
Integrating virtual worlds with Learning Management Systems: the MULTIS
approach

Leonel Morgado
INESC TEC and Universidade Aberta

Coimbra, Portugal
leonel.morgado@uab.pt

Hugo Paredes, Benjamim Fonseca, Paulo Martins
INESC TEC and UTAD, Universidade de Trás-os-

Montes e Alto Douro
Vila Real, Portugal

{hparedes,benjaf,pmartins}@utad.pt

Álvaro Almeida, Andreas Vilela, Bruno Pires,
Márcio Cardoso

UTAD, Universidade de Trás-os-Montes e Alto Douro
Vila Real, Portugal, Country

Filipe Peixinho, Arnaldo Santos
Altice Labs

Aveiro, Portugal
{filipe-peixinho,arnaldo}@alticelabs.com

Abstract— Learning Management Systems (LMS) provide
minimal support for educational use of virtual worlds.
Integration efforts assume the educators are inside the virtual
world, providing hooks to services in the external LMS, to
setup and manage virtual world activities. We present the
inverse approach, enabling educators to setup and manage
virtual world activities using the traditional LMS Web
interface as an integral part of the overall educational activities
of a course. In our approach, the LMS enables the
teacher/trainer to setup, control, track, and store virtual world
activities and its elements. It is the result of a joint effort by
academic and corporate teams, implemented in the Formare
LMS for OpenSimulator and Second Life Grid virtual world
platforms. We explain how the Multis architecture can be used
for integration, with concrete cases, an approach that can be
implemented in other LMS and virtual world platforms, to
overcome the limitations of existing systems for organizational
management of e-learning activities.

Keywords- LMS; virtual worlds; integration; OpenSim; SL

I. INTRODUCTION
Lack of integration between carrying out and setting

up/managing educational activities in virtual worlds was
identified as a factor hampering the widespread deployment
of virtual worlds in education and training [1]. To set up and
manage the activities in these environments, teacher/trainers
must deal with an encumbering variety of administrative and
technical tasks: login credentials managed separately;
trainee/student tracking setup in the virtual world done by
the teacher/trainer, and linked back to the learning
management system (LMS); object repositories need to be
managed in the virtual world by teachers/trainers with no
connection with other learning materials stored in the LMS;
the list goes on and on.

Our perspective is that this status of virtual worlds use in
education and training sees each teacher/trainer as an island,
isolated from modern organizational information systems
and support services. That is, each teacher/trainer needs to

technically set up the virtual world space and its activities
and then sort out any connection plug-ins with other systems.
Either that or at least worry about having a technical team to
do all these tasks. And technical teams within
education/training institutions may see that as an offshoot:
even for technicians, virtual world management is not as
streamlined as one would expect from a core operational
information system.

Our approach inverts this perspective: teachers/trainers
should be able to specify and supervise educational activities
in virtual worlds as a seamless part of their overall teaching-
learning plan, without the need of custom technical
interventions. Just as they do, in fact, in traditional e-learning
platforms: their concern should be with the
educational/training content and dynamics, not with the
technical/computational issues. To realize this perspective,
we conducted a software engineering research effort, using
as a prototype the integration of Second Life Grid (SLG) [2]
and OpenSimulator (OpenSim) [3] platforms into a
corporate-oriented LMS system, Formare [4].

In this paper, we demonstrate the use of the software
architecture named Multis [5], which we developed for this
purpose, by providing operational details. The architecture
and prototype were developed for SLG/OpenSim virtual
worlds and the Formare LMS, but the overall approach holds
the potential for expanding as a generic approach to integrate
virtual worlds/serious games with LMS platforms in general.

