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Abstract 

 

This paper derives and analyzes a novel block Fast Fourier Transform (FFT) based joint detection algorithm. The paper compares the 

performance and complexity of the novel block-FFT based joint detector to that of the Cholesky based joint detector and single user 

detection algorithms. The novel algorithm can operate at chip rate sampling, as well as higher sampling rates, unlike existing 

algorithms. For the performance/complexity analysis, the time division duplex (TDD) mode of a wideband code division multiplex 

access (WCDMA) is considered. The results indicate that the performance of the fast FFT based joint detector is comparable to that 

of the Cholesky based joint detector, and much superior to that of single user detection algorithms. On the other hand, the complexity 

of the fast FFT based joint detector is significantly lower than that of the Cholesky based joint detector and less than that of the single 

user detection algorithms. For the Cholesky based joint detector, the approximate Cholesky decomposition is applied. Moreover, the 

novel method can also be applied to any generic multiple-input-multiple-output (MIMO) system.  

   

I. Introduction   
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In some communication systems, such as frequency division duplex CDMA (FDD/CDMA) and time division duplex CDMA 

(TDD/CDMA), multiple communications are sent over the same frequency spectrum. These communications are differentiated by 

their channelization (spreading) codes. TDD/CDMA communication systems use repeating frames divided into timeslots for 

communication. A single communication sent in such a system will have one or multiple associated codes and timeslots assigned to 

it.  But for WCDMA systems [1], conventional RAKE receivers suffer from severe degradation in frequency selective fading 

channels because of significant multi-access interference and inter-symbol interference. For such systems, joint detector based multi-

user detector algorithm [2], [3], [4] have attracted attention. Joint detector algorithms are characterized by good performance with 

high complexity.  However, for short-code TDD/CDMA systems, codes have a length equal to the symbol period and lends 

themselves to the development of joint detectors. However spreading codes used in FDD/CDMA systems have a  period much longer 

than the symbol period (called long spreading or scrambling codes), for which it is difficult to design multiuser detectors, as stated in 

[5]. 

 

Another approach to removing multi-access and inter symbol interference is single user detection [6], [7], [8].  This is an approach 

based on channel equalization and is applicable to the downlink of a CDMA system, without any transmit diversity. In single user 

detection, the received signal is passed through an equalization stage followed by de-spreading  for recovering the data of a single 

mobile. The equalization stage can be implemented using an approximate Cholesky decomposition [3]. 

 

An earlier efficient FFT based implementation of the joint detector was proposed in [4].  However the approach in [4] is for chip rate 

sampling and cannot be extended easily to oversampling or multiple chip rate sampling, as explained later.  Practical receivers 

typically operate at twice the chip rate or higher rates.  This paper provides a novel fast joint detector algorithm that is applicable at 

any sampling rate. The fast implementation is achieved through a block circulant approximation of the correlation matrix. 

 

This paper also shows that single user detection based algorithms exhibit some degradation, as compared to the joint detector 

algorithm of [2], [3]  at the downlink of a TDD-CDMA system. One motivation to developing the fast joint detector algorithm in this 

paper was to develop an algorithm, low in complexity compared to the joint detector in [2], but superior in performance to that of the 

single user detection algorithms in [6], [7] at the downlink of  a TD-CDMA system. Simulations are presented to illustrate the 

relative performance of the new algorithm for different multipath channels specified in [1]. The performance is analytically explained 

for different channel conditions. 

 

Single user detection algorithms are also used in the case of multi-code transmission systems, where the data of a particular user may 

have been sent using multiple codes. WCDMA TDD mode has the option to support higher data rates, like the two Mbps data service 
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for which twelve codes of spreading factor sixteen each are allocated to a single user. In this paper, we extend the new joint detector 

algorithm to the multi-code scenario. In particular, we study the performance of the new fast joint detector algorithm with that of the 

single user detector and other joint detector algorithms for this application. Computational complexities of the different algorithms 

are analyzed and it is seen that the novel algorithm in this paper provides far superior performance, at less computational complexity, 

compared to single user detection algorithms.  

