R∗Sp + t∗

previously acquired pose in that location. In this way, scan-

matching is used to correct the accumulated odometry errors.

In this work, we implement and use ICP, an SoA algorithm in

scan-matching [50].

We define two scans Sp = {p1,p2, . . .} and Sq =
{q1, q2 . . .} where pi and qi are 2D points in the scans – we

changed the initial indexing to enhance readability. Determin-

ing the optimal overlap between Sp and Sq can be formulated

as a least squares problem, as shown in Equation 2 [50].

Note that Equation 2 requires to know what element qi in

scan Sq corresponds to the element pi in scan Sp. If the

correspondences are known, a direct and optimal solution can

be obtained by solving the optimization problem in Equation 2.

This is typically done by offsetting each scan by its center of

mass and then applying a rotational alignment based on the

singular value decomposition method [50].

R∗, t∗ = argmin
R,t

∑

‖qi − (Rpi + t)‖2 . (2)

However, the correspondences are unknown in our case

and in most of real-world scan-matching applications. A

common heuristic for determining the correspondences is

to use the Euclidean distance – i.e., pairing each point pi
in Sp with the closest point qj in Sq [50]. This implies

solving the problem argminj‖pi − qj‖ for every point pi,

using an exhaustive search over all elements in Sq . Once

these approximate correspondences are established, Equation 2

determines the transformation between the two scans, which is

then applied to Sp. Repeating this process until the two scans

overlap represents the ICP algorithm, which we summarize in

Listing 1.

C. Graph-based SLAM Algorithm

In most GPS-denied environments, such as indoor scenarios,

the drone’s internal state estimator computes the position and

heading by integrating velocity and angular velocity measure-

ments. However, the measurements are affected by sensor

noise, and integrating noisy data over time results in drift.

Equation 1 shows that projecting distance measurements in the

world frame to obtain a scan or the map requires trajectory

knowledge. Since the trajectory error impacts the accuracy

of the map, we use SLAM to first correct the trajectory

and then compute the map w.r.t. the corrected path. For this

purpose, we implement the graph-based SLAM introduced in

[16], which can use scan-matching information to correct the

trajectory. The graph-based SLAM represents the trajectory

as a pose graph, where each pose (i.e., 2D position and

heading) is modeled as a graph node, and the edges are relative

constraints between the nodes. We distinguish two types of

graph edges: (i) the odometry edges incorporating motion

information between any two consecutive poses, and (ii) the

loop closure (LC) edges which embody relative measurements

derived by ICP.

Let N be the number of poses and n the number of LC

edges. Moreover, let X = {x0, . . . ,xN−1} be the graph

nodes expressed in W , and zij = (zx, zy, zψ) the graph edge

measurements, the latter being expressed in the coordinate

frame of pose xi. We note as ẑij the prediction of an

edge measurement, or in other words, the edge measurement

computed given two poses xj and xi. Pose graph optimization

(PGO) involves the estimation of optimal pose values that

ensure consistency between the edge measurements zij and

the predicted measurements ẑij. As shown in [16], this

is done by minimizing the sum of the squared differences

eij = zij − ẑij , where Equation 3 gives the maximum

likelihood solution that requires the initial pose x0 and the

edges zij to compute the optimal poses. The number of terms

in the sum is equal to the number of edges in the graph,

and Ω is the diagonal information matrix, which weighs the

importance of each edge. Since ICP typically provides accurate

results, the LC edge measurements are more precise than the

odometry edge measurements.

eij = zij − ẑij(xi,xj) ,

X∗ = argmin
X

∑

i,j

eTijΩeij . (3)

Running SLAM onboard a resource-constrained device in

real-time requires solving the optimization problem in Equa-

tion 3 efficiently. Since this is a non-linear problem, there is

no closed-form solution, but iterative methods such as Gauss-

Newton have been proven effective if a good initial guess is

known. In every iteration, the error function eij(xi,xj) is

approximated with its first-order Taylor expansion, reducing

the problem to a linear equation system. This paper provides an

efficient implementation of the graph-based SLAM algorithm

derived from [16], which is in charge of PGO. We summarize

the algorithm in Listing 2 and discuss it in detail in Section V.
(

zx
zy

)

= R−ψi

(

xi+1 − xi
yi+1 − yi

)

, (4)

zψ = ψi+1 − ψi . (5)

The graph-based SLAM algorithm requires the initial pose

x0, the edge measurements zij , and an initial guess of the

pose values. The initial pose x0 is the drone’s pose right after

take-off, and without loss of generality, it is always considered

(0, 0, 0)T . Since there is no additional information about the

poses, the best initial guess is computed by forward inte-

grating the odometry measurements w.r.t. x0. Consequently,

the poses’ initial guess encompasses the same information as

the odometry edge measurements, and therefore, it suffices to

7

Listing 2 The graph-based SLAM algorithm that performs

PGO. The outer for loop runs for NSLAM
iter iterations.

1. Compute the odometry edge measurements

for i in range(N − 1):

zi,i+1 ← Equations 4− 5

2. Compute the LC edge measurements

for k in range(n):

zij ← ICP(xi,xj)

3. Graph optimization

for k in range(NSLAM
iter):

3a. Compute H and b

H ← 0, b← 0, H11 ← I3

for edge in edges:

Compute the Jacobians

Aij ←
∂eij(x)

∂xi

∣

∣

∣

∣

x=x∗

Bij ←
∂eij (x)

∂xj

∣

∣

∣

∣

x=x∗

Construct the linear system matrix

Hii+ = AT
ijΩAij Hjj+ = AT

ijΩBij

Hij+ = AT
ijΩBij Hji+ = BT

ijΩBij

Construct the linear system vector

bi+ = AT
ijΩeij bj+ = BT

ijΩeij

3b. Solve the linear system H∆x = −b

Permutation HP = PHP T
, bP = Pb, ∆xP = P∆x

Solve HP∆xP = −bP

Cholesky decomposition HP = LPL
T
P

Forward substitution LPy = −bP

Backward substitution LT
P∆xP = y

Retrieve the solution ∆x

Inverse permutation ∆x = P−1∆xP

3c. Update the solution

x∗ ← x∗ +∆x

store only the poses. This mechanism is convenient because, in

many robotics applications, the robot’s state estimator directly

integrates the odometry measurements and provides the pose

values. In this way, the odometry edge measurements are

calculated right before the optimization is performed, as shown

in the first for loop in Listing 2. Each measurement zi,i+1 is

expressed in a coordinate frame rotated by ψi and computed

using Equations 4 – 5. The second for loop calculates the LC

edges, using the ICP algorithm introduced in Section III-B.

Once all the edge measurements are calculated, the actual

graph optimization can start, performed in the double for

loop. Minimizing Equation 3 when eij(xi,xj) is linearized

around the current pose guess is equivalent to solving the linear

equation system H∆x = −b [16]. H and b are computed in

the inner for loop. Aij and Bij are 3×3 matrices and represent

the Jacobians obtained after linearization. Similarly, the 3× 3
blocks Hii, Hij , Hjj , and Hji represent the contribution

on the H matrix of each graph edge from node i to node

j. The dimension of the blocks bi and bj is 3 × 1, and they

construct the system vector b. Given the constituent elements

of matrix H and vector b, their dimension is 3N × 3N and

3N × 1, respectively. The 3N × 1 vector x∗ serves as the

ongoing estimate of the poses (stacked together), continuously

refined during the iterative graph optimization process. Before

the optimization starts, the initial guess is loaded into x∗.

The next step is to solve the linear system H∆x = −b.

Inverting matrix H would demand significant memory and

computational resources, inefficient for resource-constrained

devices [51]. Nonetheless, more efficient alternatives have

been suggested in the literature, which leverage the Cholesky

decomposition [52], [53]. Since H is symmetric positive-

definite, the decomposition calculates the lower triangular

matrix L, such that H = LLT . The equation system be-

comes LLT∆x = −b. In addition, we make the notation

y = LT∆x. Since L is triangular, solving Ly = −b is

trivial using the forward substitution method. Having y, the

solution ∆x is easily calculated by solving y = LT∆x using

backward substitutions. Lastly, the solution ∆x is added to

the current estimate of poses. Typically, the outer loop iterates

until ∆x reaches a sufficiently small value or becomes zero.

The ordering of the rows and columns of matrix H in-

fluences the non-zero count and computation time of matrix

L [51]. Permuting both the rows and columns of H is done

by the multiplication PHP T , where P is the permutation

matrix – i.e., an identity matrix with reordered rows [51].

Exploiting the property P−1 = P T , the linear system is

rewritten as HP TP∆x = −b. Multiplying both sides by

P on the left and making the substitutions HP = PHP T ,

bP = Pb, and ∆xP = P∆x leads to HP∆xP = −bP .

Lastly, ∆x is retrieved from ∆xP , which implies a negligible

overhead. Therefore, applying the permutation leads to the

same mathematical problem, requiring the additional step

of retrieving ∆x from ∆xP , which comes with negligible

overhead. The process of solving H∆x = −b leveraging the

Cholesky decomposition and the permutation mechanism is

described in step 3b of Listing 2. In Section V, we discuss

how the permutation matrix P is obtained.

D. SLAM in Real-world Scenarios

Figure 2 shows how a robot trajectory can be discretized

into a pose graph. In this example, the drone flies along a

square loop corridor, following the outer wall until it reaches

the start point again. As the drone advances, it keeps adding

new poses to the graph at fixed intervals using the information

provided by the internal state estimator. The pose x0 is

the starting point and, therefore, error-free, but since the

following poses are obtained based on integration w.r.t. x0,

they are affected by errors due to odometry drift. We note

the poses as x0,x1, . . .xN−1 and represent them with empty

circles in Figure 2, while the odometry constrains z01, z12, . . .
are the edges connecting the circles. Performing the graph

optimization at this point would lead to no change in the

poses because any pose xi+1 is obtained by integrating the

measurement zi,i+1 w.r.t. xi and therefore the poses and edge

measurements are already in agreement – i.e., the sum from

Equation 3 is already zero.

In Figure 2, the filled grey circles denoted as xR0 ,x
R
1 , . . . ,

represent the actual (i.e., the ground truth) position and head-

ing of the poses, which are not known to the drone. At the

8

Fig. 2: The figure shows how a robot trajectory is discretized

into a pose graph when passing through a square loop corridor.