II. RELATED WORK

A. Integration requirements
While the literature provides extensive documentation of

virtual world use in education and training [6], typically only
the actual virtual world activities are reported. There are
some integration efforts, summarized in the next section, but
few actual accounts or surveys of integration requirements
with other educational systems, including LMS [7]. We
recently determined a set of such requirements, by
conducting content and thematic analysis of documents

2016 15th International Conference on Ubiquitous Computing and Communications and 2016 8th International Symposium

on Cyberspace and Security

978-1-5090-5566-1/21 $31.00 © 6021 IEEE

DOI 10.1109/IUCC-CSS.2016.30

167

produced during four years of cooperation between academia
and industry (e-learning provider). The results were 39
requirements and 54 sub-requirements, each supported by
individual instances of documentation that originated it, and
organized under 9 categories and several subcategories
(ibid.). In Table I we present these categories, for the
convenience of the reader.

TABLE I. INTEGRATION REQUIREMENTS – CATEGORIESa

Cat. Subct. Description

C1 - Privacy of training sessions

C2 - Record and replay behaviors of actors and other elements

‘’ C2.1 Recording the full events of a 3D session or generic
3D space

‘’ C2.1.1 Recording the behaviors of other elements

‘’ C2.2 Replaying the full events of a 3D session

‘’ C2.2.1 Replay the events in 3D

‘’ C2.2.2 Replay the events in 2D

C3 - Support for virtual world content development

‘’ C3.1 3D space features manageable independently

‘’ C3.2 Support for at least 31 concurrent users

C4 - Automated support for Administration

‘’ C4.1 Automated support for the administrative flow

‘’ C4.1.1 Tools/methods to track deployment & user
adoption

‘’ C4.2 Federated authentication, LMS/virtual world
platforms

‘’ C4.2.1 LMS users may use preexistent SL/OpenSim
usernames

C5 - Automated support for trainers and trainees

‘’ C5.1 Specific-purpose applications to support trainers and
trainees

‘’ C5.2 Trainer should have control over trainee's audio

‘’ C5.3 Orientation support for trainees

‘’ C5.4 Ability to manage access to interaction with 3D
objects

‘’ C5.5 Alternative avatar appearance identification features

‘’ C5.6 Support for training about the use of virtual worlds

C6 - Access to the LMS data and services in the 3D space

C7 - Integration of virtual world data in the LMS

‘’ C7.1 LMS accepts choreographies provided by trainees or
trainers

‘’ C7.2 LMS accepts 3D models provided by trainees or
trainers

‘’ C7.3 Ability to annotate the raw data from a session
recording

C8 - LMS must be the source of control and management over
educational activities in virtual worlds

C9 - Alternatives for voice communication in the 3D platform
a. Source: [7].

B. Integration efforts
Possibly the best-known effort for integration of

SL/OpenSim virtual worlds and LMS is the SLOODLE
project [8], which employed Moodle [9] as the focus LMS
platform, and has over 10 years of development, providing a
large array of integration features and tools [10]. But there
have also been other, short-lived projects. For instance, the
BbSL project, developed in 2008-2009, aimed to “manage,
administrate and facilitate any hybrid Second Life /
Blackboard Learn instructional experience” [11], or a
special-purpose LMS called Vushi, whose website was
active between 2010-2012 (acc. Internet Archive Wayback
Machine, [12]), but some of its features and operation can
still be seen in its YouTube channel, which remains available
at the time of writing of this paper [13].

Other efforts focus on specific issues, rather than overall
integration. For instance, tracking attendance [14],
orchestrating avatar choreographies [15], or responding to
control requests issued from virtual world scripts [16]. In this
regard, there are similarities with the field of remote physical
laboratories, where efforts have been made to orchestrate
collaboration [17] and current concerns include federating
authentication and conducting laboratory tasks under control
of the LMS [18].

Both SLOODLE and the shorter-lived BbSL and Vushi
projects have in common a perspective centered on the
virtual worlds, not on the LMS: the trainer needs to set up
tools and features within the virtual world and these can then
be linked to the LMS, to access the information stored there.
For example, these are SLOODLE’s instructions for using its
presenter tool [19]:

“To setup the presenter:
1. Create a Presenter Activity on your moodle

website
2. Create your slideshow, by adding images, or

webpages, or videos as links in the bottom section
3. once complete, rez a presenter in Second Life
4. Click on it, to authenticate it with your moodle

website
5. Once its (sic) been authenticated, click on the

presenter again, to download the saved
configuration

6. If the land is owned by a group, you must deed the
presenter to that group

7. Once the Presenter has been deeded, it will
automatically (…) after 5 minutes. If you don't
want to wait 5 minutes for it to check if it has been
deeded or not, you can just touch the Presenter
for it to jump to the next step.