 

This paper also provides an analysis of the performance degradation of the single user detector algorithms in different multipath 

channels, and compares it to that of the fast joint detector algorithm in this paper. The paper also provides results at higher  than chip 

rate sampling and  illustrates the advantages of the new algorithm, as compared to the fast joint detector in [4].  The paper also 

considers some issues in the design of the fast joint detector algorithm, like the implementation of the inverse required in the method, 

along with an efficient  prime factor algorithm (PFA) block-FFT implementation, which also improves the performance of the novel 

fast algorithm (called  

extended fast joint detector). Some associated work is given in  

 [9]-[17]. The novel method in this paper can also be applied to any generic multiple-input-multiple-output (MIMO) system like [18, 

[19]. 

 

The paper is organized as follows. Section II gives the signal model, while the algorithm derivation is given in Section III. Section IV 

provides details regarding implementation of the novel detector, as well as comparison of computational complexities among the 

detectors, along with comparison with single-user detectors. Simulation results are in Section V, while conclusions are included in 

Section VI. 

 

II. Signal Model  

 

 A typical Universal Terrestrial Radio Access (UTRA) WCDMA TDD communication burst is shown in Figure 1, which is a 

WCDMA system, in which the uplink and downlink transmissions are confined to different time-slots. Within each time-slot, 

multiple signals are multiplexed using CDMA. A typical communication   burst has a midamble, a guard period and two data fields 

D1 and D2. The midamble separates the two data fields and contains a training sequence. The guard period separates the 

communication bursts to allow for the difference in arrival times of bursts transmitted from different transmitters. The two data fields 

contain the communication burst‟s data. 
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The fast joint detector in this paper is developed for this communication system. The receiver receives a combination of K bursts 

arriving simultaneously, which may be for K different mobiles (users).  If certain mobiles are using multiple codes in a  particular 

time slot, the K bursts may be for less than K users. Each data field of  a timeslot  has a predefined number of transmitted symbols, 

such as NS.  For the kth user, each of its NS symbols  is spread by its code c(k)  (with spreading factor SF);  accordingly, each data 

field has NS x SF chips.  After passing through a channel having an impulse response of W chips, each received  data field  has a 

length of (SF x Ns + W -1) chips, which is denoted by  Nc chips.  A typical value of W is 57 chips. Each kth burst is received at the 

receiver and can be  written as 

 

Kkkkk ,..,1,)()()(  dr A .                                (1) 

 

)(k
r  is the received contribution of the kth burst; A(k) is the combined channel response, being an Nc x Ns matrix.  Each jth column in 

A(k) is a zero-padded  and shifted version of the symbol response of the jth element of d(k).  The combined channel response is the 

convolution of the estimated multipath response h
(k) and spreading code c(k) for the burst. d

(k) is the unknown data symbols 

transmitted in the burst.  The estimated multipath response for each kth burst, h(k), has a length W . In the downlink, without any 

transmit diversity, all the bursts pass through the same channel h(k)  to a particular user. In uplink, the multipath responses h(k) (from 

the different users to the base-station) are different. If transmit diversity is employed in downlink, then also h(k) is different for each 

k. The overall received vector from all K bursts sent over the wireless channel is  

nrr 


K

k

k

1

)(
.                                                    (2) 

 

 III  Algorithm Development 

 

By combining the A(k)‟s for all the data bursts into  matrix A and the unknown data for each user d(k) into the vector d,  we have  

 

ndr  A .                                                             (3) 

 

where A is of size (Nc) by (Ns.K) and d is of size (Ns.K) by 1.  The above model includes both the multi-access interference and the 

intersymbol interference in the received signal. In equation (3), r is the chip rate sampled received vector of length Nc chips and n is 

the zero-mean noise vector. The maximum number of users is K, with )(
)(

ib
k

j  being the convolution of the channel response h and 

the spreading code c(k),  for the kth user at the jth chip interval of the ith symbol interval. Define the (SF by K) block B(i) as  
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Now we can write the transfer matrix A, in (3), in terms of  B(i).   
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Given that the data of each of the K users are uncorrelated (with zero mean and unity variance) and the data of any user is 

uncorrelated with  the data of each of the other users,  the correlation matrix of the received signal is given by R = AH
A + I . Then 

the minimum mean squared error (MMSE) solution to the joint detection problem is given by  

 

rdd HH AIAAR   ^^ ) (  .                         (6) 

 

The matrix R is block Toeplitz as well as banded and algorithms for banded block Toeplitz system can be applied to it (e.g. 

approximate Cholesky joint detection [3]). For illustration purposes, a simplified example of R with Ns = 10 and W = 2 is given by 
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This example is easily extendable for any Ns and W. The matrix R is of size (KNs) by (KNs), each entry Ri  being a  K by K  
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block. The matrix R has an additional structure- the banded and Toeplitz structure of R makes the submatrix, within the dotted lines 

of R, block-circulant.  The portion of R, which is not block-circulant, depends on the maximum multipath delay spread W (in chips). 