The drone keeps adding poses to the graph using information

from the internal state estimator. The poses are affected by

errors due to odometry drift.

end of the mission, even if the drone estimates that it crosses

the starting point again (i.e., x0 = xN−1), its actual pose is

xRN−1. To mitigate the odometry errors, the drone acquires

observations (i.e., a scan) in xN−1, which it compares with

the scan acquired in x0, as shown in Figure 2. We call as

reference scan the scan acquired when a place is visited for

the first time – e.g., the scan acquired in x0. Furthermore, we

define as LC scan the scan acquired when a place is revisited –

e.g., the scan acquired in xN−1. An LC scan is always paired

with a reference scan or another LC scan, and ICP is used to

derive a transformation between the two. In the example from

Figure 2, ICP is used to derive a transformation between x0

and xN−1, and therefore add a new LC edge to the graph –

from node N − 1 to node 0. Once there is at least one new

LC edge in the graph, graph-based SLAM can run to correct

the existing poses. After the optimization completes, the LC

edges are typically kept in the graph. In the context of our

approach, we assume an unchanging environment. Yet, should

alterations occur within the environment that lead to scans that

do not overlap, we identify these situations and discard the

LC edge. The procedure for quantifying the degree of overlap

between two scans is elaborated upon in Section VII.

E. Optimizing Large Graphs

The elements of graph-based SLAM were presented in a

simple example in Figure 2, but they are representative of

any graph and any number of poses or constraints. However,

optimizing graphs larger than a few hundred poses with this

method might be challenging because embedded platforms are

typically constrained to a few hundred of kB of RAM. To

address this problem, we implement a solution based on the hi-

erarchical optimization approach introduced in [54]. The idea

is to divide the graph into multiple subgraphs and apply the

graph-based SLAM algorithm from Listing 2 on each subgraph

– we refer to this approach as hierarchical graph-based SLAM.

For this purpose, a sparse graph X̃ = {x̃0, . . . , x̃M−1} is

created first, whose poses are a subset (but still representative)

Fig. 3: Representation of the sparse graph (green) as a subset

of the complete graph. The black arrows represent the odome-

try edges, the dashed black arrow represents the LC edge, and

the dashed green arrows represent the additional constraints

derived for optimizing the subgraphs.

Fig. 4: A breakdown of the hierarchical graph-based SLAM.

of the complete graph X . We mention that the poses marked

with a tilde are just an alternative notation for the poses

already present in X to emphasize that we are referring to the

sparse graph. We provide a graphical representation of such a

hierarchical optimization problem in Figure 3, where the poses

of the sparse graph are represented in green. Furthermore,

Figure 4 shows a four-step breakdown of the hierarchical

optimization. Using the scan-matching constraints (e.g., zICP
in Figure 2), the sparse graph is optimized, resulting in the

new set of poses {x̃opt1 , . . . , x̃optM } – as shown in Figure 4-(b).

The idea now is to use the optimized poses of the sparse graph

as constraints to correct the entire graph X .

For each pair of consecutive poses in the sparse graph

(x̃opti , x̃opti+1) we build a subgraph consisted of these poses

and the in-between poses of the complete graph – e.g.,

{x0,x1, . . . ,x4} or {x4,x5, . . . ,x9}. To be more general,

we consider the subgraph {xk,xk+1, . . . ,xl}. We recall that

the xk = xi and xl = xi+1. Since we have already corrected

the extremes (i.e., x̃
opt
i and x̃

opt
i+1), this information can be

further used to derive the constraint that allows optimizing the

whole subgraph. In this scope, we firstly offset every pose in

the subgraph as shown in Figure 4-(c), so that xk/x̃i matches

x̃
opt
i – necessary because PGO never corrects the first pose.

Then Equations 4 – 5 are used to derive a constraint z̃i+1,i

between poses x̃
opt
i+1 and x̃

opt
i , which is added to the subgraph

as an LC edge from node l to k – this only simulates the

effect of loop closure, as the LC edge is not provided by ICP

directly. After these operations are performed on the M − 1
subgraphs as shown in Figure 4-(d), the optimization of X

is complete. This section, therefore, introduces two manners

of performing PGO: directly applying graph-based SLAM on

9

the existing pose graph or dividing the graph into multiple

smaller subgraphs and optimizing every subgraph individually.

The advantages of every approach are discussed in Section V.

Sampling the poses of the sparse graph from the complete

graph X is based on a threshold on the robot movement. The

elements comprising the complete graph are chronologically

traversed, and a new node is exclusively incorporated into

the sparse graph if the Euclidean distance from the most

recently added node exceeds a threshold value dmin or if the

difference in heading surpasses a threshold value ∆ψmin. The

sparse graph must also include all scan poses as a mandatory

requirement, in addition to the threshold-based added poses.

This is because the LC edges resulting from ICP only play a

role in optimizing the sparse graph and not also the subgraphs.

However, the number of scan poses is usually negligible

compared to the sparse graph size.

IV. NANO-UAV SYSTEM SETUP

Our mapping system is designed to be flexible and cover

a large set of robotic platforms. The only prerequisite con-

cerns the sensor, which has to be a depth camera. Thus

the algorithm and the implementation can be adapted to

support a different hardware setting, e.g., various processors or

sensing elements. In this paper, we selected the Commercial-

off-the-Shelf (COTS) nano-UAV Crazyflie 2.1 from Bitcraze

to demonstrate the effectiveness of our solution in ultra-

constrained platforms. In this way, our results can be easily

replicated using commercially available hardware.

The open-source firmware of Crazyflie 2.1 provides capabil-

ities for flight control, state estimation, radio communication,

and setpoint commander. The drone’s main PCB also acts as

a frame, comprising the electronics such as an Inertial Mea-

surement Unit (IMU), a radio transceiver (Nordic nRF51822),

and an STM32F405 processor. The latter features a maximum

clock frequency of 168MHz and 192 kB of RAM, but over

70% of the resources are already used by the firmware to

perform the control and estimation. Furthermore, the drone

features extension headers that can be used to add additional

decks (i.e., plug-in boards). We, therefore, also included the

commercial Flow deck v2, which exploits a downward-facing

optical flow camera and single-zone ToF ranging sensor to

enable velocity and height measurements fused by the on-

board Extended Kalman Filter (EKF) to perform position and

heading estimation. In addition to the Flow deck, we equip the

drone with two custom-designed boards: one containing four

lateral depth ToF sensors to enhance the drone’s capabilities

to sense the surroundings, and the second deck contains the

GAP9 SoC, used as a co-processor to extend the Crazyflie

2.1 computation capabilities. In this configuration, the total

weight at take-off is 44 g, including all the hardware used for

the scope of this paper. The fully integrated system featuring

our custom hardware is shown in Figure 5a.

A. Custom Quad ToF Deck

The VL53L5CX is a lightweight multi-zone 64-pixel ToF

sensor, weighing only 42mg. Its suitability for nano-UAV

applications was evaluated in a study by Niculescu et al. [24].

(a) The fully integrated system.

(b) The custom quad ToF deck. (c) Architecture of the GAP9.

Fig. 5: (a) Our prototype based on Crazyflie 2.1 extended with

the ToF Deck and the Co-processor Deck. (b) The custom

quad ToF deck featuring four ToF multi-zone sensors. (c) A

simplified diagram showing the blocks of the GAP9 that are

most relevant for this work.

This sensor offers a maximum ranging frequency of 15Hz
for an 8×8 pixel resolution, with a FoV of 45◦. Additionally,

the VL53L5CX provides a pixel validity matrix alongside the

64-pixel measurement matrix, automatically identifying and

flagging noisy or out-of-range measurements. To accommo-

date the use of multi-zone ranging sensors on the Crazyflie

2.1 platform, a custom deck was developed specifically for the

VL53L5CX ToF sensors, as shown in Figure 5b. This deck can

be used in conjunction with the Flow deck v2 and incorporates

four VL53L5CX sensors positioned to face the front, back,

left, and right directions, enabling obstacle detection from a

cumulative FoV of 180◦. As a result, the final design of the

custom deck weighs a mere 4.2 g.

B. Co-processor Deck - GAP9 SoC

The second custom deck included in the system setup

weighs 5 g and features the GAP9 SoC, the commercial

embodiment of the PULP platform [25], produced by Green-

waves Technologies. Figure 5c shows the main elements of

the GAP9 architecture. The GAP9 SoC features 10 RISC-V-

based cores, which are grouped into two power and frequency

domains. The first domain is the fabric controller (FC), which

features a single core operating at up to 400MHz coupled

with 1.5MB of SRAM (L2 memory). The FC acts as the

supervisor of the SoC, managing the communication with the

10

peripherals and orchestrating the on-chip memory operations.

The second domain is the cluster (CL) consisting of nine

RISC-V cores that can operate up to 400MHz, specifically

designed to handle highly parallelizable and computationally

intensive workloads. Among the nine cores of the cluster, one

acts as a “master core”, receiving a job from the FC and

delegating it to the other eight cores in the cluster, which

carry the computation. The CL is coupled with 128kB of L1

memory, and the transfers between L2 and L1 are performed

via the direct memory access (DMA) peripheral, requiring

no involvement from the FC or CL during the transfers. To

achieve an optimal execution time of a CL task, the data

associated with the task should be transferred to L1 before

the task is started. When the CL task completes, the result

can be transferred back to L2 and further used by the FC. The

GAP9 is interfaced with the STM32 via SPI and carries all the

intensive computation required by PGO and scan-matching.

V. IMPLEMENTATION

Our system features two computational units: the STM32

MCU, part of the commercial Crazyflie 2.1 platform, and the

more powerful GAP9 SoC, which extends the computational

capabilities of the former. We extend the base firmware of

the STM32 with our application – implemented through the

Bitcraze Application Layer – containing only lightweight func-

tionalities such as the ToF sensor data acquisition and the flight

strategy, which have a negligible impact on the MCU load. In-

stead, we delegate the memory and computationally demand-

ing tasks to the GAP9, which continuously communicates

with the STM32 during the mission. Thus, computationally

intensive solutions such as ICP, the graph-based SLAM, scan

computation, or map generation run entirely on the GAP9.

In the following, we provide the implementation details of

NanoSLAM, which is based on the algorithms introduced in

Section III.

A. Sensor Processing

As mentioned before, our system performs mapping in 2D.

However, since each of the four ToF sensors provides an 8×8

distance matrix, we must process this information and reduce

it to one plane (i.e., one row). For this reason, we discard the

first two rows from the bottom and the top, leaving only the

middle four rows that better represent the drone’s plane. In the

following, we select the median of the four remaining pixels

for each column, obtaining a row vector of size eight for each

ToF sensor. In case there are no valid pixels in a particular

column (e.g., no obstacle within 4m), the entire column is

discarded. This approach ensures more robustness to outliers

than simply selecting one of the middle rows from each matrix.

B. Scan-matching Implementation

Before detailing the actual scan-matching implementation,

we provide the values of the scan parameters introduced in

Section III-A. Indeed, our setup matches the configuration

shown in Figure 1, featuring four ToF sensors of eight zones

each – i.e., ns = 4 and nz = 8. During a scan, the drone under-

goes a 45◦ rotation while adding new scan frames to the scan

(a) The filling pattern of H . (b) The L matrix.

Fig. 6: (a) The figure shows how the odometry and LC edges

differently impact the sparsity of the H matrix. (b) The

computation of the Cholesky decomposition and how each

element’s calculation is distributed among the CL cores.

with a frequency of 7.5Hz. We empirically choose nsf = 20
as a trade-off between scan-matching accuracy and memory

footprint, resulting in a scan duration of about 2.7 s. Given

these settings, the scan size is at most nscan = nsfnsnz = 640
points.

