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Abstract—4D cone-beam computed tomography (CBCT) is an 

important imaging modality in image-guided radiation therapy 
to address the motion-induced artifacts caused by organ 
movements during the respiratory process. However, due to the 
extremely sparse projection data for each temporal phase, 4D 
CBCT reconstructions will suffer from severe streaking artifacts. 
Therefore, to tackle the streak artifacts and provide high-quality 
images, we proposed a framework termed Prior-Regularized 
Iterative Optimization Reconstruction (PRIOR) for 4D CBCT. 
The PRIOR framework combines the physics-based model and 
data-driven method simultaneously, with powerful feature 
extracting capacity, significantly promoting the image quality 
compared to single model-based or deep learning-based methods. 
Besides, we designed a specialized deep learning model named 
PRIOR-Net, which can effectively excavate the static information 
in the prior image reconstructed from the fully-sampled 
projections at the encoding stage to improve the reconstruction 
performance for individual phase-resolved images. Both the 
simulated and clinical 4D CBCT datasets were performed to 
evaluate the performance of the PRIOR-Net and the PRIOR 
framework. Compared with the advanced 4D CBCT 
reconstruction methods, the proposed methods achieve promising 
results quantitatively and qualitatively in streak artifact 
suppression, soft tissue restoration, and tiny detail preservation. 
 

Index Terms—4D CBCT imaging, sparse-view CT 
reconstruction, prior image, iterative optimization model, deep 
learning. 
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I. INTRODUCTION 
N-board cone-beam computed tomography (CBCT) 
coupled with a linear accelerator has become a major tool 

for treatment planning in image-guided radiation therapy 
(IGRT) [1] by its potential to refine the irradiation plan while 
minimizing its impact on sensitive organs. However, due to 
the slow acquisition time (usually 3~4 mins for each scan and 
1 min for a rotation) [2, 3], the organ and tissue movements 
during respiratory generate severe blurring artifacts of the 
thorax and upper abdomen. Such significantly motion-induced 
artifacts degrade the CBCT image quality and lead to loss of 
dose planning and delivery [4]. 

Later, the 4D CBCT imaging was proposed to address 
motion-produced artifacts [5]. The collected projection data 
are split into different groups according to various respiratory 
phases. Each group projection data can independently 
reconstruct the time-resolved images using a conventional 
analytic algorithm [6]. Unfortunately, the reconstructed 
images of each breathing phase usually still suffer from severe 
streak artifacts. To tackle this challenging problem and 
provide high-quality images, numerous algorithms have been 
proposed for 4D CBCT reconstruction. These methods can be 
categorized into two main types: motion compensated-based 
approaches and sparse projection reconstruction methods. 

For the compensated-based methods, it is pivotal to 
compensate for the organ motion of individual phase images 
by utilizing the deformation vector fields (DVFs) [7-9]. Li et 
al. considered the correlations between images at different 
phases and integrated the motion model to enhance the 4D 
CBCT image quality [10]. For more accurate motion modeling, 
Wang et al. incorporated the motion model into the iterative 
reconstruction method and greatly improved the results [8]. 
Assisted by the patient-specific planning CT, a hybrid 
reconstructed method was investigated to make the 
registration accuracy acceptable in practice [11]. Furthermore, 
Liu et al. proposed a binning-free method based on the 5D 
model [12], reducing the unknown variables and improving 
image quality compared to [8, 10]. In general, the performance 
of the above-mentioned compensation-based methods relies 
on registration accuracy, which means these methods perform 
well when respiratory movements conform to the motion-
compensation model and vice versa [13]. 

Conventional sparse-view CT reconstruction methods [14] 
can be applied to 4D CBCT [15]. These algorithms only 
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concentrated on single-phase image processing. However, 4D 
CBCT imaging methods also considered the temporal 
correlation between reconstructed images of different phases 
and achieved better results in tissue restoration [16]. 
Specifically, Jia et al. developed an iterative method by 
introducing the temporal non-local means (TNLM) 
regularization term for 4D CT, which can reconstruct all the 
phase images simultaneously and obtain superior performance 
compared to total variation and tight frames [17]. At the same 
moment, total variation (TV) was also employed for 4D 
cardiac imaging by extending spatial TV into the spatial-
temporal domain and performed better in artifact suppression 
[18]. Also, the key to these iterative methods is to design an 
effective regularization constraint for exactly modeling the 
tissue features. Therefore, it still has room for improvement 
because of the limitation of the hand-crafted priors. 

The prior image is another significant component to 
promote the image quality in some 4D CBCT reconstruction 
methods [16]. It is reconstructed from the fully-sampled 
projection data and has the static information of the organs 
and tissues [4, 19]. Noting the above property, Chen et al. 
utilized TV minimization to constrain the differences between 
the prior image and the time-resolved image to boost the 
performance. Experiments demonstrated that [19] could 
provide higher isotropic spatial resolution than TV. Later, to 
further strengthen the [19], Zhi et al. replaced the TV 
constraint with a spatiotemporal dictionary learning and 
performed well in detailed structure preservation [20]. Again, 
prior image-based methods also depend on the design of the 
regularization term. 

Currently, convolutional neural network (CNN) has 
attracted great attention in medical imaging [15, 21-24], 
including 4D CBCT [25]. Unlike the mentioned model-based 
methods, CNN could automatically learn a regularization term 
from big data and bring promising results over traditional 
methods [26-30]. For instance, Beaudry et al. applied the Unet 
[31] to interpolate the missing measurements for each phase 
projection which led to promotion in streak artifact removal 
and noise reduction [32]. Prior images can also be integrated 
into the CNN-based methods. Zhi et al. not only encoded the 
degraded image but also encoded the prior image and put them 
together into the decoding step with considering the 
relationship between adjacent slices [4]. Experimental results 
claimed that [4] was robust to different datasets from different 
vendors. Based on the workflow of [8], Huang et al. 
conducted two deep neural networks to obtain high-quality 
DVFs and embedded them into [8] to produce final 4D images 
[33].  

