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Abstract—We consider an Internet of Things (IoT) system in
which a sensor delivers updates to a monitor with exponential
service time and first-come-first-served (FCFS) discipline. We
investigate the freshness of the received updates and propose a
new metric termed as Age upon Decisions (AuD), which is defined
as the time elapsed from the generation of each update to the
epoch it is used to make decisions (e.g., estimations, inferences,
controls). Within this framework, we aim at improving the
freshness of updates at decision epochs by scheduling the update
arrival process and the decision making process. Theoretical
results show that 1) when the decisions are made according to
a Poisson process, the average AuD is independent of decision
rate and would be minimized if the arrival process is periodic
(i.e., deterministic); 2) when both the decision process and the
arrive process are periodic, the average AuD is larger than,
but decreases with decision rate to, the average AuD of the
corresponding system with Poisson decisions (i.e., random); 3)
when both the decision process and the arrive process are
periodic, the average AuD can be further decreased by optimally
controlling the offset between the two processes. For practical
IoT systems, therefore, it is suggested to employ periodic arrival
processes and random decision processes. Nevertheless, making
periodical updates and decisions with properly controlled offset
also is a promising solution if the timing information of the two
processes can be accessed by the monitor.

Index Terms—Age of information, age upon decisions, Internet
of Things, update-and-decide systems, decision scheduling.

I. INTRODUCTION

RCENT developments in wireless sensor networks, em-

bedded systems, and low power communications have

made the Internet of Things (IoT) a reality. With a huge

and increasing number of smart devices connected to the

internet, IoT networks are increasingly popular in various

scenarios related to data gathering and service sharing. Typical
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applications of IoT include environment monitoring [1], IoT

based mobile phone computing systems [2], Industrial IoT

systems [3], and so on. Facilitated with the IoT technology,

our world becomes smarter and smarter.

In particular, IoT has spawned a lot of applications with

stringent delay requirements. In smart vehicular networks,

for example, vehicles need to share their status (e.g., po-

sition, speed, acceleration) with each other timely to en-

sure safety [4]. In IoT-based smart sensing systems (e.g.,

environmental monitoring, precision agriculture, disaster and

emergency response), the sensing data should be exploited in

a real/near-real-time manner [7]. In health monitoring (e.g.,

heart failure detection) systems [5], asset tracking applications

[6], and the indoor-positioning systems [7], timely information

acquiring is also crucial. Different from traditional systems

where communication takes place to reproduce the messages

of the source, the delivered information and updates are used

to control, or to compute, or to infer in these systems [8].

Therefore, the freshness (the timeliness) of the received infor-

mation/updates is of crucial importance.

To this end, Age of Information (AoI) was proposed as a

performance metric of information freshness [9], [10]. Specif-

ically, AoI is defined as the elapsed time since the generation

of the latest received update, i.e., the age of the latest update.

First, AoI characterizes the freshness of received updates more

precisely than traditional measures like delay and throughput.

For example, when transmission delay is small, the received

data is only fresh at the time it is received and becomes less

fresh as the time approaches the next data reception, especially

when throughput is low. When throughput is large, the received

data would also be not fresh if they had undergone large

queueing delays at the transmitter. Second, the AoI metric

enables direct comparison between lossless and lossy systems

[11]. Since increasing update rate would induce larger recovery

delay in lossless systems while increase recovery distortion or

packet dropping in lossy systems, the delay comparison and

the throughput comparison between lossy and lossless systems

are difficult to interpret. With the AoI measure, however, lossy

systems and lossless systems are comparable since AoI is

independent of packet loss.

A. Motivations

With the following observations that

• delay quantifies the freshness of updates at epochs when

they are received;
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• AoI quantifies the freshness of updates at every epoch

after they are received;

• in many IoT systems, the freshness of updates are only

important at some decision epochs,

however, we are motivated to consider a new freshness mea-

sure termed as Age upon Decisions (AuD). To be specific,

• AuD quantifies the freshness of updates at those decision

epochs when the received updates are used to make

decisions.

By making a decision, we mean that the received update is

used by the monitor to facilitate subsequent actions, e.g., to

control, to compute, to infer, or to decode. In this sense, the

monitor can be treated as a Decision Making Unit (DMU)

while the corresponding IoT system can be referred to as

an update-and-decide system. In particular, we denote general

processes with G, deterministic processes with D, and Poisson

processes with M . For example, in a D/G/1/M update-and-

decide system, the arrival process is a deterministic (periodic)

process, the service process is a general one, and the decision

process is a Poisson process.

Example 1: In IoT based smart agriculture systems, the

sensors transmit their observations on plants, soil, and air

condition to a monitor with random channel access. After

having collected enough data, the monitor evaluates the status

of the farmland and notifies the manager with an interim

report. Since the unexpected events in agriculture are highly

unpredictable, fast and proper reactions which can only be

performed based on real-time monitoring and immediate re-

porting, are important to prevent pets and plant diseases

[12]. The evaluating process (decision making process) at the

monitor, however, can never be consistent with the observing

process (update arrival process) and the transmission process

(service process) of sensors. Thus, AuD would be suitable

to evaluate the timeliness of interim reports. In particular,

by scheduling the observing process of each sensor and the

evaluating process at the monitor, the freshness of the reports

can be guaranteed. �

Example 2: In modern intelligent transportation systems

where live traffic information is available to each driver,

dynamic route planning is crucial for traffic load balancing

and congestion section avoiding. To be specific, by timely

reporting the global positioning system (GPS) information

of cars and the pictures taken by street cameras to the map

operator, the traffic load can be evaluated and any emergent

accidents can be detected. Based on these information, each

vehicle can then plan its route dynamically, i.e., determine

whether to make a turn at the next cross in real time.

Since the car-position process (update arrival process), the

information collecting process (service process), and route

planning process (the decision process) are all random, AuD

would be a proper measure for the freshness of dynamic route

planning. Moreover, the car-position process and the route

planning process can be controlled and optimized. �

Example 3: In health monitoring systems, timely detect-

ing/reporting heart failures is one of the most important

objectives [5]. Based on the acceleration information collected

by the smartphone accelerometer, the activity of a patient can

be recognized, which is important to determine whether the

patient is in the normal state or suffers heart failure. Although

increasing the rate of accelerometer reading could ensure the

timeliness of detecting potential heart failure, it also increases

the energy consumption of the smartphone. Therefore, it is

natural to determine the reading rate based on the level of

illness and schedule the readings (arrivals, deterministic or ran-

dom) and medical staff observations (decisions, deterministic

or random) properly. �

In this paper, therefore, we shall investigate such a fun-

damental problem: what are the average-AuD-minimizing

scheduling for the update arrival process and the decision

making process in update-and-decide systems. To be specific,

we are interested in the optimal control of inter-arrival times

and inter-decision times. In doing so, we shall provide answer

to whether the arrival process and the decision process should

be deterministic or be random.

B. Main Contributions

In this paper, we first consider a G/G/1/M IoT based

update-and-decide system and show that the average AuD is

independent of the rate of decisions. Thus, we can focus on

the arrival process and study which type of arrival process

minimizes the average AuD. We then consider a D/M/1/D
system in which both the arrival process and the decision pro-

cess are periodic. In particular, we investigate the average AuD

of the system and the average-AuD-optimal offset between the

arrival process and the decision process. The main contribution

of the paper can be summarized as follows.

• Novel freshness measure: We propose an AuD measure to

characterize the freshness of updates at those important

epochs, i.e., the decision epochs.

• Optimal update and decision scheduling: We show that

the periodic (i.e., deterministic) arrival process minimizes

the average AuD of G/M/1/M update-and-decide sys-

tems. For the decision process of D/M/1/G systems,

however, a synchronous and periodic one yields larger

average AuD than a Poisson process (i.e., random). Nev-

ertheless, by optimizing the offset between the arrivals

and the decisions of an asynchronous D/M/1/D system,

the average AuD can be smaller than that of a D/M/1/M
system.

• Efficient algorithms: We present an algorithm to search

the optimal arrival process for G/M/1/M systems, an

algorithm to search the key parameter ρ1 for G/G/1/M
systems, and an algorithm to optimally control the timing

offset in D/M/1/D systems. These iterative algorithms

are efficient to converge in a few iterations in the dis-

cussed examples.