We recall that the ICP algorithm introduced in section III-B

has two stages: determining the correspondences and calcu-

lating the transformation given the correspondence pairs. The

latter exhibits a time complexity of O(nscan) and is typically

very fast. The correspondences calculation, represented by

the inner for loop in Listing 1, takes more than 95% of

execution time, operating with O(n2
scan) complexity. Further-

more, since the correspondences are calculated independently

of each other, we leverage the parallel capabilities of GAP9,

distributing the inner for loop from Listing 1 to eight cores of

the CL in GAP9. In our implementation, we choose a fixed

number of iterations N ICP
iter to ensure a deterministic execution

time. We empirically determined with in-field experiments that

ICP always converges within N ICP
iter = 25 iterations, and after

that, the solution (R∗, t∗) does not change anymore.

C. Graph-based SLAM Implementation

In the following, we provide the implementation details

of the graph-based SLAM algorithm, which is presented in

Listing 2. Having introduced how ICP is implemented, we

now focus on step 3 from Listing 2, the heart of graph-based

SLAM. Once all the odometry constraints are computed, each

iteration of the algorithm consists of two main phases: (i)

calculating H and b, and (ii) solving the equation system

H∆x = −b. The main challenge is to enable the onboard

execution, given the limited available amount of RAM. Storing

all entries of the 3N × 3N H matrix would result in about

1.44MB for a realistic pose number of 200 and a 4-byte

float representation of the matrix entries. This requirement is

infeasible for resource-constrained platforms – even for our

capable target platform, GAP9, which would rapidly run out

of memory storing such a matrix.

However, as Listing 2 shows, constructing matrix H implies

looping through all edges and modifying the blocks H ii, H ij ,

Hji, and Hjj , for each graph edge from i to j. Due to

the highly accurate results offered by ICP, we experimentally

11

Listing 3 The Cholesky–Crout algorithm that performs the

Cholesky decomposition column-by-column.

Outer loop: iterating over columns

for j in range(N):

sum0 =
∑j−1

k=0 L
2(j, k)

L(j, j) =
√

H(j, j) − sum0

Inner loop: iterating over rows

for i in range(j+1, N):

sum1 =
∑j−1

k=0(L(i, k) ·L(j, k))

L(i, j) = (H(i, j)− sum1)/L(j, j)

selected an information matrix Ω = 20I for the LC edges and

Ω = I for the odometry edges. This deliberate choice assigns

greater significance to the LC edges during the optimization

process. The number of odometry edges (i.e., N − 1) is

typically much larger than the number of LC edges, and for

most of the blocks Hij , it holds that j = i + 1. Thus, most

non-zero elements of H are concentrated around the main

diagonal. Figure 6a, provides a graphical representation of the

H matrix, where the contribution of blocks H ii and Hi+1,i+1

is represented in green, and the contribution of Hi,i+1 and

Hi+1,i in yellow. Blocks in blue correspond to the LC edges,

and their placement in the matrix does not follow a pattern.

Furthermore, by calculating the individual elements of each

block with the equations from Listing 2, one could notice that

some elements are always zero and represented in white in

Figure 6a. This fact increases, even more, the sparsity of H ,

resulting in 17N − 13 + 10n non-zero elements according

to the filling pattern of Figure 6a. Moreover, due to the fact

that H is symmetric, it is sufficient only to store the elements

below and including the main diagonal, implying 10N−5+5n
non-zero elements. As a numerical example, for the realistic

values of N = 200 poses and n = 10 LC constraints, the ratio

between non-zero elements and the total number of elements

3N × 3N is about 0.56%, which proves that it is extremely

memory inefficient to store a matrix in a dense form.

To exploit the high sparsity level, we propose storing H in

a CSR sparse matrix representation [51]; we note the non-zero

element count as nz. This representation uses three arrays: (i)

the values: it has size nz and stores the non-zero elements;

(ii) the column index: it has size nz and stores the column

index associated with each value in the values array; (iii)

the row pointer: it has size 3N + 1, and its elements mark

where in the values array a new row starts. Inserting a new

element in the CSR matrix requires modifying the three arrays

accordingly. Our software implementation solely utilizes static

memory allocation to prevent memory leaks and overflows.

Consequently, inserting elements in the sparse matrix must

occur row-wise, in the ascending order of column indices – in

this way, the arrays of the sparse matrix are never modified,

only extended. Otherwise, a random insertion order would

imply memory moves within the sparse matrix, slowing the

execution. Since the filling pattern of H is deterministic given

the graph, an ordered element insertion is possible.

The stages of graph-based SLAM exhibit a computational

TABLE II: The non-zero count of H , L and LP . For the

symmetric H matrix, only the non-zero elements from the

main diagonal or lower are counted.

40 80 120 160 200 240 280 320

n
o
n
-z

er
o H 405 805 1205 1605 2005 2405 2787 3185

L 1149 2349 3549 4749 5949 7149 8349 9549

Lp 896 1817 2735 3657 4576 5496 6262 7155

complexity not exceeding O(N), except for the Cholesky

decomposition. To leverage the parallel capabilities of the

system, we employ the Cholesky-Crout scheme [51]. This

scheme efficiently computes the matrix L column by column,

as outlined in Listing 3. To better illustrate the distribution

of computation across eight cores of the GAP9 CL, we

complement Listing 3 with Figure 6b. In each iteration for

column j, the algorithm initially calculates the variable sum0,

which represents the sum of squared elements from line j,
excluding the diagonal. In Figure 6b, these elements are

visually depicted by the upper yellow line, with each CL core

responsible for computing the sum of j/8 elements. The value

of L(j, j) (highlighted in green) is subsequently determined

based on sum0, and afterward, all column elements are

computed within the inner loop. To offload the computation of

the inner loop, we employ the CL, where each core performs

the calculation for a predetermined number of L(i, j) entries.

Each element L(i, j) (depicted in orange) is derived from

sum1, which is computed as the dot product between row

i and row j – considering only the elements to the left of

column j.

It is imperative to note the direct dependence of L(i, j) on

H(i, j), signifying that any non-zero element below the main

diagonal in matrix H will correspondingly yield a non-zero

element in matrix L with identical indices. Furthermore, each

element L(i, j) is contingent upon the elements located to

its left within the same row. Consequently, the existence of a

non-zero element H(i, j) implies the existence of a non-zero

element L(i, j), which, in turn, can influence the non-zero

status of all subsequent elements in the same row of L.

To analyze a concrete example, Figure 7-(a) illustrates the

H matrix of a graph with six poses and two LC edges, where

the black entries are the non-zero elements. For the symmetric

H matrix, the figure provides nzlow, which is the non-zero

count of the elements below or on the main diagonal. Figure 7-

(b) illustrates the L matrix obtained from the Cholesky decom-

position of H . The non-zero entries originating from the LC

Fig. 7: An example of the H and L matrices for a graph with

six poses and two LC edges (left) and how these matrices

change when the RCM permutation is applied to H (right).

12

edges in the corner of matrix H resulted in corresponding

non-zero elements in matrix L, subsequently leading to non-

zero elements throughout the entire row to the right. Although

one might argue that the LC edges have a negligible impact

on the non-zero count of matrix H , this is obviously not the

case for matrix L. The further the non-zero elements of H

are from the main diagonal, the more non-zero entries they

will yield in L.

To mitigate this problem, we employ the permutation solu-

tion introduced in Section III-C, which brings the elements of

H closer to the main diagonal. The Reverse Cuthill–McKee

(RCM) algorithm [55] computes the permutation vector π that

defines the rearrangement of the rows of the identity matrix

to obtain the permutation matrix P . The P obtained through

RCM minimizes the bandwidth of a given matrix – i.e., how

spread apart the elements are from the main diagonal. Note

that accessing any element HP (i, j) is equivalent to accessing

H(π(i),π(j)) and therefore it is not necessary to store and

compute matrix HP . Similarly, bP (i) = b(π(i)).
Applying this algorithm to the example H matrix from

Figure 7-(a) leads to the permuted HP shown in Figure 7-(c),

whose bandwidth is visibly reduced. Applying the Cholesky

decomposition to HP leads to the matrix LP from Figure 7-

(d) with 103 non-zero entries, about 20% less than L. Fur-

thermore, Table II provides the resulting non-zero count of L

and LP for a graph with two LC edges, varying the number of

poses in the range 40 – 320. Also, in this case, the reduction in

the non-zero count of L after permutation is at least 22%. Our

system uses the RCM algorithm to determine the permutation

matrix P and then solve the linear system as described in

Listing 2. All steps involved in calculating ∆x constitute a

graph-based SLAM iteration. We empirically determined that

the entries of |∆x| are always smaller than 10−4 after three

iterations, so we set NSLAM
iter = 3.

D. Hierarchical SLAM Implementation

In Section III-E, the hierarchical graph-based SLAM

method was introduced as an alternative approach to perform-

ing PGO, allowing to optimize graphs that exceed 440 poses.

This approach utilizes the parameters dmin and ∆ψmin, which

determine the inclusion of new poses in the sparse graph based

on the robot’s movement and rotation. Typically, in exploration

scenarios, significant variations in the heading are rare, as the

robot primarily rotates when encountering walls or obstacles.

As a result, the parameter dmin has the greatest impact on the

size of the sparse graph.

We investigate the influence of the dmin parameter on the

accuracy of the optimized graph. Increasing the value of dmin
reduces the size of the sparse graph, allowing for the mapping

of larger environments. However, this also leads to a loss

in capturing fine drone movements, resulting in decreased

accuracy. To assess this impact, we conducted an experiment

using a square loop corridor, creating an associated graph

with 2000 poses, which significantly exceeds the limits of

the graph-based SLAM algorithm when executed onboard.

We varied the dmin parameter within the range of 0.1m to

6.4m, as detailed in Table III, and measured the accuracy

TABLE III: Hierarchical graph-based SLAM.

dmin(m) 0.1 0.2 0.4 0.8 1.6 3.2 6.4

Correlation (%) 99.9 99.9 99.9 99.7 98.9 96.7 93.4
RMSE (cm) 0.04 0.12 0.27 0.59 24.3 46.7 84.0

of the resulting optimized poses for each case. To evaluate

the accuracy, we computed the Pearson correlation coefficient

between the optimized poses obtained using the hierarchical

approach with varying dmin values and the poses derived from

directly applying graph-based SLAM (performed on an exter-

nal base station). As an additional metric, we also compare the

root-mean-squared-error (RMSE) w.r.t. the directly optimized

graph, considering only the x and y components of each pose.

Table III shows that values of dmin ≤ 0.8 provide almost the

same accuracy as optimizing the graph directly with graph-

based SLAM, leading to a correlation coefficient larger than

99% and an RMSE smaller than 1 cm. Consequently, any value

of dmin smaller than 0.8m is appropriate for creating the

sparse graph.