 

Practical receivers for TDD system operate at twice the chip rate or a multiple of the chip rate to provide robustness to timing errors.  

For multiple chip rate sampling, the received signal model is  
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where sampling is at N times the chip rate. The sequence  rn corresponds to the nth chip rate sub-vector, out of N such sequences 

corresponding to oversampling by a factor of N. In this case, the correlation matrix R can be written as 

  

IAAR 


  
1

N

i
i

H
i .                                         (9) 

 

The structure of the R matrix for multiple chip rate sampling is still the same as in equation (7).  The number of row-blocks of  R that 

is outside the block circulant structure is equal to 2L, where L is the multipath delay spread (in symbols) where 

SFWSFL /)1(  . The algorithm derived in this paper is based on block-circulant extension of the matrix R. Since a block 

circulant approximation of the correlation matrix R, in equation (9), is used, the fast joint detector can be easily developed for higher 

rate sampling. This is in contrast with the approach in [4], where a circulant approximation to the data matrix (not correlation matrix) 

is considered and requires addition of block columns to make it block square. In the case of oversampling given by the model in 

equation (8), this will be cumbersome. The approach in this paper has no such problems and can be extended to the oversampling 

case in a straight forward manner. 

  

The derivation of a block FFT based joint detector is outlined below. This will enable appreciation of the final form of the algorithm. 

The block circulant extension of the correlation matrix R is denoted by Rc.   
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   (10)  

   

   Let a matrix D be determined such that H
c DDΛR  .   It is shown below  that   
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where  KI is a  K by K identity matrix.  D is a ``block Discrete Fourier Transform (DFT)”– like matrix, i.e. each of its entry is a (K 

by K) block. Furthermore, it can be shown   that  
sKNsN

H
IDD  , where 

sKNI is the  KNs by KNs  identity matrix.  Let the block-

diagonal matrix Λ , of size  (KNs by KNs),  be 
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with each entry   

 



 8 























)()(
1

)(
1

)(

i
KK

i
K

i
K

i












Λ                                                  (13) 

 

of size (K by K).  Next, the block-circulant matrix Rc is multiplied by the matrix D  to form the matrix RcD,  with  (K by K) blocks as 

entries; this is shown (below, in page 10)  in equation (14). Similarly, the D matrix is multiplied by the Λ matrix in (15).  The system 

of equations obtained by equating each block-row of RcD with the same row of DΛ is consistent.  
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Accordingly, the same set of  equations are obtained by  

equating    any  block-row of  RcD with the same block-row of DΛ . To illustrate for equation (14), the first block-row of  RcD is 

given by  
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Similarly, the first block-row of  DΛ is given by 
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Equating (16) and (17), we have the solution of 
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Although equations (16) to (21) are illustrated using the first block-row of  RcD  and DΛ ,  the same expressions will be obtained 

using any block-row of  RcD  and  DΛ . Same results are obtained by using center block-row( ( 2/sN )th  block-row) in equation 

(14). 
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Equations (18) to (21) compute the block FFTs of K by K blocks. Since these blocks are multiplied by scalar exponentials, this 

process is referred to as ``block”-FFTs.   
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Thus 
)(kΛ  can be calculated as the FFT of a two-sided sequence of (K by K) blocks {R0, R1, R2, …, 

L
R }.  The above equation thus 

requires calculation of K2  FFTs, each of length Ns. Using the  
)(kΛ  and D  matrices,  the block-circulant matrix cR  can be written 

as 

 

  DΛDR c ,                                                                      (23) 

  

and  

H

s
N

c DDΛR .
1

 .                                                               (24)        

D  and Λ are each of size KNs by KNs. Since
sKNs

H N IDD  ,  
H

s
N

DD 11



. Thus we have 

)]/(
1

)/[(]
111

)[(
1

sN
H

sNsN
H

sN
c

DΛDDΛDR








.   (25) 