In medical imaging, classical model-based methods 
incorporated the data fidelity with prior knowledge have clear 
physical meanings, thereby being reliable in various clinical 
applications. However, they need a careful regularization term 
design and efficient computer implementation to face their 
computational loads. In contrast, despite its poor explanation 
capability, data-driven approaches construct a high-quality 
image space learned from a large amount of paired samples. 
Great efforts have been devoted to effectively combining the 

physics-driven and data-driven methods [34, 35]. Analytic 
Compressed Iterative Deep (ACID) [36, 37] is a typical hybrid 
framework initially invented against adversarial attacks, but it 
is also observed that ACID could improve image quality using 
a pre-trained neural network for sparse-view CT and fast MRI 
reconstruction. 

Inspired by [36, 37], this paper proposes a Prior-
Regularized Iterative Optimization Reconstruction (PRIOR) 
framework for 4D CBCT. PRIOR utilizes a well-trained 
neural network as the regularization constraint to improve the 
reconstruction image via an effective iterative strategy. The 
main contributions of PRIOR are two-fold. First, to excavate 
the static structural information of the prior image, we develop 
a PRIOR-Net. Even though CycN-Net [4] generated superior 
results than some advanced methods, its usage of prior images 
is inefficient. Unlike [4], the proposed PRIOR-Net utilizes an 
effective prior feature fusion (PFF) module, which encodes the 
degraded images and prior images and fuses them at the 
encoding step to enhance the feature extraction from the prior 
image. PIROR-Net could bring more promising reconstruction 
images compared to CycN-Net. Second, ACID [36, 37] is a 
simple but practical framework to be applied to inverse 
problems, which only need a pre-trained neural network. To 
employ ACID to 4D CBCT imaging and further improve its 
performance, we extend and modify it to formulate a more 
concise and strong method (PRIOR). Compared to [36, 37], 
the advantage of the PRIOR framework is mainly in the 
utilization of prior images. Specifically, PRIOR-Net can 
provide more effective regularization on the reconstructed 
image than the network used in ACID [36, 37]. Further, by 
introducing prior images into the iterative process, PRIOR 
leads to promotion in detail preservation without generating 
fake structures. Experimental results demonstrate that the 
PRIOR framework performs well in artifact removal, detail 
preservation, and tissue restoration. 

The rest of this paper is organized as follows. Section Ⅱ 
gives the background related to the 4D CBCT and ACID 
scheme. Section Ⅲ describes architecture details of the 
PRIOR-Net and the implementation of the PRIOR framework. 
In section Ⅳ, simulated and clinical experiments are 
performed, and the ablation study is also conducted to explore 
the effectiveness of different modules in the PRIOR 
framework. In section Ⅴ, we will discuss some issues and 
make conclusions. 

II. BACKGROUND 

A. FDK Reconstruction 
FDK (Feldkamp-Davis-Kress) is a widely used method for 

cone-beam CT reconstruction [6] based on circular orbit 
scanning. Its reconstruction process can be written as: 
𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =
           ∫ 𝑅𝑅2

(𝑅𝑅+𝑥𝑥cos𝛽𝛽+𝑦𝑦sin𝛽𝛽)2
2𝜋𝜋
0 𝑝𝑝��𝛽𝛽, 𝑎𝑎(𝑥𝑥,𝑦𝑦,𝛽𝛽), 𝑏𝑏(𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝛽𝛽)�𝑑𝑑𝛽𝛽  (1) 

with: 

𝑝𝑝�(𝛽𝛽, 𝑎𝑎, 𝑏𝑏) = � 𝑅𝑅
�𝑅𝑅2+𝑎𝑎2+𝑏𝑏2

· 𝑝𝑝(𝛽𝛽, 𝑎𝑎, 𝑏𝑏)� ∗ ℎ(𝑎𝑎)              (2) 
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𝑎𝑎(𝑥𝑥, 𝑦𝑦,𝛽𝛽) = 𝑅𝑅 −𝑥𝑥sin𝛽𝛽+𝑦𝑦cos𝛽𝛽
𝑅𝑅+𝑥𝑥cos𝛽𝛽+𝑦𝑦sin𝛽𝛽

                                        (3) 

𝑏𝑏(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝛽𝛽) = 𝑧𝑧𝑅𝑅
𝑅𝑅+𝑥𝑥cos𝛽𝛽+𝑦𝑦sin𝛽𝛽

                                        (4) 

where 𝑝𝑝(𝛽𝛽, 𝑎𝑎, 𝑏𝑏)  is the projection data with Cartesian 
coordinates 𝑎𝑎 and 𝑏𝑏, 𝛽𝛽 stands the scanning angular, 𝑅𝑅 presents 
the distance between x-ray source to rotation center, ℎ(·) is 
the ramp-filter and ∗  denotes the 1-D convolution and 
𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is the reconstructed image.  

FDK can provide high-quality images fast when the 
projection data is noiseless and complete. 

 

B. Prior Image and Time-resolved Image Reconstruction 
For 4D CBCT, the static 3D prior image (PI) ∈ 𝑅𝑅𝑀𝑀×𝑁𝑁×𝑆𝑆 can 

be reconstructed by the FDK algorithm [6] as below. 
PI = FDK(𝑦𝑦𝐹𝐹)                                  (5) 

where 𝑦𝑦𝐹𝐹 is the fully-sampled projection data that contains all 
breathing processes. Therefore, PI  has motion blurring 
artifacts caused by organ and tissue movements and lacks 
dynamic changes, but with most structural features [4]. For 
time-resolved image reconstruction, the fully-sampled 
projections 𝑦𝑦𝐹𝐹  are first grouped into different K phases 
according to the collected respiratory signals. Then each phase 
image can be independently reconstructed using the 
corresponding projection set as follows. 