E. The Exploration Strategy and Corner Detection

In the following, we explain how the drone explores the

environment and decides which areas are appropriate for

acquiring scans. We mention that our mapping solution is

completely independent of the type of trajectory and applicable

to any environment. Thus, to demonstrate the capabilities of

our system, we use a simple exploration strategy that drives a

drone through the environment, always following the wall on

the right. In case of no walls around, the drone moves forward.

If a frontal wall or obstacle is detected, the drone changes

direction to the left or right, depending on which direction is

free – if both are free, the drone chooses left. Conversely, if

a dead-end is detected, the drone lands, and the mission ends.

This simple exploration strategy is configured with the target

velocity of 0.5m/s – correlated with the size of the rooms we

explore.

Since our system should work autonomously in any envi-

ronment, it must possess the ability to determine when a new

scan should be acquired. Regions that exhibit rich textures,

such as corners, are highly suitable for acquiring scans that

facilitate precise scan-matching. To achieve this objective, we

implemented a corner detector that takes a scan frame as

input and utilizes the Hough transform [56] to identify all

the straight lines defined by the points within the scan frame.

The presence of any pair of lines that create an angle of at

least 30◦ indicates that the scan frame represents a corner. The

corner detector runs in the STM32 in less than 1ms.

F. The STM32 Application

The STM32 MCU is the manager of all the processes

running onboard the nano-UAV. Even if it does not carry any

heavy computation, it is responsible for off-loading it to the

GAP9 via SPI communication. The application we developed

on the STM32 is structured in three Free-RTOS tasks: the

mission task, the flight task, and the sensor task. Overall,

these tasks require less than 4 kB and only 2% of additional

13

Fig. 8: The flow diagram of our software and the interaction

between the STM32 and the GAP9.

CPU load in total. The sensor task communicates with the ToF

sensors via I2C. It configures each sensor before the mission

starts, fetches data from the ToF matrix sensors, and passes

it to the other tasks. The flight task runs the wall-following

exploration strategy introduced in Section V-E. However, other

tasks can notify the flight process via a Free-RTOS queue to

perform other maneuvers, such as stopping and spinning the

drone to acquire a scan. The loops of the flight task and the

sensor task run with a frequency of 15Hz.

The mission task manages the scan acquisition and the com-

munication with the GAP9 using SPI packets. The flowchart

from Figure 8–left presents a detailed illustration of the

mission flow. In every iteration, the task fetches the ToF data

from the sensor task and the current pose from the internal

state estimator and sends this information to the GAP9. In the

absence of any previous scans in the current location, if the

current scan frame corresponds to a corner and the drone has

traveled a minimum distance of 1.2m from the last scan, the

drone captures a reference scan. Then, the scan pose is stored

in a structure called scan pose list, which stores the locations

of all acquired scans. On the other hand, if the current location

is actually revisited – i.e., the drone is closer than 0.6m to one

entry of the scan pose list – an LC scan is acquired, given at

least 1m from the last scan. The STM32 informs the GAP9

about the LC and then sends a PGO command. Lastly, the

STM32 updates the scan pose list, fetching the updated scan

pose values from the GAP9. The loop of a mission task runs

at 7.5Hz, skipping every second ToF frame.

Note that the scan acquisition is identical for the reference

and LC scans, and only the subsequent steps differ. During

a scan, the flight task is spinning the drone by 45◦, while

the mission task continues sending new poses to the GAP9

– this was omitted in Figure 8 for the sake of readability.

Furthermore, it is important to impose a minimum distance

between scans. Conducting consecutive scans at the same

location does not enhance the system’s efficacy but leads

to a substantial surge in memory utilization. The distance

thresholds were determined experimentally.

G. The GAP9 Application

The STM32 MCU performs several crucial functions,

including managing sensor communication, controlling the

drone, and determining when to acquire new scans. In contrast,

the GAP9 processor assumes a subordinate role by handling

computationally intensive tasks. The STM32 sends SPI packets

to the GAP9, and each packet consists of a command and

a corresponding data field, with the interpretation of the

data contingent upon the specific command type. The GAP9

continually awaits the arrival of a new SPI packet, upon which

it proceeds to decode and execute the command. Four possible

SPI commands are defined in the system, distinguished by a

command ID. The first is the new pose command, signaling

that a new pose should be added to the graph, along with its

associated ToF data. The graph is stored in memory as a table

(i.e., the graph table), where each graph table entry contains

the pose ID, the timestamp, the pose values, and the ToF data

from the four sensors. The structure of each graph table entry

is presented in Table IV, and the total size of an entry is

84B. Note that one graph table entry carries all the necessary

information to compute one scan frame.

The second command is the LC information command.

Within this command, the STM32 communicates that an LC

edge should be added to the graph, from an id j to id

i, communicated in the SPI packet. The GAP9 application

fetches the graph table entries from i to i + 19 and from

j to j + 19 and then calculates their associated scans Si
and Sj . Having the two scans, it then computes the LC

edge measurement using ICP and stores it into the LC edge

list. The third command defined within our system is the

PGO command, which informs the GAP9 to optimize the

existing poses in the graph, given the LC edge list. Our

system always used the hierarchical graph-based SLAM for

PGO, as it allows for mapping larger environments. When

PGO completes, the graph table is updated with the new pose

values. Optionally, the map is regenerated by combining the

scan frames computed from every graph pose entry. Lastly, the

fourth command is the pose request, which enables the STM32

to obtain the value of a particular pose in the graph table by

communicating its ID in the SPI packet. This is necessary

because the STM32 application must update the scan pose list

after every PGO. Furthermore, it must also update the drone’s

state estimator with the updated value of the most recent pose.

Figure 8 illustrates the behavior of each command and the

interaction with the STM32. NanoSLAM represents the whole

logic running in the GAP9, which stores the graph, fetches

scans, uses scan-matching to add new LC edges, and exploits

hierarchical PGO to correct the poses.

TABLE IV: Structure of a graph table entry

Field Representation Size

Pose ID int32 4B

Timestamp int32 4B
Pose 3× float 12B

ToF Data 4× 8× int16 64B

14

TABLE V: Execution time in ms of the ICP algorithm w.r.t.

the scan size. CL is the cluster with 8+1 cores, while the FC

is the single-core fabric controller of the GAP9 SoC.

Scan size 128 256 384 512 640 768 896 1024

CL 3 10 21 36 55 79 107 138
FC 16 63 141 249 386 557 758 990
Speedup 5.33 6.3 6.71 6.91 7.01 7.05 7.08 7.11

TABLE VI: The execution time in ms of the Cholesky

decomposition. CL is the cluster with 8+1 cores, while the

FC is the single-core fabric controller of the GAP9 SoC.

Nr. of poses 20 80 140 200 260 320 380 440

CL (8 cores) 0.51 2.52 5.51 9.39 14.71 20.18 26.88 34.96
FC (1 core) 0.86 8.76 24.88 49.72 82.74 124.1 173.9 232.0
Speedup 1.68 3.47 4.52 5.29 5.63 6.15 6.47 6.64

Speedup SLAM 1.28 2.24 2.97 3.55 4.04 4.43 4.79 5.08

VI. PERFORMANCE ANALYSIS

In this section, we provide a breakdown of the execution

time of our algorithms. We mainly evaluate the ICP, graph-

based SLAM, and its hierarchical extension, emphasizing

the benefits of the eight-core parallelization. Lastly, we also

provide a power breakdown for the individual stages of graph-

based SLAM. Power measurements are conducted upstream of

the buck converter on the GAP9 co-processor deck, which

receives a voltage supply of 4V and generates an output

voltage of 1.8V intended for supplying the GAP9 SoC. The

GAP9 always operates at the maximum frequency – i.e.,

400MHz for both FC and CL.

A. Execution Time of ICP

Table V shows the ICP execution time as a function of the

scan size. The first line of the table provides the total execution

time when the algorithm is parallelized and computed with the

aid of the CL. To highlight the benefit of parallelization, we

also provide the execution time when ICP runs entirely in the

FC – i.e., second table line. We notice a speedup, defined as

the ratio between the execution time on the FC and the CL, that

increases with the scan size. This is due to the memory transfer

overhead; for larger scan sizes, the computation time of the

correspondences is significantly higher than the time necessary

to transfer the scans from L2 to L1, which the CL can access.

For a scan size larger than 640, the achieved speedup is above

seven with eight cores. Furthermore, for the scan size used for

the scope of this paper (i.e., 640), the ICP executes in 55ms.

B. Execution Time of Graph-based SLAM

In the previous section, we have explained how every

constitutive stage of graph-based SLAM is implemented. In

the following, we provide the execution time and complexity

of every stage. In this regard, we first analyze the Cholesky

decomposition, which is the most complex and computation-

ally intensive part of graph-based SLAM. As explained in

Section V-C, the decomposition is offloaded to the CL of

GAP9 to accelerate its execution through parallelization over

eight cores. To highlight the advantages of parallelization, we

20 80 140 200 260 320 380 440
Number of poses

1

2

4

8

16

32

48

64

N
u
m

b
e
r

o
f

L
C

 e
d
g
e
s

3.6 14.7 28.5 44.3 67.8 89.2 119.8 148.5

3.7 15.1 29.5 46.8 67.3 90.0 116.1 144.9

3.9 15.8 30.4 50.2 70.1 92.2 124.7 141.6

4.7 17.5 33.3 54.2 72.5 95.7 125.8 155.1

7.2 22.2 39.2 63.0 85.0 115.2 144.4 177.6

- 32.9 56.8 93.8 122.1 143.9 181.4 228.6

- 47.4 116.4 145.0 139.7 225.8 225.2 312.0

- 155.8 99.6 136.9 285.2 214.2 273.9 321.4

50

100

150

200

250

300

E
x
e
c
u
ti

o
n
 t

im
e
 (

m
s
)

Fig. 9: The execution time in ms of graph-based SLAM for

multiple configurations of the number of poses and LC edges.

also evaluate the execution time of the decomposition solely

on the FC using a single core. Subsequently, we analyze the

resulting measurements in comparison to those obtained on

the CL. Similarly to the example analyzed in Section V-C, we

consider a graph with two LC edges, and we vary the number

of poses in the range of 20 – 440 with a step of 60. Table VI

provides the results of this comparative analysis, showing the

execution time as a function of the number of poses. The

Speedup line gives the ratio between the execution time on

the FC and the CL for each pose number. The maximum

speedup is achieved for 440 poses, reducing the execution time

from 232ms to 34.96ms and resulting in a speedup of 6.64.

Overall, the table shows an increasing trend of the speedup

with the number of poses. This is because the overhead for

moving the input matrix to L1 (accessible by the CL) becomes

more and more negligible w.r.t. the computation time for larger

graphs. Furthermore, the Speedup SLAM line shows how many

times the whole graph-based SLAM algorithm is accelerated

when the Cholesky decomposition is offloaded to the CL. The

maximum speed is 5.08, achieved with 440 poses.