C. Organization

The rest of the paper is organized as follows. In Section

II, several related works are reviewed. In Section III, we

present the update-and-decide system model and the definition

of AuD. We then investigate the average AuD of G/G/1/M
update-and-decide systems with random update arrivals in

Section IV. For G/M/1/M update-and-decide systems, we



also present an efficient algorithm searching the optimal dis-

tribution parameters for inter-arrival time. In Section V, we

investigate the average AuD of D/M/1/D update-and-decide

systems with periodic arrivals and periodic decisions. For the

case where the arrival rate and the decision rate is equal, we

further present the average-AuD-minimizing control for the

offset between the arrival process and the decision process.

Finally, our work is concluded in Section VI.

II. RELATED WORK

As indicated by the definition, AoI specifies the age of the

latest received update [9]. Thus, AoI is an absolute measure

that is comparable among different systems, e.g., systems

with lossless or lossy communications, and systems with

different applications. For example, AoI has been extensively

studied in various queueing systems, e.g., M/M/1,M/D/1
and D/M/1 [9], and under several serving disciplines, e.g.,

first-come-first-served (FCFS) [9], last-generate-first-served

(LGFS) [13]. In general, it is very challenging to investigate

the statistics of AoI with queueing theory, except a few

successful attempts on the distribution of AoI, e.g., the AoI

distibution for single server queues in [14]. To this end, the

stochastic hybrid systems (SHS) theory was introduced as a

key tool for AoI analysis [11]. With the SHS approach, the

authors have analyzed the temporal convergence of higher

order moments and moment generating function (MGF) in a

class of status sampling networks [14].

Due to its specialty in characterizing the timeliness of

updates and transmissions, AoI is closely relative to various

real-time scenarios and has been widely applied to sensor-

based monitoring [15]–[17], cognitive radio-based IoT systems

[18], and two-way data exchanging systems [19], [20]. In [15],

the authors proposed to minimize the average AoI of updates

and increase the life-time of mobile devices by transmitting

some assisting updates from a correlated source. In multi-

terminal based monitoring systems, the age-energy trade-off

and link-layer retransmission schemes were investigated in

[16] while the multiple-access-layer load balancing schemes

(e.g., round-robin) was investigated in [17]. For cognitive

radio-based IoT networks, the critical update rate optimizing

the primary system was obtained asymptotically in [18], which

provided solid foundation to determine whether the overlay

scheme outperforms the underlay scheme or not. Moreover, for

two-way data exchanging systems with wireless power transfer

at the master node, the achievable uplink-downlink timeliness

region of time-splitting systems was presented in [19] and the

weighted-sum-AoI optimal power splitting (between energy

flow and information flow) scheme was considered in [20].

There were also new freshness measures proposed for some

specific systems and applications [21]–[23]. In [21], value

of information updates (VoIU) was proposed to measure the

reduction in delay cost upon the reception of a new update.

In [22], the authors investigated the connection between in-

formation age and what they called effective age, which is

closely related with the structure information and the pattern

of sampling, and is minimized when the prediction error

is minimized. Furthermore, the mutual information between

received samples and source signals was used to measure the

freshness of received samples in [23].

With the observation that AoI specifies the age of updates at

arbitrary epochs, we proposed to emphasize the age of updates

at decision epochs using the AuD measure in our previous

work [24]. In the paper, the average AuD of an M/M/1/M
update-and-decide system was obtained explicitly. The result

was then extended to general G/G/1/M update-and-decide

systems in [25]. In this paper, we shall further consider the

performance of D/M/1/D systems and minimize the average

AuD of various update-and-decide systems by scheduling the

arrival process and the decision process.

III. SYSTEM MODEL

We consider an IoT based update-and-decide system with

arrival rate λ and service rate µ, as shown in Fig. 1. The

arrived updates are stored in an infinite long buffer and will be

served according to the FCFS discipline. Based on the received

updates, a monitor (DMU) makes random decisions at rate ν.

As shown in Fig. 2, the updates are generated at arrival

epochs {tk, k = 1, 2, · · · } and are received by the DMU

at departure epochs t′k. The inter-arrival time Xk between

neighboring updates is Xk = tk − tk−1 and the system time

that packet k stays in the system is Tk = t′k − tk. Note

that system time Tk is the sum of waiting time Wk and

service time Sk, i.e., Tk = Wk + Sk. We refer to the period

between two consecutive departure epochs as inter-departure

time Yk = t′k − t′k−1 and the period between two consecutive

decision epochs as inter-decision time Zj = τj − τj−1.

On the update-and-decide system, we consider a set of the

following assumptions.

A1 The arrival rate is smaller than the service rate (i.e., 0 <
λ < µ) so that the system is stable.

A2 The inter-decision time Zj is exponentially distributed

with probability distribution function (pdf) fZ(x) =
νe−νx for x ≥ 0, unless otherwise stated. That is, the

decisions are made following a Poisson Process and the

system can be denoted by G/G/1/M .

In this paper, we investigate the freshness of the received

updates at decision epochs via age upon decisions.

Definition 1: (Age upon Decisions-AuD). At the j-th deci-

sion epoch, denote the index of the most recently received

update as

NU(τj) = max{k|t′k ≤ τj},
and the generation time of the update as

U(τj) = tNU(τj).

The AuD of the update-and-decide system is then defined

as the random process

∆D(τj) = τj − U(τj). (1)

That is, ∆D(τj) characterizes the freshness of update

NU(τj) at the epoches it is used to make decisions. Note that

if we replace decision epoch τj with arbitrary time t, AuD

∆D(τj) would reduce to AoI ∆(t).
Example 4: Fig. 2 shows a sample path of AoI and AuD,

where AoI is presented by dotted line segments and AuD is
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Fig. 1. The update-and-decide system model.
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Fig. 2. Age upon decisions, where Xk = tk−tk−1 is the inter-arrival
time, Sk is the service time, Wk is the waiting time, Tk = t′k − tk
is the system time, Yk = t′k − t′k−1 is the inter-departure time, and
Zj = τj − τj−1 is the inter-decision time.

presented by empty circles. Since the service of the first update

is not completed until t′1, the second update sees a busy server

upon its arrival at t2. The second update waits for a period of

W2 and gets served immediately at the departure of the first

update. Thus, inter-departure time Y2 between the first and the

second updates equals to the service time of the second update,

i.e., Y2 = S2. This is a typical case in which Xk < Tk−1 is

true and we have Yk = Sk. On the other hand, if Xk > Tk−1

is true (e.g., X3 > T2), the next update has not arrived at

the departure of update k. As shown in Fig. 2, the server will

be idle for a period of X3 − T2 before the third update gets

served from its arrival. In this case, the inter-departure time is

Yk = Xk + Sk − Tk−1.

During each inter-departure time, several decisions can be

made based on the latest update, i.e., the former update is

used for several times. For example, there are two decision

epochs (τ2 and τ3, denoted by the red arrow) during Y3 and

the corresponding AuD are ∆D(τ2) and ∆D(τ3), respectively.

There may also be cases where no decision is made during

an inter-departure time, which means that the former update

is not used. �

For the given arrival process, the serving process, and the

decision process, we are interested in the average AuD of the

system. Suppose there are NT decisions during a period of T ,

average AuD is given by

∆D = lim
T→∞

1

NT

NT∑

j=1

∆D(τj), (2)

with limj→∞ τj = +∞.

IV. AVERAGE AUD WITH RANDOM ARRIVALS

In this section, we investigate the average AuD of

update-and-decide systems with random arrivals and gen-

eral/exponential services.

A. AuD of G/G/1/M Update-and-Decide Systems

We denote X1 = t1. Since departure time t′k can be

expressed as

t′k =

k∑

i=1

Xi + Tk,

the inter-departure time Yk = t′k − t′k−1 can be rewritten as

Yk = Xk + Tk − Tk−1, k ≥ 1.

By considering the number of decisions made during each

inter-departure time, the average AuD of the system can be

obtained, as shown in the following theorem.