8. Now your presenter is ready.
9. Press play on your media settings.
10. You should now be able to see your presentation”

All steps between 3 and 7 are in effect technical setup
issues of the virtual world platform that the trainer should not
have to deal with, since they take up time and effort. This
perspective on integration sees the virtual world platform as
the central point for managing the educational activities, with

168

the LMS being a secondary external service, hence we call it
virtual-world-centric. We propose adopting an LMS-centric
perspective, where the LMS is central point for managing the
educational activities, of which the virtual world is but one
location. Following this perspective, a presentation activity,
once created on the LMS, should be ready and available for
the trainer/teacher and trainees/students to use within the
virtual world. This is a reflection of several requirements’
categories of Table I, such as categories C5-C8.

Our approach aimed to enable the LMS to conduct within
a virtual world platform the kind of set up actions that
trainers typically have to do themselves when using
approaches such as SLOODLE. This could be achieved by
custom development, but that would couple the LMS code
with the code of the virtual world platform. That would tie
the LMS to a customized version of a virtual world platform,
rather than enable it to keep up with the ever-changing
diversity of platforms that have emerged and are emerging
regularly. Therefore, our approach, dubbed Multis (the name
of the project where it was created), took advantage of the
fact that virtual worlds as a core feature enable remote users
to login and interact with the world. While in game-oriented
worlds this interaction can be quite limited, in creation-
oriented worlds such as those supported by SLG or OpenSim
platforms it can achieve most of the necessary setup tasks.
Instead of laying these tasks on users, as in SLOODLE,
BbSL, Vushi or other systems, the Multis software
architecture enables LMS systems to spool a pool of
automated clients, known as ‘bots’, to perform the tasks a
user would. Trainers/trainees use the LMS interface and the
LMS can use this Multis bot-spooling approach to conduct
any associated setup tasks. This software architecture,
particularly its bot-spooling approach, was presented in an
earlier paper [5], and is summarized in section III.A.

III. THE MULTIS APPROACH

A. Overall architecture
As mentioned above, the bot-spooling approach used in

the Multis architecture aims to allow LMS systems to be

integrated with a large diversity of virtual world platforms
and serious games, without requiring custom development
on the virtual world side. That is, to enable integration even
if they do not provide application programming interfaces
(APIs) or other services for external systems. As we put
forward in our seminal paper on the Multis architecture, “any
online virtual world platform needs to provide login systems
for clients. Thus, an LMS system can log into the virtual
world platform (…) using automated clients” [11], typically
known as ‘bots’. In order to avoid bottlenecking systems
integration through a single bot, we then introduced the bot-
spooling approach.

Fig 1 presents the Multis architecture. The general LMS
functions are represented in the “LMS logic” module. When
a virtual world task needs to be performed, this module sends
a request to the “Bot scheduler” module, which chooses an
appropriate bot. The request is then converted into bot
commands, issued to the “Bot logic” module, which keeps
track of running code threads and open connections with the
virtual world for controlling the ‘bot’ avatars, represented in
the figure as the “Avatar/Bot” module inside the virtual
world server. The bot logic module then carries out the
commands with the bot chosen by the scheduler module.

While bots enable the Multis architecture to circumvent
the lack of an API, the architecture can also take advantage
of the existence of such an API or some other level of
interconnection services provided by the virtual world
platforms. Some platforms even allow users or
administrators to provide code add-ons that can
communicate with external systems. For instance, in SLG
and OpenSim, end-users can provide scripts for virtual world
elements with Web-based communications capabilities. For
this reason, the MULTIS architecture foresees interfaces
both for bot-mediated actions and for other forms of
interconnection (Fig. 1). The following section explains how
to use this architecture.