Table VII presents the execution time analysis of the main

stages of graph-based SLAM. The stages are paired with step

3 of Listing 2. The experiment involves a graph comprising

two LC edges and a varying number of poses ranging from

20 to 440. The initial four rows of the table provide detailed

information about the individual execution times for each stage

within a single iteration, while the subsequent row presents

the total iteration time. Notably, the Cholesky decomposition

TABLE VII: The execution time in ms of graph-based SLAM.

Nr. of poses 20 80 140 200 260 320 380 440

H and b 0.3 1.1 2 2.9 3.9 4.6 5.4 6.3
RCM 0.2 0.9 1.5 2.2 2.9 3.5 4.2 4.9
Cholesky 0.5 2.5 5.5 9.4 14.7 20.2 26.9 35.0
Fwd+Bwd 0.2 0.8 1.3 1.8 2.3 2.8 3.3 3.8
Iter. time 1.3 5.4 10.4 16.3 23.7 31.1 39.9 50

Total (3 iter.) 3.7 15.1 29.5 46.8 67.3 90 116.1 144.9

15

Fig. 10: The power curve associated with the graph-based

SLAM execution for 440 poses, showing the power consump-

tion during every main stage of the algorithm.

accounts for approximately 40% to 70% of the total iteration

time. Additionally, it is observed that all stages, except for the

Cholesky decomposition, exhibit linear complexity. Although

the conventional decomposition has a complexity of O(N3),
the numbers in Table VII demonstrate a purely quadratic

relationship with the number of poses, showing a correlation

of 99.9% with a second-order polynomial fit. This is due to our

efficient implementation that exploits the sparsity properties.

The last row provides the total execution time of the three

iterations. This is approximately equal to the iteration time

multiplied by three, but inter-iteration differences are possible

due to different non-zero counts of the H and L matrices.

In the next experiment, we investigate the impact of varying

both the number of poses and LC edges on the execution

time of graph-based SLAM. The ranges considered for the

number of poses and LC edges are 20 – 440 and 1 – 64,

respectively, as depicted in Figure 9. The figure illustrates

that increasing either parameter leads to an increase in the

execution time, although the relationship is not strictly mono-

tonic. Interestingly, for instance, the scenario with 64 LC

edges demonstrates a faster execution time with 320 poses

compared to 260 poses. This behavior can be attributed to the

Cholesky decomposition’s execution time, which is affected

by the non-zero count of the matrix L, determined by the

permutation obtained through RCM. Since RCM does not

guarantee the same non-zero reduction for all matrices, some

configurations could benefit from a higher non-zero reduction

in L after applying the permutation to H . Given the 128 kB
of L1 available to the CL, the graph-based SLAM algorithm

can optimize at most 440 poses at a time, requiring 321ms
with 64 LC edges and 148.5ms with one LC edge.

The execution time of the hierarchical graph-based SLAM

strongly depends on the structure of the sparse graph and

subgraphs. Using a large value for dmin would result in a

small, sparse graph and few large subgraphs. On the other

hand, using a small dmin would result in a large sparse graph

and many small subgraphs. As a numerical example, for a

graph of 2000 poses associated with a square loop corridor,

a dmin = 0.3m results in a total execution time of 406ms,

TABLE VIII: Power and energy consumption of ICP.

Scan Size 128 256 384 512 640 768 896 1024

Avg. power (mW) 121.5 149.5 165.0 169.9 172.5 175.2 176.3 177.6
Energy (mJ) 0.54 1.76 3.77 6.53 10.07 14.28 19.17 25.07

TABLE IX: Power and energy consumption of graph SLAM.

Nr. of poses 20 80 140 200 260 320 380 440

Avg. power (mW) 72.3 86.3 94.7 88.9 108.7 111.6 114.9 119.3
Energy (mJ) 0.31 1.5 3.1 4.38 7.8 10.73 14.29 18.2

where the size of the sparse graph is 162 poses. Assuming

that the drone is flying with a constant velocity through the

maze, the size of the subgraphs is about the same. Under the

assumption of a uniform subgraph size, the total execution

time is tsg+(M − 1)tsubgraph, where tsg is the time required

to optimize the sparse graph and tsubgraph is constant.

C. Power Analysis

Table VIII shows the power and energy consumption of

the ICP as a function of the scan size. An observable rising

pattern in the average power is observed, attributed to the

correspondence calculation occupying a larger proportion of

the overall execution time for larger scan sizes. The maximum

power consumption is 177.6mW for a scan size of 1024.

However, for the scan size that we use (i.e., 640), the average

power and energy consumption are 172.5mW and 10.07mJ,

respectively. In conclusion, for every LC, the system consumes

about 10mJ plus the energy consumed to optimize the graph.

In Figure 10, the power trace of the GAP9 deck during the

execution of graph-based SLAM is presented. The experiment

involves 440 poses and 2 LC edges. The labels positioned

above the plot represent the four primary stages of the al-

gorithm: calculation of matrices H and b, computation of

the RCM permutation, Cholesky decomposition, and solution

computed through forward and backward propagation. An ob-

servation can be made that the power consumption is notably

higher during the Cholesky decomposition phase, primarily

due to the activity of the CL. The peak of the power curve

reaches 153mW, while the average power value amounts to

119.3mW. When the CL is inactive, and the FC solely handles

the computation, the power instant tends to remain below

80mW. The total energy consumed for executing the graph-

based SLAM is calculated to be 18.2mJ. In Table IX, the

average power and energy are tabulated for the experiment

conducted with various numbers of poses ranging from 20 to

440. The average power shows a monotonic trend, decreasing

with a smaller number of poses due to reduced Cholesky

decomposition execution time.

VII. IN-FIELD EXPERIMENTS

In this section, we evaluate the algorithms introduced in

Section III and recall that NanoSLAM is the framework

that leverages hierarchical PGO to optimize the graph and

correct the drone’s trajectory while considering the LC edges

provided by ICP. We, therefore, present three main classes of

results: (i) an evaluation of the rotation and translation error

16

Fig. 11: A breakdown of the ICP algorithm, indicating the solution found by the algorithm after every three iterations. Assuming

a target overlapping error of ≈ 0.001m, the algorithm converges in about 20 iterations.

achieved by the scan-matching algorithm; (ii) an investigation

on how NanoSLAM improves the trajectory estimation; (iii)

coherent maps generated out of the pose graph and the ToF

measurements. Our results are experimentally acquired and

demonstrate the effectiveness of our closed-loop system that

leverages NanoSLAM and carries the computation entirely

onboard. The ground truth (GT) used in our evaluation is

provided by the Vicon Vero 2.2 motion capture system (mo-

cap) installed in our testing arena. To assess our system’s

localization and mapping capabilities, we build mazes of

different complexities out of 1m× 0.8m chipboard panels.

A. Scan-matching Evaluation

In the following, we analyze the scan-matching capabilities

of the ICP algorithm. In this scope, we position the drone

inside a 90◦ pipe of 1m width made out of chipboard panels.

The drone is then commanded to take off and acquire a scan

– i.e., Scan 1. Then, we manually change the position of the

drone by about 30 cm and 30◦ and repeat the same procedure

to obtain Scan 2. The two scans are shown in Iteration 0

of Figure 11. The drone position is changed to simulate the

odometry drift that the drone normally acquires when it revisits

a location and evaluates the ICP performance in matching two

non-overlapping scans. Therefore, the resulting rotation and

translation values by the ICP are compared with the ground

truth – obtained out of the ground truth of each individual

pose. We obtain a translation error of eT = 3.5 cm and a

rotation error of eR = 2.3◦ – the reported translation error eT
represents the norm of the two components of the error – i.e.,

on x and y. To ensure the validity of the results, we repeated

the experiment multiple times, always obtaining a translation

error eT < 6 cm and a rotation error eR < 5◦.

Figure 11 shows the result of the ICP algorithm after every

three iterations. We recall that ICP aims to determine the

rotation and translation that, once applied to Scan 2, results

in an optimal overlapping with Scan 1. This is represented

by the green curve, which represents the scan obtained by

applying the current ICP estimate to Scan 2. Furthermore,

eICP represents the arithmetic mean of the Euclidean dis-

tances between each correspondence pair of the red and green

curves. This metric evaluates the overlapping degree between

Scan 1 and the ICP solution applied to Scan 2, and it is a good

indicator of when the algorithm should stop. We observe that

in this case, as well as in other experiments we conducted, the

ICP solution that leads to eICP ≈ 0.001m is found in about

20 iterations. We note that the rotation and translation errors

(eT , eR) provide a quantitative indication of the precision

of the solution found by ICP. Conversely, eICP is only an

intrinsic parameter indicating the convergence progress. For

example, if the input scans are affected by large amounts of

noise or biases, eICP could still indicate a small value, while

the actual transformation found by ICP is inaccurate.

B. SLAM Results

In the following, we demonstrate our system’s capabilities

to correct trajectories and generate coherent maps in three

different mazes of increasing complexity. The first maze

(a) Tracking error over time. (b) Trajectory over time.

Fig. 12: (a) The tracking error on both the x and y axis and

(b) the evolution of the optimized (i.e., with NanoSLAM) and

unoptimized trajectories represented against the ground truth.

17

consists of a square loop corridor similar to the one used as an

example in Section III-D, whereas the latter two mazes exhibit

greater complexity and are illustrated in Figure 13.

1) Maze 1: We start with a simple circular maze (i.e., Maze

1), shown in Figure 15a. The drone’s mission starts from the

bottom left corner and flies three laps – i.e., cycle through

the maze three times, relying on the wall following strategy,

introduced in Section V-E. During the first lap, the drone

identifies every corner and acquires a reference scan in each of

the four. In the second and third laps, the drone acquires new

scans in the revisited corners, creating LC constraints with

the reference scans and adding new LC edges to the graph.

To allow for a consistent comparison between the unoptimized

poses (i.e., no drift correction) and the optimized poses (i.e.,

with NanoSLAM), we only perform graph optimization at the

end of the mission. In this way, we show the benefits of using

NanoSLAM on data from the same mission.

We define as trajectory the set of all poses acquired during

a mission and as positioning error the pose-wise Euclidean

distance between the poses and their GT. Figure 12a shows

the positioning error (in black) of the optimized and unopti-

mized trajectories, calculated by subtracting the GT from the

optimized and unoptimized poses, respectively. The vertical

grey lines indicate when the drone passes again through the

starting point. Furthermore, in the same figure, we represent

the x and y components of the trajectory over time (in yellow)

to highlight a pattern between the positioning error and the

trajectory. While the error of the unoptimized trajectory drifts

unbounded, the optimized trajectory shows a rather repetitive

pattern, with the error being zero every time the drone crosses

the starting point. This is because the reference scan (of pose

0) acquired right after take-off is error-free and, therefore, any

LC constraint between a pose k and pose 0 will correct the

positioning error of pose k almost completely – the correction

is only bounded by the accuracy of the ICP.