Theorem 1: In a G/G/1/M update-and-decide system with

general arrival process, general service process, and Poisson

decision process, the average AuD of the system is indepen-

dent of decision rate and is given by

∆D =
E[Y 2

k ] + 2E[Tk−1Yk]

2E[Yk]
. (3)

Proof: See Appendix A.

From Theorem 1, we have the following observations.

i) Making decisions more frequently does not improve the

timeliness of decisions. This is because when the decision

rate is increased, although there will be more decision

epochs being closer to departure epochs, there will also

be more decision epochs being farther from departure

epochs. In the statistical sense, therefore, the average

AuD does not change with the rate of decisions.

ii) With Poisson distributed decisions, the average AuD is

equal to the average AoI of the system. Note that the

average AuD converges to the average AoI as the decision

rate goes to infinity. Together with Theorem 1, it is

readily seen that the average AuD and the average AoI

would be equal regardless of decision rate. Therefore, the

AuD framework also provides an alternative approach of

calculating average AoI.

iii) In the AuD framework, we have a new dimension of

optimization, i.e., the decision process. In addition to

optimizing the arrival process and the service process,

therefore, we can further reduce average AuD by schedul-

ing the decision process.

iv) Although the average AuD is independent of decision

rate, it can be reduced by scheduling the arrival process

and the service process. For example, scheduling the

arrival processes by varying the distribution of inter-

arrival time.

B. AuD of G/M/1/M Update-and-Decide Systems

In this subsection, we consider a G/M/1/M update-and-

decide system where the service time is exponentially dis-

tributed with mean service time 1/µ and the inter-arrival time

is generally distributed with mean 1/λ. We denote the pdf of

inter-arrival time Xk as fX(x) and the pdf of service time Sk

as fS(x), i.e., fS(x) = µe−µx.



Algorithm 1 Iterative Solution of ρ1

Initialization:

1: Set ρ
(0)
1 close to 1, ∆ρ1 sufficiently large, and ǫ reasonably

small;

2: Set i = 0;

Iteration:

3: while |∆ρ1| > ǫ do

4: ρ
(i+1)
1 =

∫∞
0

fX(x)e
−µ(1−ρ

(i)
1 )xdx;

5: ∆ρ1 = ρ
(i+1)
1 − ρ

(i)
1 ;

6: i = i + 1;

7: end while

8: Output: ρ1 = ρ
(i)
1

1) Queueing Analysis

Since fX(x) does not have the memoryless property as

the exponential distribution, the remaining time to the next

arrival depends on the passed time after the previous arrival.

The length of the update queue, therefore, is not a Markov

process in general. To investigate the stationary distribution of

queue length, we need to consider an embedded Markov chain

within the G/M/1 queue first. In particular, the embedded

time instants are exactly the time of update arrivals.

We denote the number of updates in the system just prior

the k-th arrival as La(k), which take values from state space

Ω = {0, 1, · · · , }. As shown in [28, Chap. 14. 8], La(k) is a

Markov chain with stationary distribution π, where

πj = (1− ρ1)ρ
j
1 for j ≥ 0. (4)

Moreover, ρ1 satisfies

ρ1 =

∫ ∞

0

fX(x)e
−µ(1−ρ1)xdx. (5)

Therefore, ρ1 can be solved iteratively using Algorithm 1.

Since system time Tk is only dependent with the queue

length at arrival epochs, the pdf of Tk can be readily obtained

based on π, as shown in the following proposition.

Proposition 1: Given that Sk is exponentially distributed,

Tk is exponentially distributed with pdf

fT(x) = µ(1− ρ1)e
−µ(1−ρ1)x, x ≥ 0.

Proposition 1 is important in that it ensures further analysis

on inter-departure time and average AuD possible. In particu-

lar, we have

E[Tk] =
1

µ(1 − ρ1)
,

Pr{Xk < Tk−1} = ρ1.

We also have the following proposition on inter-departure

time Yk.

Proposition 2: The first two order moments of inter-

departure time Yk and the cross correlation between Tk−1 and

Yk are, respectively, given by

E[Yk] = E[Xk],

E[Y 2
k ] = E[X2

k ]−
2ρ1

µ(1− ρ1)
E[Xk] +

2

µ2(1− ρ1)
,

E[Tk−1Yk] =
1

µ(1 − ρ1)
E[Xk]−

1

µ2(1− ρ1)
+

q1
µ(1− ρ1)

,

Algorithm 2 Bisection Solution to Problem P2

Initialization:

1: Set l = 0, u to be sufficiently large, and ǫ to be reasonably

small;

Iteration:

2: while u− l > ǫ do

3: c0 = (l + u)/2;

4: Solve Problem P4 using solver fminunc and proper

κ0;

5: if minκϕ̃(κ) < 0 then

6: u = c0;

7: else

8: l = c0;

9: end if

10: end while

11: Output: κ∗, c∗0

where

q1 =

∫ ∞

0

xfX(x)e
−µ(1−ρ1)xdx.

2) AuD-Optimal Arrivals

Combining the results in Theorem 1, Proposition 1, and

Proposition 2, the average AuD can readily be expressed. We

can then minimize the average AuD and determine the optimal

distribution of inter-arrival time by considering the following

functional optimization problem.

hopt = min
fX(x)

E[Y 2
k ] + 2E[Tk−1Yk]

2E[Yk]
(6)

(P1) s. t.

∫ ∞

0

fX(x)dx = 1, (7)

fX(x) ≥ 0, ∀x ≥ 0, (8)

ρ < 1, (9)

where ρ = λ/µ and constraint (9) guarantees that the station-

ary distribution π (see (4)) exists and the queue is stable.

As shown in [26], [27], however, the objective function

in Problem P1 is quasi-convex. In general, it is difficult to

solve Problem P1 and determine which type of probability

distribution minimizes the average AuD. For a certain specified

type of distribution, however, Problem P1 can be solved by

considering the feasibility of the following functional problem:

find fX(x)

(P2) s. t. E[Y 2
k ] + 2E[Tk−1Yk]− 2c0E[Yk] ≤ 0,

Equations (7) to (9).

For a given c0, if Problem P2 is feasible, then we have

c0 ≥ hopt. Conversely, if Problem P2 is infeasible, we have

c0 < hopt. This motivates us to solve fX(x) by a two-layer

algorithm as shown in Algorithm 2.

To be specific, for a given c0 and a given type of distribution

with parameter vector κ (e.g., κ = [α, σ2]T for the folded-

normal distribution), the inner layer checks the feasibility of



Problem P2 by solving κ from the following optimization

problem:

(P3) g(c0) = min
κ

E[Y 2
k ] + 2E[Tk−1Yk]− 2c0E[Yk]

s. t. ρ < 1.

It is clear that Problem P2 is feasible only if the solution

to Problem P3 satisfies g(c0) ≤ 0. In particular, g(c0) = 0
implies c0 = hopt. This is because for any other c′0 < c0, we

have g(c′0) > 0, i.e., Problem P2 is infeasible.

In the outer layer, we update c0 using the bisection method,

where the initial value of c0 is set to be no less than hopt. In

each iteration, c0 is decreased if g(c0) < 0 (i.e., P2 is feasible)

and is increased otherwise (i.e., P2 is infeasible). Thus, g(c0)
will converge to zero and the corresponding solution κ

∗ to

Problem P3 specifies the optimal fX(x) of the given type.

In most cases, the objective function ϕ(κ) = E[Y 2
k ] +

2E[Tk−1Yk]−2c0E[Yk] of Problem P3 contains transcendental

functions and implicit expressions (e.g., ρ1), and thus is math-

ematically intractable. Therefore, we solve the problem using

Matlab tools, e.g., the unconstrained solver fminsearch.

In order to transform Problem P3 into an unconstrained

optimization problem, we consider the following objective

function instead,

(P4) ϕ̃(κ) = ϕ(κ) +MIρ≥1,

where M is a very large number and IA is the indicator

function, i.e., IA equals to one if A is true and zero otherwise.

It is clear that Problem P4 and Problem P3 share the same

solution.