B. The four problem/solution vectors
Using the MULTIS architecture, we addressed the

requirements presented in section II.A under four

Figure 1. The MULTIS architecture (from Morgado et al. [5])

169

problem/solution vectors, which we describe briefly. While
the problems are generic, the proposed solutions are based on
SLG/OpenSim virtual worlds.

Problem Vector 1: storage of proprietary virtual
world content in the LMS. There are quasi-interchangeable
formats for content such as 3D models and skeletal poses,
but often content is proprietary, such as SLG/OpenSim link
sets (i.e., groups of objects), scripted objects, avatar clothing,
and more. Solution: we employ automated avatars as data
stores for the LMS. The LMS has the credentials for these
avatars and controls them programmatically to receive or
pickup proprietary formats.

Problem Vector 2: placing LMS-stored virtual world
content in the virtual world. Once the proprietary content
is within the bot data store, it will need to be placed in the
world for users. Solution: from problem-solution vector 1,
bots act as data stores for the LMS. When necessary,
commands are issued to the bot spool as requests, and
assigned to a bot, which will log into the virtual world and
place the requested content. If necessary, bots being part of
the data store exchange content among them
programmatically.

Problem Vector 3: receiving virtual world events and
data in the LMS. In order to log data, respond to events and
in general update the system status, the LMS must receive
notification of events and collect data. Solution: we
deployed a two-pronged approach. When speed of data
collection or event reporting isn’t critical, we use scripts in
objects reporting data and events to Web services in the
LMS. These scripts can be part of user interaction objects
(placed using the vector 2 solution), part of specific invisible
objects (id.) or injected into objects as necessary (see vector
4 solution, ahead). When data collection requires more
timely responses, the LMS assigns a data collection request
to the bot spool (see vector 2 solution). When virtual world
platforms provide APIs, their services can be categorized
according to their timeliness and combined with these two
approaches.

Problem Vector 4: use the LMS to control the
behavior of the virtual world. Following the requirements
list [7], there is a plethora of situations were settings need to
be adjusted, be it creating/deleting private voice chat groups,
changing training room features, changing interaction
permissions, resetting tools, and more. Solution: the LMS
issues the necessary tasks to the bot spool, which then
employs the bots to achieve them. This includes adding
objects, injecting scripts, issuing private channel parameters
and more. A complementary approach when timing is
flexible is to have some scripts issue events to LMS Web
services keeping the simulation/class state, and decide on
necessary outcomes. If these are achievable through
parameter passing, the LMS Web services respond with
those, and the response can also include commands to be
relayed to other scripts. This is the Pinheiro et al. method
[16].

IV. USING THE PROBLEM/SOLUTION VECTORS TO
IMPLEMENT SPECIFIC FEATURES

The list of requirements [7] is quite extensive, so we
selected three cases to clarify how the problem-solution
vectors were used to implement specific features, with the
core concern of keeping the LMS Web interface at the helm
of decision-making and the place where trainers go for
control of the virtual world sessions and activities. In Table
II, we summarize how each case demonstrates the use of the
solution vectors.

TABLE II. SAMPLE CASES AND SOLUTION VECTORS EMPLOYED

Case Requirement Solution Vectors

1 Training session space features
specifiable on creation

Solution Vector 1
Solution Vector 2

2 3D objects should have user role-based
permissions Solution Vector 3

3 Recording actors’ behaviors as a 3D
choreography Solution Vector 4

A. Case 1: requirement R2f-2 (ibid.), “Training session
space features specifiable on creation”
In this case, ‘features’ can be simple items, such as

chairs, or interactive elements, such as voting booths,
simulators or games. One such element is a presenter tool for
virtual world slideshows, which we will use in this paper for
clarity, so that readers can compare it with the operation of
the SLOODLE presenter tool, described in section II.A.
Figure 2 show two such spaces we created. Both have
slideshow panels on the right side.