𝑥𝑥𝑘𝑘 = FDK(𝑦𝑦𝑘𝑘)                                   (6) 
where 𝑦𝑦𝑘𝑘  is the sub-projections belonging to 𝑘𝑘𝑡𝑡ℎ  respiratory 
phase, and 𝑥𝑥𝑘𝑘  presents the corresponding 3D reconstructed 
image, which has the same size as PI. The workflow of prior 
image and time-resolved image reconstruction is illustrated in 
Fig. 1.  

 
Fig. 1 The workflow of prior image and time-resolved image reconstruction. 

 

C. ACID Scheme 
The PRIOR framework is derived from the ACID 

framework [36, 37], whose aim is to overcome the instabilities 
of deep learning in medical imaging. In CT reconstruction, its 
objective function is given as follows. 
                argmin

𝑝𝑝,𝑥𝑥

1
2
‖Φ(A𝑥𝑥 + 𝑝𝑝) − 𝑥𝑥‖22   

                           + 𝜆𝜆
2
‖𝑦𝑦 − A𝑥𝑥 − 𝑝𝑝‖22 + 𝜇𝜇

2
‖𝑝𝑝‖22 + 𝜁𝜁‖𝐻𝐻𝑥𝑥‖1  (7) 

where 𝜆𝜆 > 0 , 𝜇𝜇 ≥ 0 , and 𝜁𝜁 > 0  are hyperparameters to 
balance different constraint terms, 𝑥𝑥 is the reconstructed image, 
𝑦𝑦  presents the collected projection, 𝑝𝑝  stands for the error 
between 𝑥𝑥 and 𝑦𝑦 in sinogram domain, A is the system matrix, 
Φ indicates the well-trained neural network and it can map the 
projection data to an image, 𝐻𝐻  is the discrete gradient 
transform.  

Referring to [36, 37], the solution of 𝑝𝑝  and 𝑥𝑥  can be 
obtained as: 

𝑝𝑝𝑛𝑛+1 = 𝜆𝜆(𝑦𝑦−A𝑥𝑥𝑛𝑛)
1+𝜆𝜆

                                  (8) 

𝑥𝑥𝑛𝑛+1 = 𝐻𝐻−1𝑆𝑆𝜁𝜁
𝜆𝜆
𝐻𝐻(𝑥𝑥𝑛𝑛 + 1

𝜆𝜆
(Φ(FDK(𝑝𝑝𝑛𝑛+1))))         (9) 

𝐻𝐻−1 is the inverse transform of 𝐻𝐻  and 𝑆𝑆𝜁𝜁
𝜆𝜆

is the soft-

thresholding operator (the detailed mathematical derivation is 
referred to [36, 37]). 

Unlike the traditional data fidelity term, ACID innovatively 
introduces a residual error 𝑝𝑝 as the correction mechanism to 
improve the detail preservation and leads to impressive results 
in sparse-view CT reconstruction. Specifically, the Φ is a pre-
trained neural network to remove streak artifacts (e.g. DDNet 
[38]). However, Φ  usually encounters over-smoothing and 
detail missing. By incorporating Φ into the ACID scheme, the 
drawbacks of Φ can be overcome to some degree. Particularly, 
Eq. (8) can measure the distance between the reconstructed 
image and 𝑦𝑦 in the sinogram domain and then be mapped into 
the error image by FDK algorithm. Next, the pre-trained Φ is 
used to boost the error image and get a more accurate 
approximation to the ground truth. Last, the soft-thresholding 
operation is to eliminate some noise or artifacts. Because 𝑝𝑝 
mainly indicates the high-frequency errors, ACID can bring 
improvements in detail preservation compared to Φ.  

III. PROPOSED METHOD 

A. PRIOR-Net 
In this work, we propose a PRIOR-Net (as illustrated in Fig. 

2) as the deep regularization constraint to improve the image 
quality for each respiratory phase reconstruction. The PRIOR-
Net adopts U-Net-based architecture as the backbone, which 
has been widely used in image restoration [4, 34, 35]. Besides, 
to enhance the feature extraction, accelerate the information 
flow and the gradient backpropagation, skip connection, and 
residual learning [39] are also utilized in the PRIOR-Net. 
Moreover, PRIOR-Net employs a global residual connection 
to decrease the learning difficulty, promote convergence and 
improve generalization. Noting that there are no additional 
operations on the prior image and single-phase image before 
being input into the PRIOR-Net. 

B. Prior Feature Fusion Module 
The prior image contains static structural information but 

has motion-induced artifacts. Conversely, the time-resolved 
image introduces severe streak artifacts yet indicates dynamic 
tissue changes. Therefore, taking the degraded and prior 
images together as input for the CNNs is a popular strategy [4, 
40]. For instance, CycN-Net independently encodes the prior 
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Fig. 2. The architecture of the proposed PRIOR-Net. 

and single-phase images and decodes those two feature maps 
jointly to get the final high-quality images. Nevertheless, this 
scheme still has room for improvement that the prior and 
degraded images can be further uniformly processed at the 
encoding stage. Thus, our PRIOR-Net designs a specialized 
prior feature fusion (PFF) module with a more efficient static 
structural detail extraction from prior images. Specifically, the 
PFF module (as depicted in Fig.3) has two encoders, a single-
phase encoder for time-resolved images and a prior encoder 
for prior images, respectively. Both two encoders own four 
downsampling operations to generate feature maps with 
different spatial resolutions. The outputted feature maps of the 
prior encoder are concatenated to the exported feature maps of 
the single-phase encoder at the same scale and then these 
fused features are input into the next block. That means 
inputted feature maps of each block in the single-phase 
encoder share both dynamic information and static structures. 
Meanwhile, aided by skip connection, the merged feature 
maps are delivered to the decoder step. Consequently, the PFF 
module could significantly improve the usage of prior images 
and achieve better reconstruction results than CycN-Net in 
artifact reduction and small detail restoration. 

 
Fig. 3 Illustration of prior feature fusion module. 