The detected data vector  

^

d (of size (KNs) by 1) can be estimated using the MMSE criterion as 

 


 )(

1
rAR

^
d H

c
)(

1
)/( rADΛD

HH
sN

                          (26) 
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which can be written as  

 

)]^ rd HHH ADΛD ([1 .                                          (27) 

 

The matrix   (of size (KNs by KNs))  is a block-diagonal matrix, with each block of being size of (K by K). 
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

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
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




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sN

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ

Λ





         (28) 

 

 The inversion requires  Ns inversions of (K by K) matrices 
)(k

Λ .  As a result, the data estimation equation (27) can be re-written as 

 k
Hk

FkF )]^ rd AΛ ([][)]( 1)(
[

                                  (29)  

for each frequency point k. F(.) refers to the FFT operation. Equation (29) is applicable to both receivers that sample the received 

signal at the chip rate and those that oversample the received signal at a multiple of the chip rate, such as twice the chip rate. For 

multiple chip rate receivers, the matrix R,  corresponding both to multiple chip rate sampling or just chip rate signaling, is of the form 

as equation (7), being approximately block-circulant. 

 

Further reductions in complexity in computing the matched filter (AH r) can be achieved by exploiting the special structure of the 

overall channel response matrix A, which is again exploited by the FFT method. A glance at the matrices A and B(i) in equations (5) 
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and (4) shows that the matrix A (of size KsNSFsN  ),  is a non-square matrix but a portion of A is also block-circulant.  L block-

rows at the top and L block-rows at the bottom of the matrix A prevent it from being circulant.  A block-circulant extension of the 

matrix A is denoted by cA .  This matrix can be written as 

 

H
c 211 DΛDA  ,                                                        (30) 

 

where 1D is a ( SFsNSFsN  ) matrix, 2D is a ( KsNKsN  ) matrix and 1Λ is a  ( KsNSFsN  ) block-diagonal matrix.  The matrix 1Λ is 

of the same form as Λ  with ( sN  by sN ) blocks, except that each block  )(
1

i
Λ  is non-square,  being of size SF by K, and 
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(31) 

  

2D  is of the same form as the matrix D in equation (11).  Post-multiplying cA  by 2D , it is seen   (below in equation (32) in page 

11), that  blocks of size SF by K are formed. Similarly, in multiplying 1D and 1Λ , products  are formed of size SFsN by KsN , each 

block of SF by K. Comparing any row of  
2

DA
c

 with any row of  11ΛD , (33) is obtained 
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As a result, each 
)(

1
k

Λ can be determined as the one-sided FFT of  (SF by K) blocks )(iB ‟s. From equation (30) and using the fact that  

sKNsN
H

IDD 
22

, we have 

r )DΛDrA
HHH

c 1(
12 ,                                                 (34) 

r ))DΛr )AD
HHH

c

H
sN 1((]

1
[(

2
 .                                (35) 

Accordingly,  
k

H

c
AF r )( can be determined using FFTs  per 

k
]] r )Λr )A ([(]

)(

1
[([ F

Hk

k

H

c
F sN .                           (36) 

 

Similarly,  since the matrix A is approximately block-circulant, 

) ( IAAR  H  can be implemented using FFTs using 1Λ . 

 

The complexity in implementing the data estimation algorithm is considered next. 

 

k
Hk

k FF )]^ rd AΛ ([][)]([ 1)(  .                          (37) 

 

The matrix ]
)(

[
k

Λ  is Hermitian but has no special structure. To reduce computational complexity of calculating of each 1][
)( kΛ , the 

solution of the above  linear system can be performed using a LU (lower-upper) decomposition. Each   ]
)(

[
k

Λ  is a (K by K) matrix 

whose LU decomposition is given by 

 

LUΛ 
)(k

                                                     (38) 

 

where L is a lower triangular matrix and U is an upper triangular matrix. Equation (37) can then be solved by using forward and 

backward substitution. The forward substitution  uses the lower triangular matrix L as (starting from equation (37)) 

 

k
HF

FFFF k
H

kk
H

k
k

)]

)])] ^^

r

rdrd

ALy

ALUAΛ

([

([)]([([)](][[ )(




.                                         (39) 
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where kF )]([ ^dUy  . The backward substitution then uses the upper triangular matrix U  to solve for kF )]([
^

d  by 

  

yU kF )]([ ^d .                                             (40) 

 

To improve the bit error rate (BER) for the data symbols at the ends of each data field, samples from the midamble portion  and the 

guard period are used in the data estimation algorithm, as shown in Figure 1. To collect all the samples of the last  symbols in the 

data  fields,  the samples r  are extended by W-1 chips (length of channel impulse response) into the midamble and guard period.  