Example 5: If fX(x) is a uniform distribution with κu =
[β], we have

fX(x) =
1

β
, x ∈ (0, β).

In this case, the probability for Xk being very large is zero

and we have

ρ=
2

βµ
, E[Xk] =

β

2
, E[X2

k ] =
β2

3
,

q1 =
1

βµ2(1− ρ1)2
− e−µ(1−ρ1)β

µ(1− ρ1)

(
1 +

1

βµ(1 − ρ1)

)
.

Note that ρ1 can be obtained efficiently by Algorithm 1.

Then we can express E[Yk], E[Y
2
k ], and E[Tk−1Yk] explicitly.

Finally,we can solve the optimal β∗ using Algorithm 2. �

Example 6: If fX(x) is a Lomax distribution with κl =
[α, β], we have

fX(x) =
αβα

(x + β)α+1
, x ≥ 0,

which is a heavy-tail distribution with probability Pr{Xk >
x} decreasing polynomially. We have

E[Xk] =
β

α− 1
and ρ =

α− 1

βµ
,

E[X2
k ] =

2β2

(α− 1)(α− 2)
,

which is well defined for α > 2. In this case, although q1
cannot be expressed explicitly, we can obtain q1 numerically

and then implement Algorithm 2 readily. �

Example 7: Suppose fX(x) is a folded-normal distribution

with κn = [α, σ],

fX(x) =
1√
2πσ

(
e

−(x−α)2

2σ2 + e
−(x+α)2

2σ2

)
, x ≥ 0.

It is clear that the tailing probability Pr{Xk > x} approxi-

mately decreases with x at a speed of exp(x2). We have

E[Xk] =
2σ√
2π

e
−α2

2σ2 + α
(
1− 2Φ

(−α

σ

))
,

E[X2
k ] = α2 + σ2,

ρ=
1

µE[Xk]
,

where Φ(x) = 1√
2π

∫ x

−∞ e−
t2

2 dt.

The MGF GX(t) = E[etX ] of fX(x) is given by

GX(t) = e
σ2t2

2 +αt
(
1− Φ

(
− α

σ
− σt

))

+e
σ2t2

2 −αt
(
1− Φ

(α
σ
− σt

))
.

We then have

ρ1 = GX(−µ(1− ρ1)) and q1 = G′
X(−µ(1− ρ1)).

By using Proposition 2, Algorithm 1, and Algorithm 2, we can

calculate ρ1, E[Yk], E[Y
2
k ], E[Tk−1Yk], q1, and solve optimal

κ
∗

n efficiently. �

Example 8: Suppose fX(x) is an exponential distribution

with κe = [λ], i.e.,

fX(x) = λe−λx, x ≥ 0,

where Pr{Xk > x} decreases exponentially with x.

For a given service rate µ, we have ρ1 = ρ = λ/µ and

E[Tk−1Yk] =
1

µ2(1− ρ)
+

1− ρ

µ2ρ
,

∆D =
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
, (10)

where the average AuD ∆D has the same expression as the

average AoI ∆ and the AuD-optimal arrival rate λ∗ is close

to µ/2 [9]. �

3) Missing Probability of Updates

Although increasing the decision rate does not reduce the

average AuD, increasing the decision rate does help reduce

the missing probability. To be specific, fewer updates would

be missed to make decisions if the decision rate is increased.

Definition 2: Missing probability pmis of updates is the

limiting ratio between the number of updates missed for

decisions and the number of total received updates as the

length of the considered period goes to infinity.

Equivalently, missing probability pmis is the probability of

no decision being made during each inter-departure time Yk,

i.e., Nk = 0. Given that Yk = y, we know that Nk follows

the Poisson distribution with parameter νy. By taking the

expectation over Yk, the missing probability could be obtained

readily, as shown in the following proposition.



Proposition 3: For G/M/1/M update-and-decide systems,

the missing probability of updates is given by,

pmis =
µ
(
µ(1− ρ1)q0 − νρ1

)

(µ+ ν)
(
µ(1 − ρ1)− ν

) ,

where ρ1 is given by (5) and

q0 =

∫ ∞

0

fX(x)e
−νxdx.

Proof: See Appendix B.

While the average AuD quantifies the timeliness of updates,

the missing probability specifies the utilization (or efficiency)

of the received updates. Thus, the performance of an update-

and-decide system can be well characterized by average AuD

and missing probability. In particular, the missing probability

of an M/M/1/M update-and-decide system is explicitly given

by

pmis =
λ

λ+ ν
.

C. Numerical Results

We consider the following four types of arrival processes:

the uniform arrival process, the Lomax arrival process, the

folded-normal arrival process, and the exponential arrival

process. For each arrival process and each service rate µ, we

search the optimal distribution parameter κ∗ using Algorithm

2. Using the obtained κ
∗, we then present how the minimum

average AuD changes with service rate µ in Fig. 3(a).

First, we observe that the average AuD of a system employ-

ing a folded-normal arrival process with κn = [α, σ2] is the

smallest. This is because for the folded-normal distribution,

the probability Pr{Xk > x} decreases very fast, especially

when σ2 is small. Actually, our results show that for each µ,

the optimal variance is σ2 = 0 (with fluctuations less than

10−5), which means that Xk degrades to a constant equal

to α. In fact, the periodicity of arrivals eliminates all their

uncertainty and thus is beneficial in reducing average AuD.

Therefore, a well scheduled (with a properly chosen rate)

periodic arrival process is a simple yet AuD-optimal choice.

Second, the average AuDs are almost the same for a system

with a Lomax arrival process and a system with an exponential

arrival process, and are slightly larger than that of a system

with a folded-normal arrival process. On the one hand, the

Lomax distribution has two parameters and the probability

Pr{Xk > x} can be tuned to decrease (with x) as quickly as

that of an exponential distribution. On the other hand, neither

the Loamx distribution nor the exponential distribution can be

tuned to be close to a deterministic constant like the folded-

normal distribution. Third, the AuD of a system with a uniform

arrival process is larger than a system with a folded-normal

arrival process, but is smaller than a system with a Lomax or

an exponential arrival process. This is because for the uniform

arrival process, inter-arrival time Xk can never be larger than

β. Seeing from R
+, the uncertainty of Xk is relatively low,

which is beneficial in optimizing the average AuD. Fourth,

we also present the average AoI of an M/M/1 queue with

optimal arrival rate by the triangle labeled pink curve, which
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Fig. 3. Performance of the optimal arrivals in a G/M/1/M update-
and-decide system, where ‘TH’ represents a theocratical result and
‘MC’ represents a Monte Carlo result.

exactly coincide with the average AuD of an update-and-

decide system with exponential arrivals and Poisson decisions

(see (10) and the square labeled black curve). Fifth, it is seen

that our theoretical results exactly coincide with Monte Carlo

simulation results, which further validates our analysis.

Fig. 3(b) depicts the maximal achievable arrival rate λ =
1/E(Xk) of the considered systems when the average-AuD-

minimizing κ
∗ is used. It is observed that the arrival rate

increases approximately linearly with the service rate. Roughly

speaking, we have λ ≈ µ/2 for all the update-and-decide

systems under consideration. If the service rate is increased,

therefore, the DMU would receive updates at a higher rate,

which means that the average AuD would be smaller.

Fig. 4(a) plots how missing probability pmis varies with

decision rate ν in an M/M/1/M update-and-decide system,

where the arrival rate is µ = 2. It is seen that as ν is increased,

pmis decreases quickly. It is also observed that if we set the
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Fig. 4. Utilization and timeliness of an M/M/1/M update-and-decide systems.

arrival rate λ to be smaller, pmis decreases more quickly. Fig.

4(b) presents how average AuD changes with arrival rate λ
in an M/M/1/M updating system. As is shown, the average

AuD is large when λ is either very small or very large. To be

specific, when λ is small, the average AuD is large because the

waiting time for the arrival of a new update is large. When λ is

large, the queueing delay of updates is large due to the limited

service capability of the server. To minimize AuD, therefore,

we should try to increase the service rate and set the arrival

rate to be close to (while smaller than) a half of the service

rate, i.e., λ ≈ µ/2.