C. Loss Function for PRIOR-Net 

The cost function of PRIOR-Net is defined as: 

𝐿𝐿 = � ‖𝐼𝐼𝑘𝑘 − Ψ(𝑥𝑥𝑘𝑘 , PI)‖𝐹𝐹2
𝐹𝐹
𝑘𝑘=1                      (10) 

where 𝐼𝐼𝑘𝑘 is the reference image at the 𝑘𝑘𝑡𝑡ℎ respiratory phase, Ψ 
stands for the PRIOR-Net. In this work, only one PRIOR-Net 
model is trained to improve image quality for all phases. 
 

D. PRIOR Framework 
Although ACID can leads to improvements in small 

structure restoration, it will introduce fake textures when the 
projection data is extremely sparse. Therefore, based on Eqs. 
(8)-(9), we specifically made two modifications to construct 
the PRIOR framework (as demonstrated in Fig. 4) for 4D 
CBCT. The first one is to simplify the update procedure. 
Observing that the hyper-parameter 𝜆𝜆 mainly plays the role of 
controlling the update step, the weighted operation for 
projection error calculation in Eq. (8) can be eliminated. The 
second one is to expand Eq. (9) to fit the 4D CBCT imaging. 
That means the prior image is integrated with the iterative 
process as well. The iterative process of the proposed PRIOR 
framework is expressed as follows. 

For the 1𝑠𝑠𝑡𝑡  iteration, the intermediate reconstructed image 
can be obtained directly by: 

𝑥𝑥𝑘𝑘1 = Ψ(𝑔𝑔𝑘𝑘1 ,𝑚𝑚𝑘𝑘
1) = Ψ(𝑥𝑥𝑘𝑘0, PI)                      (11) 

where 𝑥𝑥𝑘𝑘0  is reconstructed by FDK of the 𝑘𝑘𝑡𝑡ℎ  respiratory 
phase. 

For the 𝑛𝑛𝑡𝑡ℎ iteration, we first calculate the error image with 
the following expression: 

𝑔𝑔𝑘𝑘𝑛𝑛 = FDK(𝑦𝑦𝑘𝑘 − Ak𝑥𝑥𝑘𝑘𝑛𝑛−1)                        (12) 
where Ak is the projection matrix for the 𝑘𝑘𝑡𝑡ℎ respiratory phase. 
𝑔𝑔𝑘𝑘𝑛𝑛 indicates the distance between the 𝑥𝑥𝑘𝑘𝑛𝑛−1 and the reference 
image.  

Then, the other error image is computed to compensate for 
the missing static structural details. 

𝑚𝑚𝑘𝑘
𝑛𝑛 = 𝑥𝑥𝑘𝑘𝑛𝑛−1 − PI                               (13) 

Next, the 𝑔𝑔𝑘𝑘𝑛𝑛  and 𝑚𝑚𝑘𝑘
𝑛𝑛  are fed into the PRIOR-Net to get a 

more accurate difference map than 𝑔𝑔𝑘𝑘𝑛𝑛. In practice, the value 
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Fig. 4. The flowchart of the proposed PRIOR framework. 

ranges of 𝑔𝑔𝑘𝑘𝑛𝑛  and 𝑚𝑚𝑘𝑘
𝑛𝑛  are varied at different iterations, while 

the PRIOR-Net is sensitive to the pixel values. Hence, before 
inputting them into the PRIOR-Net, the scaling transform ξ is 
conducted on the input data to make the PRIOR-Net work 
effectively. So, the corrected difference image 𝑠𝑠𝑘𝑘𝑛𝑛  can be 
gained after the inverse transform ξ−1 as shown below. 

𝑠𝑠𝑛𝑛𝑘𝑘 = ξ−1(Ψ(ξ(𝑔𝑔𝑘𝑘𝑛𝑛 ,𝑚𝑚𝑘𝑘
𝑛𝑛)))                          (14) 

Last, we adopt a positive constrain on the weighted sum of 
𝑥𝑥𝑘𝑘𝑛𝑛−1  and 𝑠𝑠𝑘𝑘𝑛𝑛  to acquire the reconstructed image at the 𝑛𝑛𝑡𝑡ℎ 
iteration for the 𝑘𝑘𝑡𝑡ℎ breathing phase: 

𝑥𝑥𝑘𝑘𝑛𝑛 = max (𝑥𝑥𝑘𝑘𝑛𝑛−1 + 1
𝜆𝜆
𝑠𝑠𝑘𝑘𝑛𝑛, 0)                      (15) 

Through Eqs. (11)-(15), the reconstructed image can be 
gradually improved. 

IV. EXPERIMENTAL RESULTS 

A. Setup 
1) Dataset Acquisition 

In this study, two types of datasets were performed to 
validate the performance of different methods, including 
simulated data and clinical data. 

Simulated data came from the 4D-Lung Cancer Imaging 
Archive (https://wiki.cancerimagingarchive.net/display/Public/ 
4D-Lung). It had twenty high-quality 4D lung images and 
each of which had ten volumetric images corresponding to ten 
breathing phases. By setting the respiratory signal for high-
quality 4D CT images, the corresponding single-phase 
degraded images and prior images can be simulated. Last, the 
high-quality 4D images were treated as the reference images, 
and degraded and prior images were treated as the input data 
to train the PRIOR-Net. We selected seventeen patients 
(16870 images) for training and three patients (3060 images) 
for testing. Referred to the respiratory signal setting in [4], we 
also split one breathing cycle [0% 100%] into ten phases. The 
geometry configuration of the simulated cone-beam scan was 
as follows. The distance from the source to detector and 
isocenter was 1500 mm and 1000 mm, respectively. The 
detector had a size of 400×900, and each of them covered an 
area of 1.5×1.5 mm2. The reconstructed volume had a spatial 

resolution of 0.9 × 0.9 × 0.9 mm3. For each scan, 600 
projections were collected through 360°, which represented 
that a specific respiratory phase had 60 views. All the images 
in simulated data were generated by the full-scan mode. 