Figure 2. Training spaces with simple items and interactive elements

Typically, virtual world presenters employ a pair of
interactive objects: a control board and a display. Instead of
having the trainer or a support person create them manually
in the virtual world, we used solution vector 1 and stored

170

these objects in the LMS, in the bot data store. When a
trainer specifies in the LMS Web interface that a slideshow
is required for a session, we use solution vector 2: before the
session starts, two requests are issued by the LMS to its bot
spool, each one for the placement of each object. The LMS
knows the virtual world coordinates of the session space,
since it was also created by the LMS when the teacher/trainer
requested it in the LMS Web interface. Therefore, to create
the presenter, the LMS logic, includes the coordinates in the
requests it issues to its bot spool. The LMS bot spool logic
then selects the bots, logs them into the virtual world
platform, and accomplishes the setup of the slideshow
display and control board.

B. Case 2: requirement R2g-6 (ibid.), “3D objects should
have user role-based permissions”
In this case, ‘permissions’ are typically related to the kind

of interactions that a participant can have with a 3D object.
One such object might be the slideshow control board of the
previous case. Suppose it may only be controlled in the
virtual world by the trainer or by a student that is currently
presenting. Roles are a LMS-specific logic (trainer, student,
presenter, etc.), independent from the actual virtual world
platform. The trainer edits the roles for a session in the Web
interface, and the virtual world behavior must comply.

Figure 3 presents part of such a LMS Web page: each
line deals with a different user. We cropped usernames, but
the center column (heading: “Perfil”, meaning “profile”)
identifies their roles as Tutor or student (“Aluno”) for a
course. For a given virtual world session, the Status column
allows the trainer to specify each user’s role for that session,
and likewise for specific objects: Moderator, Participant, or
Non-Participant (“Não Participante”). The remaining buttons
are for convenience (e.g., “todos moderam”, meaning “all
can moderate”) or for other features not discussed in this
paper (e.g., “repor avatar”, meaning “reset avatar”).

Figure 3. LMS Web page details for managing roles in the virtual space.

Translations are provided in the text.

In this case, we used solution vector 3: the interaction
script in the slideshow control board, when touched by an
avatar, issues an event to a Web service in the LMS, which
matches avatar ID with LMS user ID, decides whether that
user has the adequate role to use the board and responds
accordingly (allowing or disallowing the interaction). The
board script then uses the response to ignore the usage
attempt or to respond to it.

C. Case 3: requirement R2a (ibid.), “Recording actors’
behaviors as a 3D choreography”
In this context, ‘actors’ are any participants in a virtual

world training session or class, regardless of whether they

are human-controlled or computer-controlled. And
‘choreography’, in this case, is the set of actions that
participants have performed, including not only their
motions, but their conversation, their interaction with virtual
elements, and other aspects, such as facial demeanor, body
gestures, etc. For instance, supposing one is conducting a
training session with a role-play situation, the recording of
actors’ behaviors as a choreography should enable a later
review of the performance and events, supporting reflecting
learning approaches per methods such as after-actions review
[20].

This can be achieved by employing a combinations of
data collection methods. Silva et al.'s approach [15] is
striving to make this independent from the LMS and other
information systems, by describing these methods in
ontologies and creating a managing system separating the
LMS from the concerns of data acquisition. But this
separation is beyond the scope of the current paper. Here we
demonstrate how the LMS can be integrated with specific
platforms – OpenSim or SLG – enabling it to operate
without end user intervention.

In OpenSim or SLG, choreography data can be collected
by a combination of methods: scripts in objects can detect
interaction and report it as event to LMS Web services
(employing solution vector 3) or even detect the presence
and location of user avatars, if timing isn’t critical (e.g., for
tracking attendance [14]). LMS-controlled bots can collect
live data about the behavior of other avatars, such as users,
for more time-dependent cases. In both cases, we are
employing solution vector 4. Since the LMS manages the
session and the virtual space, it knows which objects are
present. When the trainer requests the recording of a
choreography, the LMS can use both approaches. For
instance, it can issue requests to the bot spool to inject an
event-reporting script into each object or to use bots to
collect live data. When the teacher/trainer requests the
choreography recording stops, the LMS again issues the
necessary requests to its bot spool: deleting the injected
scripts and logging out the data-collection bots.