This permits utilization of all the multipath components of the last data symbols (of each data field)  for data estimation purposes. 

The known midamble sequences are cancelled from the received samples (corresponding to the midamble), prior to data estimation. 

Similarly for the guard period for the second data field. 

 

IV. A  Implementation Issues of the Fast Joint Detector 

 

One very important implementation issue is regarding the implementation of the block FFTs. In a TDD burst,  the midamble has 512 

chips whereas each of the two data fields  has 976 chips, which at the spreading factor of 16, corresponds to 61 symbols. 

Implementation of equation (22) requires implementing a 61- point block FFT, where each block is of size (K by K). This would 

require implementation of a prime factor algorithm (PFA) for block-FFT implementation and would require more computations than 

the implementation of a 2n-point FFT. One solution to this is to increase the processing length to 64 symbols. The received signal 

vector r, instead of being 61 symbols long for the data field of a timeslot, will be 64 symbols long by extending it into the midamble 

field and guard period. Simulations indicate the performance of this extended FFT joint detector improves, particularly for Case 2 

channel. This can be explained from the structure of the matrix R in equation (7) (and from its block-circulant version in (10)),  

which illustrates  the degradation due to the block-FFT approximation. For a given channel, the number of block-rows outside the 

block circulant portion of R is fixed at 2L.  If the processing length is  Ns = 61, then the size of the correlation matrix R is (KNs) by 

(KNs), out of which 2KL rows are outside the circulant matrix portion. When we increase the processing length to (Ns+3), the size of 

R is  [K. (Ns+3)] by [K. (Ns+3)]. However, the number of block-rows outside the block circulant portion of R remains fixed at 2L. 

Thus the fraction of non-circulant rows in R (for  Ns = 61) is )./2( sNL  However, when we increase the processing to 64, (so as to 

perform 2n-point block-FFT instead of computationally cumbersome PFA version of FFT), the fraction of non-circulant rows in R is 

))64/(2())3/(2( LNL s  , which is less than )/2( sNL  (for the PFA version of FFT). Thus, the circulant approximation becomes 

more accurate when we increase the processing length to enable efficient implementation of the block FFTs. The increase of the 

processing length is shown in Figure 1. 
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IV. B. Higher Data Rate Services 

 

For higher data rate services, WCDMA TDD uses a multi-code, multi-slot strategy. For 2 Mbps data service, twelve codes of 

spreading factor 16 each and  twelve out of the 15 timeslots in a radio frame are allocated to one user. Refer to equation (4) for the 

entries of matrix B which are used to form the system matrix A. If M codes are allocated to one user, then M columns of the matrix B 

are allocated to that user while the remaining (K-M) columns of the matrix B are for the remaining users.  Simulation results are 

shown in this paper for the 2 Mbps data service. 

U
 

IV. C.  Computational  Complexity 

In this section, we introduce some other data estimation algorithms for comparison purposes. The approximate Cholesky based joint 

detector [3] is commonly used in a TDD system-it performs very well with achievable complexity. An  approximate Cholesky 

decomposition of the matrix R is extended to obtain the full Cholesky factor G such that R = GGH . Let us denote this algorithm by 

JDChol. Single user detection algorithms  developed in [6], [7]  are designed for the downlink situation. In the downlink, without any 

transmit diversity, (for an oversampling factor of N), the received signal can be written as (starting from equation (8)),  

  ndnd
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 21
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2

1
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1
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(41)  

The reason is as follows. iA (for the ith oversampling branch)  contains the convolution of the estimated response hi
(k) and spreading 

code c
(k)

 the (for kth user) for the burst. d
(k)

 is the unknown data symbols transmitted in the burst.  In the downlink, without any 

transmit diversity, all the bursts pass (from the base-station) through the same channel h(k)  = h to a particular user. In equation (41), 

kC is the associated code matrix for kth user, as in [5].  iH  is the associated channel matrix for the ith oversampling branch, and is 

the same for all the users.  Let  d. KCCC  s 21  s can be estimated by the MMSE criterion, 

s
^ = (HH

H +  2
I)-1(HH r) ,                         (42)   where 

 
HH

N
HH ][ 21 HHHH  .                          (43) 