Clinical data was provided by the SPARE Challenge 
(https://image-x.sydney.edu.au/spare-challenge/) [2]. And it 
contains the Elekta dataset and the Varian dataset. (a) For the 
Elekta dataset, one case was chosen to test the various 
methods. This case was acquired from an Elekta system using 
full-fan geometry through 199.4° gantry rotation. Specifically, 
the Elekta dataset gave two types of projection data, over-
sampled, and down-sampled projection sets. Since there are no 
reference images, the over-sampled projection (1010 views) 
data were reconstructed as ground truth. And the down-
sampled projection data (340 views) was performed for 
performance evaluation of comparisons. The related parameter 
settings were listed as follows. The respiratory phase was also 
set to ten. The source-to-detector and source-to-isocenter 
distances were 1536 mm and 1000 mm, respectively. The 
detector size was 512×512, and each pixel represented an area 
of 0.8×0.8 mm2. The size of the reconstructed images was 
256×256×200, and each voxel stood for 1×1×1 mm3. (b) For 
the Varian dataset, one patient was selected to test the 
different methods. This data was provided by the Varian 
system using half-fan scan mode and the detector shifted 148 
mm to increase the field of view. The detector had a size of 
1024×728 and each pixel covered an area of 0.388×0.388 
mm2. The x-ray source to the rotation center and detector were 
1000 mm and 1500 mm, respectively. 600 projections were 
collected via 360°. The size of the reconstructed image was 
512 × 512 × 210 and each voxel was 1 × 1 × 1 mm3. The 
breathing phase was ten. It was worth noting that clinical 
datasets were tested by the PRIOR-Net trained on the 
simulated images because clinical datasets have no ground 
truth images. 
2) Comparison Methods & Evaluation Metrics 

To validate the projection PRIOR-Net and PRIOR 
framework, PICCS [19], DDNet [38], and CycN-Net [4] were 
treated as comparisons. All the methods were performed on a 
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Table Ⅰ 
QUANTITATIVE EVALUATIONS OF DIFFERENT METHODS FROM SELECTED PHASES FOR THE SIMULATED DATASET (RMSE: HU) 

 Metric Gated-
FDK 

PICCS DDNet CycN-
Net 

PRIOR-
Net 

PRIOR 

 
Phase1 

RMSE 111.38 39.11 33.41 30.06 19.33 15.49 
PSNR 26.48 36.92 37.15 38.06 41.88 43.84 
SSIM 0.4542 0.8633 0.9435 0.9476 0.9703 0.9726 

 
Phase3 

RMSE 122.84 36.63 35.89 32.06 16.75 12.66 
PSNR 25.76 37.50 36.66 37.65 43.17 45.59 
SSIM 0.4535 0.8747 0.9475 0.9517 0.9782 0.9806 

 
Phase5 

RMSE 125.29 38.09 33.75 32.24 17.54 12.19 
PSNR 25.57 36.93 37.05 37.73 42.71 45.82 
SSIM 0.4541 0.8258 0.9495 0.9212 0.9771 0.9800 

 
Phase7 

RMSE 118.36 37.29 31.84 29.78 16.82 11.56 
PSNR 26.05 37.15 37.57 38.19 43.04 46.25 
SSIM 0.4605 0.8292 0.9527 0.9551 0.9781 0.9820 

 
Phase9 

RMSE 118.62 35.88 33.12 30.52 16.74 12.08 
PSNR 25.96 37.59 37.23 37.98 43.11 45.94 
SSIM 0.4595 0.8787 0.9505 0.9531 0.9782 0.9817 

 
Fig. 5. Reconstructed results from four selected phases (30%, 50%, 70%, and 90%) at the same axial view of the simulated 4D CBCT dataset for different 
methods, including reconstructed images and magnified regions-of-interest (ROIs). (a1)-(a4) Reference images from 4D CT, (b1)-(b4) Images reconstructed by 
FDK algorithm, (c1)-(c4) Images reconstructed by PICCS method, (d1)-(d4) Images processed by DDNet, (e1)-(e4) Images processed by CycN-Net, (f1)-(f4) 
Images processed by PRIOR-Net, (g1)-(g4) Images processed by PRIOR framework. The display window of reconstructed results is [-160, 240] HU. 

PC(CPU was Inter(R) Xeon(R) E5-2683, 2 GHz, GPU was 
NVIDIA GTX TITAN with 12G memory). 

In our experiments, the PRIOR-Net was optimized using the 
Adam [41] algorithm with setting β1=0.9 and β2=0.999. The 
learning rate was initially set to 10-3 and slowly reduced to 10-

6 with 50 epochs. The batch size was 2. It spent about 30 hours 
training the PRIOR-Net. Noting that all the reconstructed 3D 
results were processed by the PRIOR-Net slice by slice and 
then restored to the original 3D shape for the next step. For the 
PRIOR framework, the hyper-parameter 𝜆𝜆  was 15, and the 

iteration number 𝑁𝑁  was 100. The codes of PRIOR-Net and 
PRIOR are available at https://github.com/lonelyatu/ PRIOR-
Net. 

We adopted the root mean square error (RMSE), peak 
signal-to-noise ratio (PSNR), and structural similarity index 
(SSIM) to evaluate different methods. 

B. Simulated Data Results 
Table Ⅰ lists the average quantitative evaluations of 

volumetric images reconstructed by different methods for five 
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selected respiratory phases. It can be seen that FDK 
unavoidably gets the worst indicators in all cases. Considering 
the domain knowledge that the difference maps between time-
resolved and prior images are sparse, PICCS brings significant 
improvements compared to FDK in terms of RMSE, PNSR, 
and SSIM via TV minimization. DDNet is a classical CNN-
based sparse-view CT reconstruction method, and it can also 
promote the reconstructed results because of the powerful 
feature extraction capacity. Intuitively, the data-driven method 
should be superior to the traditional iterative approach [15, 26, 
38]. However, comparing DDNet with PICCS, it can be found 
that these two methods have similar performance in some 
evaluations. That means the model-based method is 
competitive enough when the regularization term is designed 
suitably. This observation also claims the significance of prior 
images for the 4D CBCT reconstruction. Therefore, more 
encouraging results could be obtained when combing the prior 
image and CNN model. Specifically, CycN-Net outperforms 
PICCS and DDNet since it benefits from the feature extraction 
of CNNs as well as shares static structures from prior images. 
Furthermore, the proposed PRIOR-Net provides more 
promising assessments than CycN-Net. Two reasons can be 
attributed to that. First, PRIOR-Net adopts the PFF module, 
which utilizes the prior image with a more effective scheme 
than CycN-Net. Second, PRIOR-Net employs advanced 
techniques, such as batch normalization [42] and global 
residual learning, all of which have been validated in medical 
imaging. Based on the PRIOR-Net, the PRIOR framework 
still boosts the quantitative metrics, which proves the 

effectiveness of the iterative strategy in this study for 4D 
CBCT. 