Notice that the same solution vector 4 can also be used to
setup live data collection bots adequately. For instance,
“dressing” bots as invisible avatars, or locating them beyond
the visual reach of default user cameras (but still within
tracking distance) [21]. Or conversely, by dressing them as
video-recording operators or as “You are being recorded”
signs.

V. CONCLUSIONS
The provided solution vectors have been devised from

research using the OpenSim/Second Life Grid technological
ecosystem, and hence bear some dependencies to it.
Notwithstanding, the core control aspects of each case take
place in the LMS, outside the virtual world and independent
from it: knowing the state of session content, participants,
roles, enabled features, etc. While other platforms don’t
provide such a powerful range of interaction capabilities to
users (and hence bots), there are often alternatives that can
follow the same rationale. For instance, HighFidelity [22]
enables remote execution of scripts, rather than inside its

171

servers; Activeworlds [23] enables developers to link
automated clients to collect data and provide interaction. The
bot spool approach could, conceivably, be expanded to use a
variety of such interaction approaches, abstracting the
complexity from the core LMS control processes. That is,
expanding to the overall interaction process the proposal by
Silva et al. for storing and replaying avatar choreographies
across different virtual world platforms [15].

This approach was implemented and tried out in a large-
scale training course for a major telecommunications
operator in Brazil. While there are no published accounts, we
can testify that it was technically sound and operational, but
curtailed by the need for massive teacher/trainer and
student/trainee training in the use of virtual worlds. Hence
we alert the reader for the need to combine the technical
solution presented in this paper with a wider
educational/training framework for deployment. Field
research with end users is needed to improve and refine this
architecture and indeed the requirements from which it
emerged.

Finally, while the approach was designed for virtual
world platforms, it may also hold potential for integration of
serious games in LMS. Currently, serious games
development is disconnected from LMS in much the same
way virtual worlds were, but we hope efforts such as the our
own described herein help map a path towards the full
integration of not only virtual worlds but also serious games
in LMS, and from that enable more widespread use of these
technologies in education and training.

ACKNOWLEDGMENT
Project "TEC4Growth - Pervasive Intelligence,

Enhancers and Proofs of Concept with Industrial
Impact/NORTE-01-0145-FEDER-000020" is financed by
the North Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership
Agreement, and through the European Regional
Development Fund (ERDF).

REFERENCES
[1] L. Morgado, B. Manjón, and C. Gütl, “Guest editorial: overcoming

the technological hurdles facing virtual worlds in education: the road
to widespread deployment,” Educational Technology & Society, vol.
18 (1), 2015, pp. 1-2.

[2] Second Life Official Site - Virtual Worlds, Avatars, Free 3D Chat.
http://secondlife.com

[3] OpenSimulator, http://www.opensimulator.org
[4] Formare, http://www.formare.pt
[5] L. Morgado, H. Paredes, B. Fonseca, P. Martins, Á. Almeida, et al.,

“A Bot Spooler Architecture to Integrate Virtual Worlds with E-
learning Management Systems for Corporate Training,” Journal of
Universal Computer Science, vol. 22 (2), 2016, pp. 271-297.

[6] R. Ghanbarzadeh, A. Ghapanchi, M. Blumenstein and A. Talaei-
Khoei, “A decade of research on the use of three-dimensional virtual
worlds in health care: a systematic literature review,” Journal of
Medical Internet Research, vol. 16 (2), 2014, e47.

[7] L. Morgado, H. Paredes, B. Fonseca, P. Martins, R. Antunes, et al.,
“Requirements for the use of virtual worlds in corporate training -
Perspectives from the post-mortem of a corporate e-learning provider
approach of Second Life and OpenSimulator," iLRN 2016 Santa
Barbara - Workshop, Short Paper and Poster Proceedings from the
Second Immersive Learning Research Network Conference, Santa
Barbara, CA. USA. Graz, Austria: Technischen Universität Graz,
2016, pp. 18-29.