V. AVERAGE AUD WITH PERIODIC ARRIVALS

Although we have observed that the updating system with

folded-normally distributed inter-arrival time achieves the min-

imum average AuD as variance σ2 approaches zero, it is not

clear whether the deterministic process is also optimal for

decisions. In this section, we shall investigate the average AuD

and the optimal decision scheduling for updating systems with

periodic arrivals.

Consider a D/M/1/G update-and-decide system with de-

terministic inter-arrival time and exponentially distributed ser-

vice time, i.e., fX(x) = δ(x − 1
λ
) and fS(x) = µe−µx. Thus,

we have Xk = 1/λ with probability 1.

With periodic arrivals, we denote

ρ0 =

∫ ∞

0

fX(x)e
−µxdx = e

−µ
λ ,

ρ1 =

∫ ∞

0

fX(x)e
−µ(1−ρ1)xdx = e

−µ(1−ρ1)
λ . (11)

By solving ρ1 from (11), we further have

ρ1 = −ρW0

(−1

ρ
e

−1
ρ

)
,

where ρ = λ/µ and W0(·) is the 0-th branch of the Lambert

function.

Some frequently used notations of this section are summa-

rized in the following table.

Table I: Notations

ρ1 = e
−µ(1−ρ1)

λ ρ0 = e
−µ
λ

w1 = e
−µ(1−ρ1)

ν w0 = e
−µ
ν

u1 = e−µ(1−ρ1)δ u0 = e−µδ

ρ =
λ
µ

A. Average AuD of D/M/1/M Update-and-Decide Systems

In this subsection, we assume that decisions are made

following a Poisson process. Thus, the inter-decision times

are exponentially distributed with pdf fZ(x) = νe−νx.

Following Theorem 1 and Proposition 2, we have the

following immediate corollary.

Corollary 1: In a D/M/1/M update-and-decide system

with arrival rate λ, service rate µ, and Poisson decisions of

rate ν, the average AuD is given by

∆D =
1

2λ
+

1

µ(1− ρ1)
.

Proof: By combing the results in Theorem 1 and Propo-

sition 2, the corollary can readily be proved.

Although the optimal λ∗ cannot be presented explicitly, it

can be obtained using Algorithm 1 and is expected to close to

0.5. When λ∗ is used, the corresponding average AuD would

coincide with the minimum average AuD of a G/M/1/M
system with a folded-normal arrival process.

B. Average AuD of D/M/1/D Update-and-Decide Systems

In this subsection, we study the average AuD and the

optimal scheduling of a D/M/1/D update-and-decide system

in which the decision process is periodic. In such systems,

the decision epochs are no longer uniformly distributed within

each inter-departure time Yk. Thus, the AuD performance of

the system needs to be considered separately.

We denote the inter-arrival time as Xk = 1/λ and the inter-

decision time as Zj = 1/ν. In particular, we assume that ν
is an integer multiple of λ, i.e., ν = m0λ, where m0 is a



positive integer. That is, m0 decisions are made during each

inter-arrival time. To keep the missing probability pmis low, we

set m0 to be no less than one, i.e., m0 ≥ 1.

1) Average AuD of Synchronous Systems

First, we consider the case where the arrival process and

the decision process are synchronous, i.e., each update arrival

epoch is aligned with a certain decision epoch. The average

AuD of the system is presented in the following theorem.

Theorem 2: In a synchronous D/M/1/D update-and-

decide system with arrival rate λ, service rate µ, and periodic

decisions with rate ν = m0λ, the average AuD is given by

∆D =
1 +m0

2ν
+

w1

ν(1− w1)
, (12)

where w1 = e−
µ(1−ρ1)

ν .

Proof: See Appendix C.

It can be readily verified that (12) can be rewritten as

∆D =
1

2λ
+

1

m0λ

(
1

2
+

1

e
µ(1−ρ1)

m0λ − 1

)
.

Since the last item (one over (exp(µ(1 − ρ1)/m0λ) − 1))

is increasing with m0 more slowly than linear, ∆D would

be decreasing with m0. As m0 (the decision rate) goes to

infinity, ∆D would eventually decrease to the average AoI ∆
of the corresponding D/M/1 updating system. Note that ∆ is

equal to the average AuD of a D/M/1/M update-and-decide

system with Poisson decisions (see the remarks after Theorem

1). Thus, it is concluded that the average AuD of a D/M/1/M
system where Poisson decisions are made is smaller than

that of the corresponding D/M/1/D system where periodic

decisions are made. The reason is that the periodicity of

decisions would greatly limit the flexibility of decisions to

explore the potential freshness of received updates.

We also have the following results on the missing probabil-

ity of updates.

Proposition 4: In a synchronous D/M/1/D update-and-

decide system with arrival rate λ, service rate µ, and periodic

decisions with rate ν = m0λ, the missing probability of

updates is given by

pmis =
ρ1

2− ρ1

( 1

w1
− w0

)
.

Proof: See Appendix D.

2) Optimal Decision Scheduling in Asynchronous Systems

Second, although the periodicity of the decision process

slightly increases average AuD, we shall show that by schedul-

ing the decisions properly, the periodic decision process can

then achieve a smaller average AuD than the Poisson decision

process does. In particular, we consider a D/M/1/D update-

and-decide system where the arrival process and the decision

process are asynchronous. In this subsection, we assume that

the arrival rate equals the decision rate, i.e., ν = λ. That

is, each update arrival epoch is followed by a decision epoch

which is exactly δ seconds after it. We shall present the average

AuD of the system and investigate how the offset δ affects it.

The average AuD of this system is presented in the follow-

ing theorem.

Algorithm 3 Iterative Solution to Offset δ

Initialization:

1: Set initial offset as δ = 1
2λ , initial u1 as u

(0)
1 = e

−(1−ρ1)
2ρ ,

and l = 0;

2: Set initial step-size as ς = u1

4 ;

3: Set ǫ to be reasonably small;

4: φ(0) = φ
(
u
(0)
1

)
;

Iteration:

5: while
∣∣φ(l)

∣∣ > ǫ do

6: s = sign
(
φ(l)
)
;

7: u
(l+1)
1 = u

(l)
1 + sς ;

8: l = l + 1;

9: φ(l) = φ
(
u
(l)
1

)
;

10: if sφ(l) > 0 then

11: ς = 2ς ;

12: else

13: ς = ς
7 ;

14: end if

15: end while

16: Output: u∗
1 = u

(l)
1 and δ∗ =

− ln(u∗

1)
µ(1−ρ1)

Theorem 3: In an asynchronous D/M/1/D updating sys-

tem with periodic arrivals at rate λ, exponential services at rate

µ, periodic decisions at rate ν = λ, and offset δ ∈ (0, 1/λ),
the average AuD is given by

∆D = δ +
(1− ρ0)u

2
1 + (1 − ρ1)(1− u0)u1

λ(1 − ρ1)(1− ρ0)
, (13)

where u0 = e−µδ, u1 = e−µ(1−ρ1)δ , and ρ0 = e−
µ
λ .

Proof: See Appendix E.

The derivative of ∆D over offset δ can be presented as a

function of u1 as follows

φ(u1) = 1− 2u2
1

ρ
− (1 − ρ1)u1

ρ(1 − ρ0)
+

2− ρ1
ρ(1 − ρ0)

u
2−ρ1
1−ρ1
1 .

Note that the average AuD is minimized when the arrival

rate is close to λ = µ/2. In this case, we have ρ = 0.5,

ρ0 = e
−1
ρ = 0.1353, and ρ1 = −ρW0(

−1
ρ
e

−1
ρ ) = 0.2032. It

can readily be verified that φ(0) < 0, φ( 1
λ
) > 0, and φ(δ) is

convex. By increasing δ properly, therefore, the average AuD

can be minimized. In particular, we can search the optimal δ
efficiently using the iterative process shown in Algorithm 3.