Fig. 5 depicts the qualitative results of different methods for 
the simulated 4D CBCT dataset at 30%, 50%, 70%, and 90% 
phases with the same axial view. Similar to the conclusion in 
Table Ⅰ, FDK algorithm leads to severe streak artifacts due to 
the extremely sparse projection data. From Fig. 5(c1)-(c4), it 
can be observed that PICCS greatly improves the visual results 
in artifact removal and tissue restoration. Also, DDNet 
generates more smoothing results and fewer artifacts than 
PICCS. However, it loses some minor details (as marked by 

 
Fig. 6. Reconstructed results of different methods from the simulated 4D 
CBCT dataset at the 50% breathing phase. (a)-(f) Reference image and images 
processed by PICCS, DDNet, CycN-Net, PRIOR-Net and PRIOR algorithms. 
The display window of reconstructed results is [-900, 600] HU. 

 
Fig. 7. Reconstructed axial and coronal results from four selected phases (10%, 20%, 30%, and 40%) of the clinical Elketa dataset for different methods, 
including reconstructed images and magnified ROIs. (a1)-(a4) Reference images reconstructed from over-sampled projections, (b1)-(b4) Images reconstructed by 
FDK algorithm, (c1)-(c4) Images reconstructed by PICCS, (d1)-(d4) Images processed by DDNet, (e1)-(e4) Images processed by CycN-Net, (f1)-(f4) Images 
processed by PRIOR-Net, (g1)-(g4) Images processed by PRIOR framework. The display window of reconstructed results is [0, 0.025] mm-1. 
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blue circles in Fig. 5(d1)(d3)). As expected, all the prior 
image-based methods can recover tiny tissues (as pointed by 
yellow arrows in Fig. 5(c1)(e1)-(g1)), including PICCS, which 
states the necessity of prior images again. Unlike the 
remarkable performance in Table I, CycN-Net still reserves 
little streak artifacts (as indicated by blue arrows in Fig. 
(e2)(e3)). Compared to DDNet and CycN-Net, the proposed 
PRIOR-Net reduces all the streak artifacts and generates 
clearer tissue edges (as seen by the red arrow in Fig. 5(f4)). 
This implies that the prior image and powerful CNN models 
are mutually beneficial. Last, the PRIOR framework 
successfully preserves some unobvious lesions (as marked by 
the red circle in Fig. 5(g2)) using the well-trained PRIOR-Net. 

Fig. 6 shows the reconstructed images of different methods 
from the simulated 4D CBCT dataset at 50% breathing phase. 
The PRIOR-Net gives more lung vessel structures (as 
observed by the yellow arrow in Fig. 6(e)). Further, the 
PRIOR framework provides the best vessel restoration (as 
pointed by the red arrow in Fig. 6(f)). 
 

C. Clinical Data Results 
Fig. 7 demonstrates the axial and coronal results of different 

methods for the clinical Elekta dataset at 10%, 20%, 30%, and 
40% phases. In particular, the reference image is not the 
golden standard in this section, and it is the auxiliary guidance 
for the results provided by different methods. Again, DDNet 

works well in streak artifacts reduction compared to FDK (as 
shown in Fig. 7(d1)-(d4)). However, it misses many soft 
tissues and bone structures and results in over-smoothing 
regions (as illustrated by red arrows in Fig. (d2)(d4)). The 
reason is that the DDNet recognizes the normal structures as 
artifacts and removes them wrongly. PICCS remains stable in 
balancing the trade-off between artifact removal and tissue 
restoration in either simulated or clinical datasets, which 
indicates that the model-based method is robust to different 
imaging conditions. Taking the prior image as additional input, 
CycN-Net can preserve more bones than DDNet (as observed 
in the blue arrow in Fig. 7(e1)). However, PICCS and CycN-
Net still generate over-smoothing regions (as demonstrated by 
yellow arrows in Fig. 7(c4)(e2)). The proposed PRIOR-Net 
and PRIOR framework generate clear edges and accurate 
tissue details. Moreover, Fig. 7(a2)-(a4) mark the tumor with 
green circles to observe its motion trajectory. It can be found 
that all the methods can reconstruct the tumor movements 
successfully. Specifically, the tumor provided by DDNet has 
high contrast than PICCS and CycN-Net. The PRIOR-Net can 
also generate high-quality tumor and the PRIOR method 
further improve the sharpness of tumor contour. 

To probe the performance of proposed methods on different 
datasets, the experiments based on the Varian dataset were 
conducted. Fig. 8 illustrates the reconstructed results of 
different methods at 50%, 70%, and 90% phases. Compared to 
FDK, all the methods can significantly promote image quality. 