Despite using NanoSLAM, the positioning error takes con-

siderable values of about 0.4m throughout one lap. A funda-

mental assumption when using SLAM is that the odometry

errors are increasing slowly [57], and therefore the poses

associated with the reference scans acquired at the beginning

of the mission are accurate. However, this assumption does not

hold in our case, as the poses of the second and third reference

scans already have errors of up to 0.4m, and these errors will

represent a lower bound for a future LC correction. Through-

out a lap, the positioning error increases while the drone moves

toward the top left corner of the maze and decreases during the

Fig. 13: Maze 2 (left) and Maze 3 (right).

Fig. 14: The heading error with and without NanoSLAM.

last half of every lap. In other words, forward movement on the

x and y axis increases the positioning error, while a backward

movement along one axis decreases the positioning error. This

translates into a direction-dependent odometry bias that is

positive for forward movements and negative for backward

movements. Since the takeoff position is always (0, 0), the

effect of the bias results in a scaled trajectory w.r.t. the GT.

The scaling effect can also be seen in Figure 12b, which

shows information from the same mission but represents the x
and y components of the optimized and unoptimized trajecto-

ries as well as the GT. The optimized trajectory (black) is very

similar to the ground truth (red), but scaled by a factor which

we determined to be ≈ 11%. On the other hand, we stress

that the shape of the unoptimized trajectory (yellow) is often

very different compared to the ground truth, which proves the

effectiveness of NanoSLAM in correcting the trajectory and

making it match the ground truth. So far, we have proved that

the errors uncorrectable by NanoSLAM (i.e., the direction-

dependent drift) are deterministic, and simply scaling the poses

obtained from the drone’s state estimator by 0.9 mitigates

their effect. To demonstrate that this scaling actor generalizes

for any environment, we apply the same correction for all

mazes considered for our experiments and presented later in

this section. The most likely cause of the direction-dependent

errors is the down-pointing optical flow camera onboard the

drone, which estimates the drone’s velocity and enables the

state estimator to determine the position by integrating the

velocity. However, since the drone tilts when moving in a

particular direction, this also rotates the camera frame, which

is no longer parallel to the ground and leads to errors.

Next, we also analyze the capability of NanoSLAM to cor-

rect the heading estimation error (i.e., yaw). Figure 14 shows

the yaw estimation error for the optimized and unoptimized

poses over time. The error curves were again computed with

the aid of the GT. One can notice that the heading estima-

tion tends to drift unbounded for the unoptimized trajectory.

Furthermore, the spikes in the error curves are associated

with the scan acquisition when the drone rotates by 45◦ and

subsequently returns to its initial heading. While these error

spikes are also visible in the yaw corrected with NanoSLAM,

the estimate’s mean is stable, only exhibiting a steady state

error mainly bounded by the precision of ICP.

18

(a) Maze 1 layout. (b) Trajectory with / without NanoSLAM. (c) Trajectory with 1-LC NanoSLAM.

(d) Map without optimization. (e) Map with NanoSLAM. (f) Map with 1-LC NanoSLAM.

Fig. 15: Maze 1: (a) Illustration of the maze layout, showing the takeoff and landing locations and where an LC is performed.

(b)-(c) The trajectories obtained with the two optimization approaches (in black) and the GT (in red). (d)-(f) The dense maps

generated based on the unoptimized, NanoSLAM-corrected, and 1-LC NanoSLAM-corrected trajectories.

In the presented experiments within this section, we con-

ducted optimization according to the approach detailed in

Section III, wherein an LC edge is incorporated into the

graph upon acquisition of an LC scan. With the NanoSLAM

methodology that we introduced, the LC edges integrated

into the graph are not subject to removal. Consequently, the

LC edges count can only increase throughout the mission,

and as shown in the experiments conducted in Section VI,

this can even triple the execution time of PGO. For this

purpose, we also analyze the 1-LC NanoSLAM, which always

discards the LC edge after optimization. Therefore, within the

1-LC NanoSLAM, the graph will always have one LC edge.

Although this lightweight approach discards the prior con-

straints and consequently cannot guarantee future alignment

of previously matched regions, we consider it a compelling

exploration due to its superior scalability when many LCs

are performed. In the following, we analyze the trajectory

correction and mapping performance of both optimization

techniques: NanoSLAM and 1-LC NanoSLAM.

RMSEpos =

√

∑N−1
i=0 ‖xi − xGTi ‖2

N
(6)

Figure 15b shows the unoptimized trajectory, the trajectory

optimized with NanoSLAM and how they compare to the

GT. Although the unoptimized trajectory exhibits a noticeable

deviation from the GT, we observe a substantial alignment

between the optimized trajectory and the GT, providing com-

pelling evidence of the efficacy of NanoSLAM. While the 1-

LC NanoSLAM trajectory shown in Figure 15c also leads to

satisfactory results, we notice a trajectory misalignment within

the laps due to the LC constraint relaxation. We introduce a

quantitative metric for evaluating how close each trajectory

is to the ground truth, which we call positioning root-mean-

squared-error (RMSE). Given an arbitrary trajectory repre-

sented by the poses x0 . . .xN−1, and the corresponding set

of ground truth poses xGT0 . . .xGTN−1, the positioning RMSE

is calculated as in Equation 6. The formula uses a reduced pose

representation, considering only each pose’s x and y compo-

nents. Applying Equation 6 for the trajectories in Figure 15b,

we obtain a positioning RMSE of 0.46m for the unopti-

mized trajectory and 0.146m for the trajectory optimized with

NanoSLAM, showing a reduction in the positioning RMSE of

about three times. Despite the inter-lap trajectory misalignment

in Figure 15c, it leads to a positioning RMSE of 0.18m, which

is 23% higher than the trajectory optimized with NanoSLAM.

After proving the capability of NanoSLAM to correct

trajectories, we further to explore the mapping performance.

Applying Equation 1 for each trajectories from Figures 15b –

15c, we obtain the maps shown in Figures Figures 15d – 15f.

The maps in Figure 15d and Figure 15e are associated with the

unoptimized and optimized trajectories in Figure 15b, while

the map in Figure 15f corresponds to the trajectory optimized

19

(a) Maze 2 layout. (b) Trajectory with / without NanoSLAM. (c) Trajectory with 1-LC NanoSLAM.

(d) Map without optimization. (e) Map with NanoSLAM. (f) Map with 1-LC NanoSLAM.

Fig. 16: Maze 2: (a) The maze layout. (b)-(c) The trajectories obtained with the two optimization approaches (in black) and

the GT (in red). (d)-(f) The dense maps generated based on the unoptimized, NanoSLAM-based, and 1-LC NanoSLAM-based

trajectories.

with 1-LC NanoSLAM. Visibly, Figure 15d shows the poorest

accuracy, as no graph optimization is used, and therefore the

position and heading drift heavily impact the alignment of the

three laps. The map corrected with NanoSLAM is the most

accurate w.r.t. the GT. Similarly, the map computed from the

1-LC NanoSLAM-optimized trajectory is definitely usable, but

due to imposing one constraint at a time in the optimization

process, not all corners corresponding to the three laps are

perfectly aligned. We also propose a quantitative metric to

analyze the mapping accuracy, which we call the mapping

RMSE. This metric first calculates the length of the projection

to the closest straight line for every point in a given dense map

– the extensions of the maze lines are also considered. The

mapping RMSE represents the RMSE of all projection lengths,

as shown in Equation 7. This metric penalizes how far each

map point is from a wall, and in a noise-free case, when all

map points are on a maze line, the mapping RMSE is zero.

Applying Equation 7 on the three maps from Figures 15d –

15f leads to 21.5 cm, 5.8 cm, and 7.3 cm for the cases with no

optimization, NanoSLAM and 1-LC NanoSLAM, respectively.

This proves that NanoSLAM reduces the mapping RMSE by

about 3.7 times.

RMSEmap =

√

∑N−1
i=0 (min∀w∈W dist(w,pi))

2

N
(7)

2) Maze 2: In the following, we present the trajectories and

maps obtained by employing identical optimization method-

ologies on a marginally more intricate maze, as illustrated in

Figure 13-(left). A top-view layout of the maze depicted in

Figure 16a reveals the presence of non-straight-angle walls,

distinguishing it from Maze 1. The trajectory followed by the

drone is represented in Figure 16a, where the green cross

marks the take-off point, and the arrow indicates the flying

direction. Since only the left half of the maze is revisited,

the LC is only performed four times, as indicated by the

grey crosses. Table X presents the positioning and mapping

RMSE for the experiments in Maze 2. We report a reduction

of 67% and 64% in the positioning RMSE when applying

NanoSLAM and 1-LC NanoSLAM, respectively, compared to

the scenario without any optimization. Looking at the maps

from Figures 16d-Figures 16f, we notice a significant heading

drift that rotates the map w.r.t. the GT when no optimization

is performed.

Mapping with the 1-LC NanoSLAM approach leads to

a mapping RMSE of 7.5 cm, about 53% smaller than the

case without optimization. Employing NanoSLAM reduces

the mapping RMSE even further, to 4.5 cm, representing a

reduction of 72% compared to the case without optimization.

Metric No SLAM NanoSLAM 1-LC NanoSLAM

Positioning RMSE 32.6 cm 10.7 cm 11.9 cm

Mapping RMSE 16.0 cm 4.5 cm 7.5 cm

TABLE X: Positioning and mapping RMSE for Maze 2

20

(a) Maze 3 layout. (b) Trajectory with / without NanoSLAM. (c) Trajectory with 1-LC NanoSLAM.

(d) Map without optimization. (e) Map with NanoSLAM. (f) Map with 1-LC NanoSLAM.

Fig. 17: Maze 3: (a) The maze layout that contains various objects. (b)-(c) The trajectories obtained with the two optimization

approaches (in black) and the GT (in red). (d)-(f) The dense maps generated based on the unoptimized, NanoSLAM-corrected,

and 1-LC NanoSLAM-corrected trajectories.

While the positioning RMSE is somewhat similar for the

NanoSLAM and 1-LC NanoSLAM approaches, the relative

difference in the mapping RMSE is more significant – about

40%. This observation is also evident in Figure 16f, where a

comparison with the map depicted in Figure 16e reveals the

presence of certain artifacts. For instance, the bottom side of

the triangle-shaped wall is distorted, or the bottom maze wall

appears thicker. This is again the effect of dropping previous

LC edges and therefore failing to satisfy the constraints

associated with all corners.

3) Maze 3: The last maze we propose is the most complex

among the three because it also contains obstacles such as

pillars, boxes, or a bin, and therefore it better generalizes

a real-world indoor environment. Figure 13-(right) shows an

image of the maze, while the top-view layout is shown in

Figure 17a. The drone starts from the middle position marked

with the green cross and performs two maze loops flying in

a counterclockwise direction. Similar to the previous cases,

throughout the first lap, the drone only acquires reference

scans, while in the second lap, it closes the loop in every

corner, as indicated by the grey crosses in Figure 17a. Table XI

shows the positioning and mapping RMSE obtained with

Maze 3. The optimized trajectories depicted in Figures 17b

– 17c exhibit a positioning RMSE reduced by 65% and

60%, respectively, compared to the unoptimized trajectory.