From Theorem 2 and Theorem 3, we see that in D/M/1/D
updating systems, the average AuD is decreasing with decision

rate and can be further minimized by optimizing the offset

δ. This would be useful for many engineering implemen-

tations. In wireless sensor networks, for example, we can

arrange periodic sensing tasks for sensors and collect the

sensed information using a mobile agent (e.g., a UAV). With

random delay (since the UAV may sometimes be out of the

transmit range), the collected information is relayed to the

monitor. In this situation, the monitor should make periodic

data processing/predictions with optimized offset so that the

processing/prediction can be performed timely.
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Fig. 5. Performance in a synchronous D/M/1/D update-and-decide
system with periodic arrivals and periodic decisions.

C. Numerical Results

We investigate how the average AuD of a synchronous

D/M/1/D updating system varies with decision rate ν =
m0λ (see Theorem 2) in Fig. 5(a). The service rate is set

to µ = 2. The arrival rate is set to λ = 0.5175µ, which

minimizes the average AoI of the corresponding D/M/1
updating system [9]. Our simulation results also show that this

is also the AuD-optimal arrival rate for D/M/1/M update-

and-decide system. It is observed in Fig. 5(a) that as m0 is

increased, the average AuD of the D/M/1/D system (the

triangle labeled curve) decreases slowly. As m0 is increased

to be relatively large (e.g., m0 = 5), the average AuD

decreases to that (the diamond labeled curve) of a D/M/1/M
system with periodic (or folded-normal) arrivals and Poisson

decisions, which is equal to the average AoI (the yellow curve

labeled by ’x’) of corresponding D/M/1 queues. Moreover,

the missing probability of updates is also decreasing with m0,

as shown in Fig. 5(b). Different from G/M/1/M update-
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Fig. 6. Average AuD versus offset in an asynchronous D/M/1/D
systems with periodic arrivals and periodic decisions.

and-decide systems where average AuD is independent of

decision rate, therefore, using a reasonably large decision rate

is preferred in D/M/1/D update-and-decide systems.

In Fig. 6, we study the average AuD of a D/M/1/D
update-and-decide system with asynchronous and periodic

decisions (see Theorem 3), where the decision rate is set to

be equal to the arrival rate, i.e., ν = λ. It is observed that

as the offset changes within δ ∈ (0, 1/λ), the average AuD

is firstly decreasing and then increasing, i.e., is convex with

δ. Using Algorithm 3, the optimal offset δ∗ can be obtained

efficiently, as shown by the cyan pentagram. Since neither

u0 nor u1 is linear with δ (see (13)), δ∗ is close to but not

equal to 1/2λ, as is shown in Fig. 6. By using the optimal

offset, the average AuD of a D/M/1/D updating system with

asynchronous decisions is actually smaller than the average

AuD of all other updating systems, as well as the average AoI

(the yellow curve labeled by ’x’) of a corresponding D/M/1
queue.

VI. CONCLUSION

In this paper, we proposed a new metric termed as age

upon decisions to evaluate the freshness of received updates

at decision epochs. We showed that for G/M/1/M update-

and-decide systems in which decisions are made randomly, the

average AuD is minimized by the periodic (i.e., deterministic)

arrival process, which completely eliminates the uncertainty of

arrivals. For D/M/1/D update-and-decide systems in which

decisions are made periodically (i.e., deterministically), we

show that the average AuD of the system is larger than that

of corresponding D/M/1/M systems, since the randomness

of the decision process can provide some flexibility for the

monitor. By increasing the decision rate of a D/M/1/D
system, however, the average AuD can be reduced, which

finally converges to that of a corresponding D/M/1/M sys-

tem. Moreover, the average AuD can be further decreased by

properly controlling the offset between the arrival process and

the decision process. In a nutshell, it is suggested to employ

periodic arrival processes and Poisson decision processes,



unless the decision rate can be sufficiently large or the arrival-

decision offset can be properly controlled.

APPENDIX

A. Proof of Theorem 1

Proof: Given an inter-departure time Yk = y, suppose

Nk decisions are made at epochs {τkj
, j = 1, 2, · · · , Nk}.

It is clear that Nk is a Poisson distributed random number

with parameter νy. That is, the probability that n decisions

are made during Yk is

Pr{Nk = n|Yk = y} =
(νy)n

n!
e−νy.

We denote τ ′kj
= τkj

− t′k−1. Since decision epochs τkj
are

independently and uniformly distributed in Yk, τ ′kj
would be

independently and uniformly distributed over [0, y]. Thus, the

expected sum ∆′
Dk =

∑n
j=1 τ

′
kj

can be expressed as

E
[
∆′

Dk|Yk = y,Nk = n
]
=

n∑

j=1

E[τ ′kj
] =

ny

2
.

Since the AuD at decision epoch τkj
is ∆D(τkj

) = Tk−1 +
τ ′kj

, where Tk−1 is the system time of the latest received

update, the expectation of sum AuD ∆Dk =
∑Nk

j=1 ∆D(τkj
)

would be

E[∆Dk|Yk = y] =
∞∑

n=0

Pr{Nk = n|Yk = y}
(ny

2
+ nE[Tk−1]

)

=
ν

2
(y2 + 2yE[Tk−1]).

Taking the expectation over Yk, we have

E[∆Dk] =
ν

2
E[Y 2

k ] + E[Tk−1Yk].

Assume that there are K departure epochs and NT decision

epochs during a period T , we have NT =
∑K

k=1 Nk. As T
goes to infinity, we have

∆D = lim
T→∞

1

NT

K∑

k=1

∆Dk = lim
T→∞

K

NT

1

K

K∑

k=1

∆Dk =
E[∆Dk]

νE[Yk]

=
E[Y 2

k ] + 2E[Tk−1Yk]

2E[Yk]
.

Thus, the proof of Theorem 1 is completed.

B. Proof of Proposition 3

Proof: The probability that no decision is made during

Yk = y is Pr{Nk = 0} = e−νy . By taking expectation over

Yk, the missing probability can be expressed as

pmis = E[e−νYk ]

= ρ1E[e
−νSk ] + (1− ρ1)E[e

−ν(Xk−Tk−1+Sk)|Xk > Tk−1]

= E[e−νSk ]

(
ρ1 +

∫ ∞

0

fX(x)dx

∫ x

0

fT(t)e
−ν(x−t)dt

)

=
µ

µ+ ν
· µ(1− ρ1)q0 − νρ1

µ(1− ρ1)− ν
,

where q0 =
∫∞
0 fX(x)e

−νxdx and ρ1 = Pr{Xk ≤ Tk−1} is

defined in (5). This complete the proof of Proposition 3.

C. Proof of Theorem 2

Proof: In this proof, notations in Table I are used.

Firstly, consider the case where the system time is not less

than the inter-arrival time, i.e., Xk ≤ Tk−1. As Xk = 1/λ,

we have

ρ1 = Pr{Xk ≤ Tk−1} =

∫ ∞

1
λ

fT(x)dx = e
−µ(1−ρ1)

λ ,

E[Tk−1|Xk ≤ Tk−1] =
1

ρ1

∫ ∞

1
λ

xfT(x)dx =
1

λ
+

1

µ(1− ρ1)
,

where fT(x) is given by Proposition 1.

As shown in Fig. 7(a), we have Yk = Sk and

fY|X≤T (y) = µe−µy, y > 0.

Suppose Tk−1 consists of j decision intervals, i.e., j
ν

≤
Tk−1 < j+1

ν
. We denote rj = Tk−1 − j

ν
and sj = 1

ν
− rj

(see Fig. 7(a))1. For j = m0,m0 + 1, · · · , we further denote

̺j = Pr{ j
ν
≤ Tk−1 < j+1

ν
} and have

̺j =

∫ j+1
ν

j
ν

fT(x)dx = (1− w1)w
j
1,

where fT(x) is given in Proposition 1 and w1 = e
−µ(1−ρ1)

ν .

Under the condition j
ν
≤ Tk−1 < j+1

ν
, we have

Pr

{
sj ≤ x

∣∣∣∣
j

ν
≤ Tk−1 <

j + 1

ν

}

= Pr

{
Tk−1 ≥ j + 1

ν
− x

∣∣∣∣
j

ν
≤ Tk−1 <

j + 1

ν

}

=
1

̺j

∫ j+1
ν

j+1
ν

−x

fT(x)dx.