 16 

And then de-spreading s^ (by the code-matrix  KCCC 21  ) to obtain estimate of data symbols (of all K users)  d^ . For the  

FFT version of the single user detector  (SDFFT), it is observed that  

H
N

i

H

ii
HHHHR

~






1

 

 is also approximately circulant (not block-circulant) and the portion, that is not circulant, is equal to 2W rows.  A derivation,  similar 

to above, gives us 

 

))

~

((sN

).
H

(

iF

F

R

rHF(
  )

^
s                                        (44)  

where )))

~

(( iF R  is the scalar Fourier transform of a suitable column of  i)

~

(R .  Then d^ is obtained by de-spreading s^. This algorithm 

is denoted by SDFFT. 

Another single-user detection algorithm is obtained by the application of approximate Cholesky based method in [3] to (HH
H + 

 2
I)- 1 in (chip-level) equalization stage (in equation (42)),  followed by de-spreading. This algorithm is denoted by SDChol. 

An analysis of the computational complexity of the joint detector and its comparison with other data detectors is now undertaken. 

The complexity of calculating A is K.SF. W.  The computational complexity of calculating  AAH  is  

2

)1)(2(

2

max

2

)]1
max

()1(2)[2(






WSFKK

nnWSFKK

 

where  ).1/)1(,min(max  SFWSF
s

Nn  Calculating rHA (a matrix vector calculation)  requires 

)1( WSFsKN calculations.  Calculating the FFT of the jth block-column of R requires )2log(
2

sNsNK .  The inversion  

of each matrix ][ )(kΛ , without LU decomposition, requires  
3

K calculations. For sN frequency points, the total number of 

calculations is 
3

KsN .  Calculating  

k
Hk

FkF )]^ rd AΛ ([1]
)

[)]([
(   requires 

2
K  each for sN frequency points, resulting in 

2
KsN  total number of calculations. The 

inverse FFT of  )]([
^

dF  requires  )2log( sNsNK  computations.  
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To illustrate the complexity for fast joint (multiuser) detection, the number of million real operations per second (MROPS) for 

processing a TDD Burst Type I [1], with Nc = 976, Ns = 61.  spreading factor   SF = 16,  number of codes (users) K = 8, is 

determined.  The multipath delay spread W is 57 chips. The calculations of A,  AH
A , a block-column of R, Λ (k),  [Λ (k) ]-1 are 

performed once per TDD burst, i.e. 100 times per second.  The calculations AH
r,  F [AHr ], computing  and inverse FFT  of  [F(d^)]  

are performed twice per burst, i.e. 200  times per second. Four calculations are required to convert a complex operation into a real 

operation. 

 

Functions executed once per 

burst 

MROPS 

Calculating A 3.0 

Calculating AH
A 4.4 

Calculating ))(( iF R  9.26 

Calculating  [Λ (k) ]-1 12.493 

 

 

Functions executed  twice  per 

burst 

MROPS 

Calculating AH
r 28.11 

Calculating F [AH
r ] 2.3154 

Calculating 

k
H

F
k

kF )]
^

rd AΛ ([
1

]
)(

[)]([


  

3.1232 

Calculating inverse FFT  of  

[F(d^)] 

2.3154 

 

Thus, total number of MROPS for calculation efficient multiuser (joint) detection is 65.02 MROPS.  Here  [AH
r] is calculated 

directly as a matrix-vector multiplication. 

 

If  FFTs are used to calculate [AH
r] (using equation (36)), the computational complexity reduces from 65.02 to 63.99 MROPS.  

Though this reduction is not significant in the case  
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of this novel fast joint detector, using equation (36) gives significant computational advantages over direct matrix-vector 

multiplication  in the case of FFT based single-user detection algorithm SDFFT. Also, if a LU decomposition is used to determine 

[ Λ (k)]-1, (using equations (38)-(40)),   the calculation load of the novel FFT-based joint detector reduces to 54.87 MROPS. 

 

A comparison of the complexity of fast joint detection and other detection techniques is now shown. The comparison of the 

following three data detection techniques for a TDD Burst Type I with SF = 16 and K =8 is given below. 