Figures 17d – 17f show the three maps, and unlike the

experiments in the first two mazes, the maps generated with

NanoSLAM and 1-LC NanoSLAM are very similar. One can

still notice a misalignment on the right side of the map in

Figure 17f, but it is not significant. This is also visible in

the mapping RMSE, where the error of the NanoSLAM-

based map is only 14% smaller than in the map obtained

with the 1-LC NanoSLAM approach. Both approaches bring

a significant improvement w.r.t. the map in Figure 17d (i.e.,

without optimization), reducing the mapping RMSE by 63%

with NanoSLAM and 57% with 1-LC NanoSLAM.

In the NanoSLAM experiment, the optimization problem

results in a graph with 1355 poses and five LC edges. The

subgraph has a size of 109 poses, and the total hierarchical

optimization requires 247ms. For the experiment employing

1-LC NanoSLAM, the graph has 1293 poses, and the final

optimization requires 223ms. The graphs associated with

Metric No SLAM NanoSLAM 1-LC NanoSLAM

Positioning RMSE 44.1 cm 15.4 cm 17.3 cm

Mapping RMSE 20.3 cm 7.5 cm 8.7 cm

TABLE XI: Positioning and mapping RMSE for Maze 3

21

Maze 3 are larger than those of Maze 1 (≈ 1200 poses) and

Maze 2 (≈ 850 poses). For the experiment in Maze 3, running

graph optimization results in an average power consumption

of 69.1mW and a total energy consumption of 17.06mJ –

note how optimizing a 1355 pose graph with the hierarchical

graph-based SLAM results in the same energy consumption

as optimizing a 440 pose graph with the direct graph-based

SLAM. Overall, for every LC, NanoSLAM implies an average

power consumption of 87.9mW and an energy consumption

of 27.13mJ – accounting for both PGO and ICP.

C. Discussion

We discuss the limitations of our system and possible future

improvements. We first recall the importance of odometry

calibration to maximize mapping accuracy. The calibration

approach depends on the type of sensors available on the

platform and, thus, the odometry calibration is a platform-

specific tuning. In the following, we estimate the maximum

area that can be mapped with our system. This limitation

mainly comes from the maximum size (i.e., 440 poses) of

the sparse graph used by the hierarchical PGO. We attempt

to perform such an estimation starting from Maze 3, the

most complex environment we map in our work. Note that

when mapping Maze 3, we let the drone fly two laps to

acquire more maze details. On the other hand, this is not

mandatory, and flying just one lap and closing the loop when

the drone crosses again through the start would as well lead to

good results. Furthermore, in our experiments, we employed

a dmin = 0.3m when adding poses to the sparse graph

to demonstrate that our system can work with large graphs.

However, as shown in Table III, setting dmin = 0.8m results

in almost the same optimization accuracy. Mapping one lap of

Maze 3 implies the drone to travel about 14m, which results

in 18 poses for the sparse graph when using dmin = 0.8m.

Therefore, it is possible to map an environment of about 13m2

using 18 poses. By extrapolation, 440 poses would allow our

system to map an environment of about 317m2.

Another limitation of our system comes from the ToF sen-

sors, which replace the conventional LiDARs. This substitution

introduces several distinctions between the two technologies.

Firstly, LiDARs typically possess a greater operational range,

enabling robots to map distant areas of the environment. In

contrast, our ToF sensor is restricted by a maximum range

of 4m. Additionally, LiDARs often exhibit a higher angular

resolution, resulting in measurement accuracy that is less

reliant on the distance magnitude. Conversely, our employed

ToF sensor operates with distinct zones, assuming that any

detected obstacle within a zone is located at the zone’s center.

Considering the angle of one zone of θzone = 45◦/8 = 5.625◦,

the maximum distance error induced by this effect is approx-

imately emax = d · tan(θzone/2) ≈ 0.05 · d. While this

error is negligible for short distances, it exceeds 5 cm for

distances beyond 1m. Consequently, these errors can lead to

map misalignments, regardless of the effectiveness of PGO.

A potential extension that we mention involves expanding

our system’s capabilities to accommodate a swarm of drones.

Given that ICP can derive transformations between scans cap-

tured by different drones, it would be feasible to merge pose

(a) 7.5 cm resolution. (b) 5 cm resolution.

Fig. 18: Binary occupancy maps resulted from Maze 3.

graphs from multiple drones and optimize them collectively to

align their trajectories. This would enable faster mapping of an

environment through parallel sensing of distinct areas by the

swarm of drones, consequently reducing the overall mapping

time. Another area of future work is to perform mapping in

3D. While our system assumes a flat environment, enabling

absolute altitude estimation would allow to create a 3D map by

acquiring depth measurements at various heights. Furthermore,

implementing a mechanism that discards the depth measure-

ments associated with moving people or obstacles would

enable our system to operate even in dynamic environments.

Lastly, another possible exploration entails leveraging the map

generated by our approach to enable additional functionalities,

such as optimal path planning. Converting the dense maps pro-

duced by our approach into binary maps – using the approach

from [58] – would further reduce the memory footprint of the

maps. For example, Figure 18 depicts the binary representation

of the dense map from Figure 17e for resolutions of 7.5 cm
and 5 cm.

VIII. CONCLUSIONS

The paper presented NanoSLAM, a lightweight SLAM for

autonomous drones, and the methodology to enable fully

onboard mapping for small robotic platforms, which before

was only possible with larger and more power-intensive

computational platforms. NanoSLAM is the first system that

enables SLAM for autonomous nano-UAVs and performs the

computation entirely onboard exploring a novel RISC-V par-

allel low-power processor. We demonstrated the effectiveness

of NanoSLAM by mapping three different real-world mazes,

achieving a mapping error down to 4.5 cm and reducing

the trajectory estimation error by up to 67%. The SLAM

algorithm runs onboard in less than 250ms and the whole

mapping pipeline requires less than 500 kB of RAM. In spite

of its remarkably lightweight configuration (44 g), the system

introduced in this study achieves mapping accuracy on par

with SoA approaches developed for standard-size UAVs, but

consumes only 87.9mW. The system presented in this paper

sets the foundation for increased autonomy in small form-

factor robots with highly constrained hardware, thus introduc-

ing novel technology to the field of nano-UAVs. By enabling

a comprehensive environmental map, this advancement opens

up possibilities for advanced navigation solutions, including

enhanced flight autonomy through optimal path planning.

22

ACKNOWLEDGMENTS

This work is partly supported by BRAINSEE project

(#8003528831) funded by armasuisse Science and Technology

of the Swiss Confederation.

REFERENCES

[1] C. Wang, J. Wang, J. Wang, and X. Zhang, “Deep-reinforcement-
learning-based autonomous uav navigation with sparse rewards,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 6180–6190, 2020.

[2] P. Huang, L. Zeng, X. Chen, K. Luo, Z. Zhou, and S. Yu, “Edge robotics:
Edge-computing-accelerated multirobot simultaneous localization and
mapping,” IEEE Internet of Things Journal, vol. 9, no. 15, pp. 14 087–
14 102, 2022.

[3] L. Yang, J. Yu, S. Yang, B. Wang, B. J. Nelson, and L. Zhang, “A survey
on swarm microrobotics,” IEEE Transactions on Robotics, vol. 38, no. 3,
pp. 1531–1551, 2021.

[4] O. Vermesan, R. Bahr, M. Ottella, M. Serrano, T. Karlsen, T. Wahlstrøm,
H. E. Sand, M. Ashwathnarayan, and M. T. Gamba, “Internet of robotic
things intelligent connectivity and platforms,” Frontiers in Robotics and
AI, vol. 7, p. 104, 2020.

[5] B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu, A. Faust,
G. C. de Croon, and V. J. Reddi, “Tiny robot learning (tinyrl) for source
seeking on a nano quadcopter,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 7242–7248.

[6] S. Karam, F. Nex, O. Karlsson, J. Rydell, E. Bilock, M. Tulldahl,
M. Holmberg, and N. Kerle, “Micro and macro quadcopter drones
for indoor mapping to support disaster management,” ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 1, pp. 203–210, 2022.

[7] V. Niculescu, L. Lamberti, F. Conti, L. Benini, and D. Palossi, “Im-
proving autonomous nano-drones performance via automated end-to-end
optimization and deployment of dnns,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, vol. 11, no. 4, pp. 548–562,
2021.

[8] D. Liu, W. Bao, X. Zhu, B. Fei, T. Men, and Z. Xiao, “Cooperative path
optimization for multiple uavs surveillance in uncertain environment,”
IEEE Internet of Things Journal, vol. 9, no. 13, pp. 10 676–10 692, 2021.

[9] B. P. Duisterhof, S. Li, J. Burgués, V. J. Reddi, and G. C. de Croon,
“Sniffy bug: A fully autonomous swarm of gas-seeking nano quad-
copters in cluttered environments,” in 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 9099–9106.

[10] V. Niculescu, D. Palossi, M. Magno, and L. Benini, “Energy-efficient,
precise uwb-based 3-d localization of sensor nodes with a nano-uav,”
IEEE Internet of Things Journal, 2022.

[11] H. Müller, N. Zimmerman, T. Polonelli, M. Magno, J. Behley, C. Stach-
niss, and L. Benini, “Fully on-board low-power localization with multi-
zone time-of-flight sensors on nano-uavs,” in 2023 Design, Automation

& Test in Europe Conference & Exhibition (DATE). IEEE, 2023, pp.
1–6.

[12] S. Kisseleff, S. Chatzinotas, and B. Ottersten, “Reconfigurable intel-
ligent surfaces in challenging environments: Underwater, underground,
industrial and disaster,” IEEE Access, vol. 9, pp. 150 214–150 233, 2021.

[13] D. Cristiani, F. Bottonelli, A. Trotta, and M. Di Felice, “Inventory
management through mini-drones: Architecture and proof-of-concept
implementation,” in 2020 IEEE 21st International Symposium on”

A World of Wireless, Mobile and Multimedia Networks”(WoWMoM).
IEEE, 2020, pp. 317–322.

[14] S. Chen, W. Meng, W. Xu, Z. Liu, J. Liu, and F. Wu, “A warehouse
management system with uav based on digital twin and 5g technologies,”
in 2020 7th International Conference on Information, Cybernetics, and
Computational Social Systems (ICCSS). IEEE, 2020, pp. 864–869.

[15] A. Moura, J. Antunes, A. Dias, A. Martins, and J. Almeida, “Graph-slam
approach for indoor uav localization in warehouse logistics applications,”
in 2021 IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC). IEEE, 2021, pp. 4–11.