Thus, the pdf of sj can be obtained as

fsj (x) =
1

̺j
fT

(
j + 1

ν
− x

)
, x ∈

(
0,

1

ν

)
.

Taking the expectation over all possible conditions, the pdf

of s conditioned on Xk ≤ Tk−1 can be given by

fs(x) =

∞∑

j=m0

Pr

{
j

ν
≤ Tk−1 <

j + 1

ν

∣∣∣∣Xk ≤ Tk−1

}
fsj (x)

=

∞∑

j=m0

̺j
ρ1

1

̺j
fT

(
j + 1

ν
− x

)

=
µ(1− ρ1)w1

1− w1
eµ(1−ρ1)x, x ∈

(
0,

1

ν

)
.

For a given s, we denote the number of decisions made

1In Appendix E and Appendix F, we denote the residual part of an inter-
decision time as sj , which is slightly consuming with the service time Sk .



during Yk conditioned on Xk ≤ Tk−1 as N l
k, we then have

Pr{N l
k = 0}=Pr{Yk < s|Xk ≤ Tk−1}

=

∫ 1
ν

0

fs(x)dx

∫ x

0

fS(y)dy

= 1−
∫ 1

ν

0

fs(x)e
−µxdx

= 1− (1 − ρ1)(w1 − w0)

ρ1(1− w1)
, ps,

Pr{N l
k = j}=Pr

{
j − 1

ν
+ s ≤ Yk <

j

ν
+ s

∣∣∣∣Xk ≤ Tk−1

}
,

=

∫ 1
ν

0

fs(x)dx

∫ j
ν
+x

j−1
ν

+x

fS(y)dy

= (1 − ps)(1 − w0)w
j−1
0 for j = 1, 2 · · · ,

E[N l
k] =

1− ps

1− w0
, E[

(
N l

k

)2
] =

(1− ps)(1 + w0)

(1− w0)2
,

where w0 = e
−µ
ν .

Note that the AuD of the i-th decision made during Yk can

be written as

∆D(τki
) = Tk−1 + s+

i− 1

ν
.

The expected sum AuD during Yk would be

E[∆l
Dk|Xk ≤ Tk−1] = E

[∑N l
k

i=1
∆D(τki

)|Xk ≤ Tk−1

]

= E

[
Tk−1 + s− 1

2ν

∣∣∣∣Xk ≤ Tk−1

]
E[N l

k] +
1

2ν
E[(N l

k)
2](A.14)

=
1− ps

2ν(1− w0)

(1 + w1

1− w1
+

1 + w0

1− w0
+ 2m0

)
. (A.15)

where (A.14) follows the fact that Tk−1 + s is an integer

multiple of 1/ν and is independent of the value of s. In

particular, we have

E[Tk−1 + s|Xk ≤ Tk−1]

=

∞∑

j=0

j + 1

ν
Pr

{
j

ν
≤ Tk−1 <

j + 1

ν

∣∣∣∣Xk ≤ Tk−1

}

=

∞∑

j=0

j + 1

ν

̺j
ρ1

=
1

ν

(
m0 +

1

1− w1

)
.

Secondly, consider the case of Xk > Tk−1 and Yk =
Xk − Tk−1 + Sk, as shown in Fig. 7(b). We denote the parts

of Yk before and after the arrival of update k as Yk1 and

Yk2, respectively, i.e., Yk1 = Xk − Tk−1 and Yk2 = Sk. We

denote the number of decisions made during Yk1 and Yk2 as

N g

k1 and N g

k2, respectively. Since Yk2 follows the exponential

distribution, we have

Pr{N g

k2 = j}= Pr

{
j

ν
≤ Yk2 <

j + 1

ν

}

= (1− w0)w
j
0 for j = 0, 1, 2 · · · ,

E[N
g

k2] =
w0

1− w0
, E[(N

g

k2)
2] =

w0 + w2
0

(1 − w0)2
.

Yk1

Xk

tk-1 t'k-1tk t'k

Tk-1 Yk
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Fig. 7. Inter-arrival time and system time for synchronous systems.

During Yk1, we have

Pr

{
N g

k1 = j} = Pr{ j − 1

ν
≤ m0

ν
− Tk−1 <

j

ν

∣∣∣∣Xk > Tk−1

}

=
1

1− ρ1
(1− w1)w

m0−j
1 for j = 1, · · · ,m0

and

E[N g

k1] =
m0

1− ρ1
− w1

1− w1
,

E
[(
N

g

k1

)2]
=

m2
0

1− ρ1
+

w1 + w2
1

(1− w1)2
− 2m0w1

(1− ρ1)(1 − w1)
.

The AuD of decisions made during Yk1 and Yk2 are given,

respectively, by

∆D1(τki
) =

m0 − i+ 1

ν
, i = 1, 2, · · · , Nk1,

∆D2(τkj
) =

m0

ν
+

j

ν
, j = 1, 2, · · · , Nk2.

The average sum AuD during Yk on condition Xk > Tk−1,

therefore, is given by,

E[∆g

Dk|Xk > Tk−1] = E

[∑N
g

k1

i=1
∆D1(τki

)
∣∣∣Xk > Tk−1

]

+E

[∑N
g

k2

j=1
∆D2(τkj

)
∣∣∣Xk > Tk−1

]

= E

[
N g

k1

m0 + 1

ν
−
∑N

g

k1

i=1

i

ν

]
+ E

[
N g

k2

m0

ν
+
∑N

g

k2

j=1

j

ν

]

=
2m0 + 1

2ν
E
[
N

g

k1 +N
g

k2

]
+

1

2ν
E

[
(N

g

k2)
2 − (N

g

k1)
2
]

=
1

2ν

(
w0 + w2

0

(1− w0)2
− w1 + w2

1

(1− w1)2
+

2m0w1

(1− ρ1)(1 − w1)

)

+
m0 +m2

0

2ν(1− ρ1)
+

(2m0 + 1)(w0 − w1)

2ν(1− w0)(1 − w1)
. (A.16)

Finally, suppose that K updates are served and NT decisions

are made during a period T , where K1 decisions are made dur-

ing inter-departure times with Xk < Tk−1 and K2 decisions

are made during inter-departure times with Xk > Tk−1. As T
goes to infinity, we have

lim
T→∞

NT

K
=

E[Yk]
1
ν

= νE[Xk] = m0. (A.17)

We would like to mention that the same result can be obtained

from limT→∞
NT

K
= ρ1E[N

l
k] + (1 − ρ1)E[N

g

k1 +N g

k2].



Combing the results in (A.15), (A.16), and (A.17), we can

express the average AuD as

∆D = lim
T→∞

1

NT

K∑

k=1

∆Dk

= lim
T→∞

K

NT

(
K1

K

1

K1

K1∑

k=1

∆l
Dk +

K2

K

1

K2

K2∑

k=1

∆g

Dk

)

=
1

m0

(
ρ1E[∆

l
Dk|Xk < Tk−1] + (1 − ρ1)E[∆

g

Dk|Xk > Tk−1]
)

=
(1− ρ1)(w1 − w0)

2m0ν(1− w0)(1− w1)

(1 + w1

1− w1
+

1 + w0

1− w0
− 1
)

+
1− ρ1
2m0ν

( w0 + w2
0

(1− w0)2
− w1 + w2

1

(1 − w1)2

)
+

1 +m0

2ν
+

w1

ν(1 − w1)

=
1 +m0

2ν
+

w1

ν(1 − w1)
.

Thus, the proof of Theorem 1 is completed.

D. Proof of Proposition 4

Proof: Since the event that an update is missed to make

any decision is equivalent to the event that the inter-departure

time before the update is less than an inter-decision time, we

have

pmis = Pr

{
Yk <

1

ν

}

= Pr{Xk < Tk−1}Pr
{
Yk <

1

ν

∣∣∣Xk < Tk−1

}

+Pr{Xk > Tk−1}Pr
{
Yk <

1

ν

∣∣∣Xk > Tk−1

}

= ρ1 Pr

{
Sk <

1

ν

}

+(1− ρ1) Pr

{
Xk − Tk−1 + Sk <

1

ν

∣∣∣Xk > Tk−1

}

=
ρ1

2− ρ1

(
1

w1
− w0

)
,

where w0 = e
−µ
ν , w1 = e

−µ(1−ρ1)
ν , and fT(x) is given by

Proposition 1. This completes the proof of Proposition 4.