 
Fig. 8. Reconstructed results from three selected phases (50%, 70%, and 90%) of the clinical Varian dataset for different methods, including reconstructed 
images and magnified ROIs. (a1)-(a3) Images reconstructed by FDK algorithm, (b1)-(b3) Images reconstructed by DDNet, (c1)-(c3) Images processed by CycN-
Net, (d1)-(d3) Images processed by PRIOR-Net, (e1)-(e3) Images processed by PRIOR framework. The display window of reconstructed results is [0, 0.03] mm-1. 
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Nevertheless, from Fig. 8(b1)-(b3), it can be observed the 
results estimated by DDNet are degraded with residual 
artifacts and some organs are deformed severely. In contrast, 
prior-image-based methods not only eliminate the streaking 
artifacts but also accurately restore most of the tissue details. 
However, some artifacts and fake structures can be found in 
some regions processed by the CycN-Net (as pointed by blue 
arrows in Fig. 8(c1)(c2)). Because of the iterative process, the 
PRIOR method provides the clearest tissue edges (as shown 
by the red arrow in Fig. 8(e3)). To demonstrate the 
performance of different methods in the cardiac movement 
track, the green dash line is marked at the same position in 
different phases. Because the green line is fixed, therefore, the 
relative distance between the line and the cardiac indicates the 
cardiac movements. From Fig. 8(c2)(c3), the distance between 
the green line and cardiac has no obvious changes, which 
means CycN-Net fails to reconstruct the dynamic information. 
And the PRIOR-Net has the same defect. Comparing the 
zoomed ROIs in Fig. 8(e2)(e3), the cardiac motion can be 
observed noted by the green arrow in Fig. 8(e3), because the 
PRIOR framework involves data fidelity term optimization 
and brings accurate evaluation in organ motions.  
 

D. Ablation Study 
In this section, an ablation study was conducted to 

investigate the influence of different modules in the PRIOR 
framework on the reconstruction results based on the 
simulated 4D CBCT dataset. As for the ablation analysis, a 
progressive verification strategy was adopted. 

The neural network without the prior encoder module based 
on the PRIOR-Net was taken as the baseline model. Then, the 
ACID scheme was adopted using the well-trained baseline 
model as the first comparison model. Next, the PFF module 
was added to the baseline model to establish the second 
comparison model (PRIOR-Net). Last, the PRIOR-Net was 
combined with the iterative optimization to construct the third 
comparison model, i.e., PRIOR. 

Table ⅠI 
QUANTITATIVE EVALUATIONS FOR THE PROGRESSIVE STUDY BASED ON 

THE SIMULATED DATASET (RMSE: HU) 

 Metric Baseline ACID PRIOR-Net PRIOR 
 

Phase1 
RMSE 29.82 26.74 18.77 15.15 
PSNR 37.78 38.74 41.82 43.85 
SSIM 0.9463 0.9332 0.9736 0.9760 

 
Phase4 

RMSE 32.73 25.80 16.35 11.45 
PSNR 37.33 39.40 43.36 46.45 
SSIM 0.9492 0.9453 0.9800 0.9818 

 
Phase7 

RMSE 32.69 24.85 16.82 11.69 
PSNR 37.23 39.62 43.04 46.20 
SSIM 0.9490 0.9489 0.9786 0.9810 

Table II gives the quantitative results of the progressive 
ablation study. We can see that the baseline model is close to 
the DDNet in Table I because they have similar architecture 
and techniques. Based on the baseline model, ACID performs 
better in RMSE and PSNR but compromises SSIM in some 
cases. This implies that the ACID strategy can indeed promote 
the accuracy of CT values. However, it may decrease the 

perceptual quality in structure preservation as the baseline 
model is ineffective and negatively affects it. Considering the 
prior image information, PRIOR-Net outperforms the first two 
models, stating the positive effect of prior images for 4D 
CBCT imaging convincingly. So, assisted with the powerful 
PRIOR-Net, the proposed PRIOR framework obtains the best 
performance in all metric evaluations. 

 
Fig. 9. Reconstruction results and zoomed ROIs from the simulated 4D CBCT 
dataset at 50% breathing phase. (a1)-(a2) Reference images, (b1)-(b3) Images 
processed by baseline model, (c1)-(c3) Images processed by ACID, (d1)-(d3) 
Images processed by PRIOR-Net, (e1)-(e3) Images processed by PRIOR. The 
display window is [-160, 240] HU. 

Fig. 9 illustrates the reconstruction results of different 
comparison models based on the simulated 4D CBCT dataset 
at 50% phase. Like DDNet, the baseline model achieves the 
target of artifact removal but at the cost of missing detail. 
ACID preserves more tiny details through the forward and 
backward operation (as shown in green arrows in Fig. 
9(c2)(c3)). Nevertheless, some fake structures maybe occur 
(as pointed by the pink arrow in Fig. 9(c2)), which is 
consistent with the observation in Table II. The yellow arrows 
in Fig. 9 show that PRIOR-Net generates more clear edges 
than ACID. Moreover, PRIOR restores small details (as 
pointed by red arrows in Fig. 9). The ablation study indicates 
that the modifications and extensions based on the ACID are 
potential for 4D CBCT. 
 

E. Comparison of ACID and PRIOR 
The previous section demonstrates that both ACID and 

PRIOR can improve the detail restoration based on a pre-
trained model. This part aims to deeply explore their 
mechanisms. Fig. 10 presents the zoomed ROIs (as shown in 
Fig. 9) of different methods at different iterations. According 
to Eq. (8), 𝑝𝑝  can evaluate the residual error between the 
reconstructed image and the ground truth in the sinogram 
domain. After mapping 𝑝𝑝 into the error image and processing 
it by the pre-trained neural network, the small structures will 
be enhanced during the iterative process (as indicated by the 
red arrow in Fig. 10(e1)). However, ACID will introduce 
some fake textures (as demonstrated by yellow arrows in Fig. 
10(e1)(d1)) when dealing with the error image because the 
pre-trained neural network was trained on the image domain 
and cannot generalize well in the error image domain. With 
the assistance of static information in prior images, PRIOR 
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also performs well in the error image space. Therefore, PRIOR 
can overcome the drawback of ACID and gradually improves 
the image quality without negative effects (as observed in Fig. 
10(a2)-(e2)). 

 
Fig. 10. Zoomed ROIs as marked in yellow square in Fig. 9(a1) of different 
methods at different iterations. The display window is [-160, 240] HU. 