[16] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[17] Y. Chen, S. Huang, L. Zhao, and G. Dissanayake, “Cramér–rao bounds
and optimal design metrics for pose-graph slam,” IEEE Transactions on

Robotics, vol. 37, no. 2, pp. 627–641, 2021.

[18] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial
vehicles: A survey,” International Journal of Control, Automation
and Systems, vol. 8, pp. 36–44, 2010. [Online]. Available:
https://doi.org/10.1007/s12555-010-0105-z

[19] H. Zhou, Z. Hu, S. Liu, and S. Khan, “Efficient 2d graph slam for sparse
sensing,” in 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2022, pp. 6404–6411.

[20] S. Srinara, C.-M. Lee, S. Tsai, G.-J. Tsai, and K.-W. Chiang, “Perfor-
mance analysis of 3d ndt scan matching for autonomous vehicles using
ins/gnss/3d lidar-slam integration scheme,” in 2021 IEEE International

Symposium on Inertial Sensors and Systems (INERTIAL). IEEE, 2021,
pp. 1–4.

[21] R. Eyvazpour, M. Shoaran, and G. Karimian, “Hardware implementa-
tion of slam algorithms: a survey on implementation approaches and
platforms,” Artificial Intelligence Review, pp. 1–53, 2022.

[22] H. Shen, Q. Zong, B. Tian, X. Zhang, and H. Lu, “Pgo-liom: Tightly-
coupled lidar-inertial odometry and mapping via parallel and gradient-
free optimization,” IEEE Transactions on Industrial Electronics, 2022.

[23] N. Chen, F. Kong, W. Xu, Y. Cai, H. Li, D. He, Y. Qin, and F. Zhang, “A
self-rotating, single-actuated uav with extended sensor field of view for
autonomous navigation,” Science Robotics, vol. 8, no. 76, p. eade4538,
2023.

[24] V. Niculescu, H. Müller, I. Ostovar, T. Polonelli, M. Magno, and
L. Benini, “Towards a multi-pixel time-of-flight indoor navigation sys-
tem for nano-drone applications,” in 2022 IEEE International Instru-

mentation and Measurement Technology Conference (I2MTC). IEEE,
2022, pp. 1–6.

[25] D. Rossi, F. Conti, M. Eggiman, A. Di Mauro, G. Tagliavini, S. Mach,
M. Guermandi, A. Pullini, I. Loi, J. Chen et al., “Vega: A ten-core
soc for iot endnodes with dnn acceleration and cognitive wake-up from
mram-based state-retentive sleep mode,” IEEE Journal of Solid-State
Circuits, vol. 57, no. 1, pp. 127–139, 2021.

[26] H. Müller, V. Niculescu, T. Polonelli, M. Magno, and L. Benini,
“Robust and efficient depth-based obstacle avoidance for autonomous
miniaturized uavs,” arXiv preprint arXiv:2208.12624, 2022.

[27] G. Cerutti, R. Andri, L. Cavigelli, E. Farella, M. Magno, and L. Benini,
“Sound event detection with binary neural networks on tightly power-
constrained iot devices,” in Proceedings of the ACM/IEEE International

Symposium on Low Power Electronics and Design, 2020, pp. 19–24.

[28] N. Dilshad, A. Ullah, J. Kim, and J. Seo, “Locateuav: Unmanned
aerial vehicle location estimation via contextual analysis in an iot
environment,” IEEE Internet of Things Journal, 2022.

[29] Z. Li, X. Zhao, Z. Zhao, and T. Braun, “Crowdfusion: Multi-signal
fusion slam positioning leveraging visible light,” IEEE Internet of Things

Journal, 2023.

[30] R. Latif and A. Saddik, “Slam algorithms implementation in a uav, based
on a heterogeneous system: A survey,” in 2019 4th World Conference

on Complex Systems (WCCS). IEEE, 2019, pp. 1–6.

[31] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Car-
lone, and J. A. Castellanos, “A survey on active simultaneous localization
and mapping: State of the art and new frontiers,” IEEE Transactions on

Robotics, 2023.

[32] T. Suzuki, “Time-relative rtk-gnss: Gnss loop closure in pose graph
optimization,” IEEE Robotics and Automation Letters, vol. 5, no. 3,
pp. 4735–4742, 2020.

[33] H. Cao, J. Xu, D. Li, L. Shangguan, Y. Liu, and Z. Yang, “Edge assisted
mobile semantic visual slam,” IEEE Transactions on Mobile Computing,
2022.

[34] M. Kasper, S. McGuire, and C. Heckman, “A benchmark for visual-
inertial odometry systems employing onboard illumination,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2019, pp. 5256–5263.

[35] F. Causa, M. Asciolla, R. Opromolla, P. Molina, A. Mennella, M. Nisi,
and G. Fasano, “Uav-based lidar mapping with galileo-gps ppp process-
ing and cooperative navigation,” in 2022 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE, 2022, pp. 938–947.

[36] E. Ghignone, N. Baumann, and M. Magno, “TC-driver: A trajectory
conditioned reinforcement learning approach to zero-shot autonomous
racing,” Field Robotics, vol. 3, no. 1, pp. 637–651, Jan. 2023. [Online].
Available: https://doi.org/10.55417/fr.2023020

[37] Y. Chang, K. Ebadi, C. E. Denniston, M. F. Ginting, A. Rosinol,
A. Reinke, M. Palieri, J. Shi, A. Chatterjee, B. Morrell et al., “Lamp
2.0: A robust multi-robot slam system for operation in challenging
large-scale underground environments,” IEEE Robotics and Automation

Letters, vol. 7, no. 4, pp. 9175–9182, 2022.

https://doi.org/10.1007/s12555-010-0105-z
https://doi.org/10.55417/fr.2023020

23

[38] P. Mayer, M. Magno, and L. Benini, “Smart power unit—mw-to-nw
power management and control for self-sustainable iot devices,” IEEE
Transactions on Power Electronics, vol. 36, no. 5, pp. 5700–5710, 2020.

[39] Y. Alghamdi, A. Munir, and H. M. La, “Architecture, classification,
and applications of contemporary unmanned aerial vehicles,” IEEE

Consumer Electronics Magazine, vol. 10, no. 6, pp. 9–20, 2021.
[40] B. Zhou, H. Xu, and S. Shen, “Racer: Rapid collaborative exploration

with a decentralized multi-uav system,” IEEE Transactions on Robotics,
2023.

[41] S. Karam, F. Nex, B. T. Chidura, and N. Kerle, “Microdrone-based
indoor mapping with graph slam,” Drones, vol. 6, no. 11, p. 352, 2022.

[42] E. Jeong, S. Kang, D. Lee, and P. Kim, “Parsing indoor manhattan
scenes using four-point lidar on a micro uav,” in 2022 22nd International
Conference on Control, Automation and Systems (ICCAS). IEEE, 2022,
pp. 708–713.

[43] G. A. Kumar, A. K. Patil, R. Patil, S. S. Park, and Y. H. Chai, “A
lidar and imu integrated indoor navigation system for uavs and its
application in real-time pipeline classification,” Sensors, vol. 17, no. 6,
2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/6/1268

[44] F. Gao, W. Wu, W. Gao, and S. Shen, “Flying on point
clouds: Online trajectory generation and autonomous navigation
for quadrotors in cluttered environments,” Journal of Field

Robotics, vol. 36, no. 4, pp. 710–733, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21842

[45] Z. Fang, S. Yang, S. Jain, G. Dubey, S. Roth, S. Maeta, S. Nuske,
Y. Zhang, and S. Scherer, “Robust autonomous flight in constrained
and visually degraded shipboard environments,” Journal of Field
Robotics, vol. 34, no. 1, pp. 25–52, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21670

[46] H. Han and J. Siebert, “Tinyml: A systematic review and synthesis
of existing research,” in 2022 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC). IEEE, 2022,
pp. 269–274.

[47] E. Tabanelli, G. Tagliavini, and L. Benini, “Dnn is not all you need: Par-
allelizing non-neural ml algorithms on ultra-low-power iot processors,”
ACM Transactions on Embedded Computing Systems, vol. 22, no. 3, pp.
1–33, 2023.

[48] J. Kühne, M. Magno, and L. Benini, “Parallelizing optical flow estima-
tion on an ultra-low power risc-v cluster for nano-uav navigation,” in
2022 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2022, pp. 301–305.

[49] S. Tijmons, G. C. H. E. de Croon, B. D. W. Remes, C. De Wagter, and
M. Mulder, “Obstacle avoidance strategy using onboard stereo vision on
a flapping wing mav,” IEEE Transactions on Robotics, vol. 33, no. 4,
pp. 858–874, 2017.

[50] M. Gross and H. Pfister, Point-based graphics. Elsevier, 2011.
[51] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[52] S. Touchette, W. Gueaieb, and E. Lanteigne, “Efficient cholesky factor

recovery for column reordering in simultaneous localisation and map-
ping,” Journal of Intelligent & Robotic Systems, vol. 84, pp. 859–875,
2016.

[53] E. S. Quintana, G. Quintana, X. Sun, and R. van de Geijn, “A note
on parallel matrix inversion,” SIAM Journal on Scientific Computing,
vol. 22, no. 5, pp. 1762–1771, 2001.

[54] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2d and 3d mapping,”
in 2010 IEEE International Conference on Robotics and Automation.
IEEE, 2010, pp. 273–278.

[55] A. Azad, M. Jacquelin, A. Buluç, and E. G. Ng, “The reverse cuthill-
mckee algorithm in distributed-memory,” in 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2017,
pp. 22–31.

[56] P. Mukhopadhyay and B. B. Chaudhuri, “A survey of hough transform,”
Pattern Recognition, vol. 48, no. 3, pp. 993–1010, 2015.

[57] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to

autonomous mobile robots. MIT press, 2011.
[58] T. Polonelli, C. Feldmann, V. Niculescu, H. Müller, M. Magno, and

L. Benini, “Towards robust and efficient on-board mapping for au-
tonomous miniaturized uavs,” in 2023 9th International Workshop on

Advances in Sensors and Interfaces (IWASI). IEEE, 2023, pp. 9–14.

https://www.mdpi.com/1424-8220/17/6/1268
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21842
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21670

	Introduction
	Related Work
	Algorithms
	Scan Frames and Scans
	Scan-matching
	Graph-based SLAM Algorithm
	SLAM in Real-world Scenarios
	Optimizing Large Graphs

	Nano-UAV System Setup
	Custom Quad ToF Deck
	Co-processor Deck - GAP9 SoC

	Implementation
	Sensor Processing
	Scan-matching Implementation
	Graph-based SLAM Implementation
	Hierarchical SLAM Implementation
	The Exploration Strategy and Corner Detection
	The STM32 Application
	The GAP9 Application

	Performance Analysis
	Execution Time of ICP
	Execution Time of Graph-based SLAM
	Power Analysis

	In-Field Experiments
	Scan-matching Evaluation
	SLAM Results
	Maze 1
	Maze 2
	Maze 3

	Discussion

	Conclusions
	References