E. Proof of Theorem 3

Proof: In this proof, notations in Table I are used.

Firstly, consider the case where the system time is no less

than the inter-arrival time, i.e., Xk ≤ Tk−1. In this case, we

have Yk = Sk and the corresponding probability is ρ1.

Suppose that Tk−1 consists of j decision intervals and an

offset δ, i.e., j
λ
+δ < Tk−1 < j+1

λ
+δ. We denote rj = Tk−1−

j
λ
− δ and sj =

1
λ
− rj . In particular, we denote s0 ∈ (0, δ) as

the remaining system time conditioned on 1
λ
≤ Tk−1 < 1

λ
+δ.

Then we have,

Pr

{
s0 ≤ x

∣∣∣
1

λ
≤ Tk−1 <

1

λ
+ δ

}

= Pr

{
Tk−1 ≥ 1

λ
+ δ − x

∣∣∣
1

λ
≤ Tk−1 <

1

λ
+ δ

}

=
1

̺0

∫ 1
λ
+δ

1
λ
+δ−x

fT(x)dx,

where fT(x) is given in Proposition 1, u1 = e−µ(1−ρ1)δ , and

̺0 =

∫ 1
λ
+δ

1
λ

fT(x)dx = ρ1(1− u1).

Thus, the pdf of s0 is

fs0(x) =
1

̺0
fT

( 1
λ
+ δ − x

)
, x ∈ (0, δ).

For j = 1, 2, · · · , we further denote ̺j = Pr{ j
λ
+ δ ≤

Tk−1 < j+1
λ

+ δ} and have

̺j = u1(1− ρ1)ρ
j
1.

It is easy to verify that
∑∞

j=0 ̺j = ρ1.

Under the condition j
λ
+ δ ≤ Tk−1 < j+1

λ
+ δ, we have

Pr

{
sj ≤ x

∣∣∣
j

λ
+ δ ≤ Tk−1 <

j + 1

λ
+ δ

}

=
1

̺j

∫ j+1
λ

+δ

j+1
λ

+δ−x

fT(x)dx.

Thus, the pdf of tj can be obtained as

fsj (x) =
1

̺j
fT

(
j + 1

λ
+ δ − x

)
for x ∈

(
0,

1

λ

)
.

Taking the expectation over all possible conditions, the

expectation of s can then be obtained as follows

E[s] = Pr

{
1

λ
≤ Tk−1 <

1

λ
+ δ
∣∣∣Xk ≤ Tk−1

}
E[s0]

+

∞∑

j=1

Pr

{
j

λ
+ δ ≤ Tk−1 <

j + 1

λ
+ δ
∣∣∣Xk ≤ Tk−1

}
E[sj ]

=
̺0
ρ1

∫ δ

0

xfs0(x)dx+

∞∑

j=1

̺j
ρ1

∫ 1
λ

0

xfsj (x)dx

= δ − 1

µ(1 − ρ1)
+

u1

λ(1− ρ1)
.

Let N l
k be the number of decisions made during Yk condi-

tioned on Xk ≤ Tk−1, we then have

Pr{N l
k = 0}

= Pr

{
1

λ
≤ Tk−1 <

1

λ
+ δ
∣∣∣Xk ≤ Tk−1

}
Pr{Yk < s0}

+

∞∑

j=1

Pr

{
j

λ
+ δ ≤ Tk−1 <

j + 1

λ
+ δ
∣∣∣Xk ≤ tk−1

}

·Pr{Yk < sj}

=
1

ρ1

∫ δ

0

fT

( 1
λ
+ δ − x

)
dx

∫ x

0

fS(y)dy

+
1

ρ1

∞∑

j=1

∫ 1
λ

0

fT

(j + 1

λ
+ δ − x

)
dx

∫ x

0

fS(y)dy

= 1− 1

ρ1
((1− ρ0)u1 − (1− ρ1)u0) , ps,

Pr{N l
k = j} = Pr

{
j − 1

λ
+ s ≤ Yk <

j

λ
+ s

}
,

= (1− ps)(1 − ρ0)ρ
j−1
0 for j = 1, 2 · · · ,
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Fig. 8. Inter-arrival time and system time for asynchronous systems.

and

E[N l
k] =

1− ps

1− ρ0
, E

[(
N l

k

)2]
=

(1− ps)(1 + ρ0)

(1 − ρ0)2
.

Since the AuD of the i-th decision made during Yk is

∆D(τki
) = Tk−1 + s+

i− 1

λ
,

the expected sum AuD during Yk would be

E[∆l
Dk|Xk ≤ Tk−1] = E

[∑N l
k

i=1
∆D(τki

)
∣∣∣Xk ≤ Tk−1

]

=

(
E[Tk−1|Xk ≤ Tk−1] + E(s)− 1

2λ

)
E[N l

k] +
1

2λ
E
[
(N l

k)
2
]

=
1− ps

1− ρ0

(
δ +

u1

λ(1 − ρ1)
+

1

λ(1− ρ0)

)
.

Secondly, consider the case of Xk > Tk−1 and Yk = Xk −
Tk−1 + Sk, as shown in Fig. 8(b). We denote the parts of

Yk before and after the arrival of update k as Yk1 and Yk2,

respectively. We denote the number of decisions made during

Yk1 and Yk2 as N g

k1 and N g

k2, respectively. Since Yk2 = Sk

follows the exponential distribution, we have

Pr{N g

k2 = 0}=Pr{Yk2 < δ}
= 1− u0,

Pr{N g

k2 = j}=Pr

{
j − 1

λ
+ δ ≤ Yk2 <

j

λ
+ δ

}
,

= u0(1− ρ0)ρ
j−1
0 for j = 1, 2, · · · ,

and

E[N g

k2] =
u0

1− ρ0
, E

[
(N g

k2)
2
]
=

u0(1 + ρ0)

(1− ρ0)2
,

where u0 = e−µδ .

During Yk1 = Xk − Tk−1, there is at most one decision

with probability

Pr{N g

k1 = 1} = Pr{Tk−1 < δ} =
1− u0

1 − ρ1
,

Thus we have

E[N g

k1] =
1− u0

1− ρ1
, E

[
(N g

k1)
2]

=
1− u0

1 − ρ1
.

The AuD of decisions made during Yk1 and Yk2 are given,

respectively, by

∆D(τki
) = δ, i = 1,

∆D(τki
) =

i

λ
+ δ, i = 1, 2, · · · , N g

k2.

The average sum AuD during Yk under the condition Xk >
Tk−1, therefore, is given by

E[∆Dk|Xk > Tk−1]

= Pr{N g

k1 = 1}∆D(τk1) + E

[∑N
g

k2

i=1
∆D(τki

)
∣∣∣Xk > Tk−1

]

= Pr{N g

k1 = 1}δ +
(
δ +

1

2λ

)
E[N

g

k2] +
1

2λ
E
[
(N

g

k2)
2
]

=
(1− u1)δ

1− ρ1
+

u0δ

1− ρ0
+

u0

λ(1 − ρ0)2
.

Finally, suppose that K updates are served and NT decisions

are made during a period T , where K1 decisions are made dur-

ing inter-departure times with Xk ≤ Tk−1 and K2 decisions

are made during inter-departure times with Xk > Tk−1. As T
goes to infinity, we have limT→∞

NT

K
= 1 and

∆D = lim
T→∞

1

NT

K∑

k=1

∆Dk

= lim
T→∞

K

NT

(
K1

K

1

K1

K1∑

k=1

∆l
Dk +

K2

K

1

K2

K2∑

k=1

∆g

Dk

)

= ρ1E[∆Dk|Xk ≤ Tk−1] + (1− ρ1)E[∆Dk|Xk > Tk−1]

= δ +
(1 − ρ0)u

2
1 + (1 − ρ1)(1− u0)u1

λ(1 − ρ1)(1− ρ0)
.

Thus, the proof of Theorem 3 is completed.
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