 

F. XCAT Phantom Results 
To compare the CycN-Net and the proposed method fairly 

and convincingly, the experiments on the datasets utilized in 
CycN-Net were performed. Specifically, for simulated 
datasets, 15 patients (10210 images) for training, and 2 
patients (1190 images) for validation. And 4D extended 
cardiac-torso (XCAT) phantom (1600 images) was used for 
the test (more description about datasets can be found in [4]). 
Because CycN-Net did not provide the projection data, we 
only provided the results of PRIOR-Net in this section. 

Table Ш 
QUANTITATIVE EVALUATIONS FOR DIFFERENT METHODS ON THE 

TRAINING DATASET 

 Phase1 Phase3 Phase5 
PSNR SSIM PSNR SSIM PSNR SSIM 

CycN-Net 27.44 0.8840 27.53 0.8896 27.23 0.8798 
PRIOR-Net 31.23 0.9105 31.62 0.9129 30.83 0.9065 

Table IV 
QUANTITATIVE EVALUATIONS FOR DIFFERENT METHODS ON THE 

VALIDATION DATASET 

 Phase1 Phase3 Phase5 
PSNR SSIM PSNR SSIM PSNR SSIM 

CycN-Net 25.51 0.8629 25.72 0.8665 25.44 0.8671 
PRIOR-Net 28.17 0.8933 28.42 0.8979 27.87 0.8906 

Table V 
QUANTITATIVE EVALUATIONS FOR DIFFERENT METHODS ON THE XCAT 

PHANTOM DATASET 

 Phase1 Phase3 Phase5 
PSNR SSIM PSNR SSIM PSNR SSIM 

CycN-Net 20.37 0.8419 20.41 0.8456 20.29 0.8401 
PRIOR-Net 22.40 0.8654 22.54 0.8702 22.61 0.8616 

Tables III, VI, and V list the quantitative results of different 
datasets for three selected respiratory phases. It can be found 
that the performance of all methods on the XCAT phantom 
dataset decrease greatly because XCAT phantom images are 
quite different from the simulated datasets. With more 
effective utilization of prior images, PRIOR-Net achieves 
better evaluation scores than CycN-Net in all datasets. 

 

G. Convergence Analysis 

The convergence analysis of the PRIOR framework is 
probed based on the simulated 4D CBCT dataset. Fig. 11 plots 
the RMSE with 100 iterations of four selected phases. We can 
see that all the RMSE values decrease quickly at initial 
iterations and tend to converge after 80 iterations. Moreover, 
PRIOR can significantly boost the results with 25%~31% 
improvements in RMSE value based on the PRIOR-Net 
results. These verify the practicability of the iterative scheme 
of PRIOR. 

 
Fig. 11. Convergence analysis of RMSE values vs. iteration number of four 
selected phases based on the simulated 4D CBCT dataset. 

 

H. Computational Cost 
Table VI provides the computational cost of different deep 

learning-based methods on the Varian dataset for single-phase 
image reconstruction. All the image-domain-based methods 
can infer the results within a short time. Because of the 
iterative process, PRIOR takes much longer time than other 
methods. However, it can be reduced by adjusting the update 
size 𝜆𝜆. 

Table VI 
COMPUTATIONAL COST OF DIFFERENT DEEP LEARNING METHODS (UINT: 

SECOND) 

Method DDNet CycN-Net PRIOR-Net PRIOR 
Time 10.64 14.22 12.49 2250.00 

V. CONCLUSION AND DISCUSSION 
Model-based methods have explainable physical meanings 

and rigorous mathematical forward-backward update 
operations. Hence, these methods are reliable in clinical 
applications. However, the hand-crafted regularization and 
empirical hyper-parameter selection may limit their 
performance. Recently, deep learning has been widely used in 
medical imaging [4, 15, 21, 26, 38]. Because of the powerful 
non-linear representation capacity, deep learning-based 
methods usually perform better than traditional methods [27, 
40]. But owing to the black box property, these methods are 
hampered in the real scenario. Combing the advantages of 
physics- and data-driven methods, hybrid approaches have 
been developed and produced promising results [34, 35, 40]. 
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Therefore, to improve the interpretability and performance of 
deep learning, we develop a PRIOR framework based on 
ACID [36] for 4D CBCT. The proposed PRIOR framework 
has two main components, i.e., PRIOR-Net and iterative 
strategy. Like to CycN-Net, PRIOR-Net also takes the prior 
image as input to extract the static structural features. 
Dissimilarly, PRIOR-Net designs a specialized PFF module to 
boost the utilization of prior images, leading to better results in 
tiny detail restoration and edge preservation. Then, the PRIOR 
framework adopts an iterative scheme inspired by [36, 37], 
which uses the pre-trained PRIOR-Net as the deep 
regularization to improve image quality gradually. Both 
simulated and clinical datasets are performed to prove the 
effectiveness of the PRIOR-Net and PRIOR framework in 
artifact removal and structure recovery.  

Although the PRIOR framework shows improved results in 
4D CBCT, some issues should be noticed. First, the 
performance of the PRIOR framework heavily depends on the 
pre-trained CNN model. However, the pre-trained PRIOR-Net 
cannot address various degradations from different datasets 
because the corresponding high-quality reference images are 
unavailable in reality to optimize the PRIOR-Net. For example, 
PRIOR brings fewer improvements in the clinical dataset than 
the simulated dataset. Therefore, how to improve the 
robustness of the PRIOR framework is an opening problem. 
Second, the PRIOR framework still lacks rigorous 
mathematical theory, and all the explanations are based on the 
intuitive and rough modification of existing algorithms. So, 
we cannot guarantee the worst performance of the PRIOR 
framework because the output of PRIOR-Net is uncontrollable 
when dealing with real scenarios.  Third, in this study, we 
ignore the motion compensation-based approaches, which are 
effective for 4D CBCT. Therefore, we could attempt to 
incorporate these methods into the PRIOR framework in the 
future. 
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