[8] J. Kemp and D. Livingstone, “Putting a Second Life «Metaverse»
Skin on Learning Management Systems,” Proceedings of the First
Second Life Education Workshop, Part of the 2006 Second Life
Community Convention, August 18th-20th 2006, Fort Mason Centre,
San Francisco. Paisley: University of Paisley, 2006, pp. 13-18.

[9] Moodle - Open-source learning platform | Moodle.org,
https://moodle.org/

[10] Sloodle User Documents - SLIS Second Life Wiki,
https://www.sloodle.org/docs/Sloodle_User_Documents

[11] J. Fillwalk, interview reported by G. Werner in “Online toolset will
allow educators to maximize use of Second Life and Blackboard,”
https://apps.bsu.edu/CommunicationsCenter/Story.aspx?CategoryID=
81&MessageGuid=FB31E866-0086-4089-8728-
CF2BDD88549C&OptIn=Y

[12] Internet Archive Wayback Machine, “http://vushi.org,”
https://web.archive.org/web/20120715000000*/http://vushi.org/

[13] vushination, https://www.youtube.com/user/vushination
[14] A. Madeira, P. Sequeira, L. Morgado, amd L. Gonzaga, “Controlo da

Assiduidade em Aulas Efectuadas no Second Life,” RISTI - Revista
Ibérica de Sistemas e Tecnologias de Informação, vol. 5, 2010, pp.
87-100.

[15] E. Silva, N. Silva, and L. Morgado, “Model-Driven Generation of
Multi-user and Multi-domain Choreographies for Staging in Multiple
Virtual World Platforms,” Model and Data Engineering, 4th
International Conference, MEDI 2014, Larnaca, Cyprus, September
24-26, 2014. Proceedings. Cham, Switzerland: Springer International
Publishing, 2014, pp. 77-91, doi: 10.1007/978-3-319-11587-0_9.

[16] A. Pinheiro, P. Fernandes, A. Maia, G. Cruz, D. Pedrosa, et al.,
“Development of a mechanical maintenance training simulator in
OpenSimulator for F-16 aircraft engines,” Entertainment Computing,
vol. 5 (4), 2014, pp. 347-355, doi: 10.1016/j.entcom.2014.06.002.

[17] B. Jailly, C. Gravier, M. Preda, and J. Fayolle, “Interactive mixed
reality for collaborative remote laboratories,” MTDL '11 Proceedings
of the third international ACM workshop on Multimedia technologies
for distance learning. ACM, 2011, pp. 1-6, doi:
10.1145/2072598.2072600.

[18] Z. Al-Khanjari and Y. Al-Roshdi, “Developing virtual lab to support
the Computer Science Education in Moodle,” 2015 12th International
Conference on Remote Engineering and Virtual Instrumentation
(REV). IEEE, 2015, pp. 186-191, doi: 10.1109/REV.2015.7087290.

[19] SLOODLE Presenter - SLIS Second Life Wiki,
https://www.sloodle.org/docs/SLOODLE_Presenter

[20] J. Morrison and L. Meliz, “Foundations of the After Action Review
Process,” Special Report 42. Washington, DC, USA: United States
Army Research Institute for the Behavioral and Social Sciences,
1999.

[21] A. Vilela, M. Cardoso, D. Martins, A., Santos, L. Moreira, et al.,
“Privacy challenges and methods for virtual classrooms in Second
Life Grid and OpenSimulator,” 2010 Second International
Conference on Games and Virtual Worlds for Serious Applications
(VS-GAMES). IEEE, 2010, pp. 167-174, doi: 10.1109/VS-
GAMES.2010.30.

[22] High Fidelity. https://highfidelity.io/
[23] ActiveWorlds: Home of the 3D Internet since 1995.

https://www.activeworlds.com/

172