 

Technique MROPS 

Approximate Cholesky based 

Joint Detector (JDChol) 

82.7 

Single User Detection: 

Approximate Cholesky based 

Equalization followed by a 

Hadamard transform based 

De-spreading  (SDChol) 

205.23 

Fast Single User Detection: 

FFT based (SDFFT) 

69 

Fast Joint Detector (JDFFT) 54.87 

 

The complexity of SDChol is much higher than JDChol, because it involves chip level equalization. If for higher data rates, there are 

12 codes of SF =16 each, the complexity of JDChol is 177 MROPS while the complexity of JDFFT is 90 MROPS, which is about 

50% reduction in complexity.  

 

IV. D. Comparison with Single User Detection  

 

Performance of five algorithms will be compared for the downlink of a TD-CDMA system: 

 

1)  Approximate Cholesky based Joint Detector, denoted by JDChol,  2) Single User Detection:  Approximate Cholesky based 

Equalization followed by Despreading,  denoted by SDChol, 3)  Single User Detection:   FFT based Equalization followed by 

Despreading, denoted  by  SDFFT , 4)  Matched Filter based Joint Detector denoted by  MF, 5) FFT Based Joint Detector introduced 

in this paper, denoted  by  JDFFT. 
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JDChol is obtained by the application of approximate Cholesky based method in [3] to the joint detection problem in equation (6). 

The performance of the algorithms, in the multipath channels specified in TDD standards [1], is now analyzed. It will be seen in the 

simulations that single user detection algorithms like SDFFT, SDChol suffer from appreciable degradation in performance, compared 

to joint detector algorithms (JDChol, JDFFT)  in some multipath channels. The degradation in performance of a FFT based single 

user detection algorithm (SDFFT) can be attributed to two factors 

 

1. Degradation due to single user detection framework: In  single user detection in the downlink, a mobile unit only uses its spreading 

code for decoding the data. This has an advantage in that there is no need to estimate the codes for the other users (referred to as 

blind code detection). However, this leads to a degradation in its performance, compared to joint detectors, which uses information 

about the spreading codes of all the users in its data estimation [2], [5].  

 

2. Degradation due to using a FFT approximation: 

The degradation in performance, due to the FFT approximation , can be  quantified from equations (7) and (10). The number of 

block-rows of R, that is outside the block-circulant structure, is equal to 2L, where L is the multipath delay spread (in symbols). 

When the maximum delay L of  multipaths is small, the matrix R is close to being a circulant matrix. As the maximum delay L in the 

multipath profile increases (for a given power of the multipaths), the matrix R loses its circulant matrix, with 2LK of its rows 

deviating R from its circulant structure (this will be more relevant for Case 2 channel, as seen later).  

 

The performance of the algorithms in different multipath channels is now analyzed. 3GPP Working Group 4 has specified multipath 

profiles of various fading channels. These multipath profiles are denoted by tddWg4Case1, tddWg4Case2 and tddWg4Case3. Case 1 

and Case 3 channels have multipaths within 5 or 6 chip intervals. Case 3 channel is however a rapidly fading channel, the mobile 

speed being 120 km/hr.  Case 2 channel however has equal power multipaths at delays of 1, 5 and 47 chips; the mobile speed is 3 

km/hr.  

First, the performance of the FFT based joint detector in this paper is compared to that of the  approximate Cholesky based joint 

detector JDChol  [2], [3].  Simulations indicate that for Case 1 and Case 3 channels,  the  JDFFT algorithm performs exactly the same 

as JDChol algorithm, at much reduced complexity.  This is because in Case 1 and Case 3 channels, the multipath delays being small 

(i.e. W and L are small), the degradation due to the block-circulant approximation is very small (as explained above). Case 2 channel 

however has equal power multipaths with long delays, (i.e. W and L are large), which prevents the R from being block-circulant by a 

large margin. As mentioned earlier, the fraction of non-circulant rows in R  is )/2( sNL , which means that the fraction of non-
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circulant rows in R, for Case 2 channel (with a fixed number of symbols sN ), is more than that for Case 1 and Case 3 channels. Thus 

the degradation in performance for Case 2 channel (relative to JDChol)  is appreciable (as seen from simulations). Simulations 

indicate that even for equal power multipaths, if the maximum delay spread L is reduced, the performance of JDFFT improves. 

 

Single user detection algorithms also suffer from degradation due to factor number one. For this reason, performance comparisons 

are made with Cholesky based single user detector SDChol. The SDChol is shown only to illustrate the degradation due to factor 

number one only,  as SDChol  is not affected by the degradation due to the FFT approximation. It is seen that the performance of 

SDChol shows appreciable degradation, compared to JDChol as well as JDFFT.  Comparisons are also made with FFT based single 

user detection algorithm SDFFT. This algorithm (though of reduced complexity) suffers from both the degradation due to single user 

detection framework, as well as due to the FFT approximation. Its performance is worse than  JDChol, JDFFT and SDChol.  

 

The development of JDFFT in this paper and [4] was motivated by the need to remove factor number one for degradation in 

performance, while achieving reduction in complexity as compared to JDChol.   

 

V. Simulation Results 

 

The performance of JDFFT, JDChol, SDChol, SDFFT along with matched filtering (MF), for the parameters of Burst Type I,  is 

illustrated in the following plots. Channels specified by the WCDMA TDD specifications [1] were tested. For the approximate 

Cholesky based joint detector and the FFT based Joint Detector, it was assumed that the spreading codes of all the users are known. 

In general, the joint detector algorithms have to estimate the spreading codes of the other users, which adds to the complexity. All the 

simulations are for the downlink situation (without any transmit diversity). Simulation results are provided for the following cases. 

The simulations were performed over 800 timeslots. 

 

 In the first case, with spreading factor SF = 16 and number of users (codes)  K = 8,  Figures 2,  3  and 4 show the un-coded Bit Error 

Rate (BER) for Case 1, Case 3 and Case 2 channels respectively. For both Case 1 and Case 3 channels,  the performance of JDFFT is 

very close to JDChol, which, for example, is a standard algorithm used in WCDMA TDD standard.  Under the ``Single User 

Detection” (SUD) category, even the Cholesky based SDChol, exhibits quite a bit of degradation compared to JDChol and JDFFT 

algorithms. FFT based single user detection SDFFT performs even worse.    

 

Case 2 channel is characterized  by equal power multipaths at delays of 1 and 5 chip intervals, and at a significant delay of 47 chip 

interval.  A modification to the Case 2 channel has  equal power multipaths at delays of 1, 5  and 9 (instead of 47) chip intervals. The 
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simulation results are shown in Figure 5, where it is seen that JDFFT exhibits less degradation (with respect to JDChol) than in 

Figure 4, thereby illustrating that FFT based algorithms are susceptible to channels with multipaths at long delays.  

 

The fast joint detector in this paper is suitable for higher sampling rates. Simulation results are provided, for oversampling by a factor 

of 2 and for high data rate services (2 Mbps data service) in Figures 6-8. Simulations also indicate that using a 64 point block FFT 

gives better performance than using a 61 point block FFT. 

 

VI. Conclusions 

 

The single user detection method has an advantage in that it requires only the spreading code of the particular mobile unit at the 

downlink. It therefore obviates the need for blind code detection at the downlink of a TDD system. In this paper, a novel fast joint 

detector, based on block-FFT, is developed,  which requires spreading codes of all the users. The novel JDFFT algorithm performs 

very close to JDChol, at much reduced complexity. Also JDFFT also shows a significant improvement in performance over single-

user detection algorithms (SDChol and SDFFT), at lower complexity.  FFT based joint detector (JDFFT) is thus a good choice in a 

TDD system and can be employed to  deliver high data rate service in the downlink. The JDFFT algorithm can also be used for 

uplink applications. The novel method can also be applied to any generic multiple-input-multiple-output (MIMO) system like [18], 

[19]. 
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Figure 2 Case 1 channel,  SF =16, K=8. 

 

 

 

 

 

Figure 3  Case 3 channel,  SF =16, K=8. 

 

 

Figure 4   Case 2 channel, SF =16, K=8. 
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Figure 5   Modification  of  Case 2 channel,  SF =16, K=8. 

 

 

 

Figure 6    Oversampled case, Case 1 channel. High data rate service. 
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Figure 7    Case 2 channel, SF =16, 12 codes, High data 

               rate service.  Oversampled case.   

 

 

 

Figure 8 Case 3 channel,  

SF =16, 12 codes, High data rate service.   Oversampled case.           

 

 


