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Maximum Likelihood Upper Bounds on the
Capacities of Discrete Information Stable Channels
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Abstract—Motivated by a greedy approach for generating infor-
mation stable processes, we prove a universal maximum likelihood
(ML) upper bound on the capacities of discrete information stable
channels, including the binary erasure channel (BEC), the binary
symmetric channel (BSC) and the binary deletion channel (BDC).
The bound is derived leveraging a system of equations obtained
via the Karush-Kuhn-Tucker conditions. Intriguingly, for some
memoryless channels, e.g., the BEC and BSC, the resulting upper
bounds are tight and equal to their capacities. For the BDC,
the universal upper bound is related to a function counting the
number of possible ways that a length-m binary subsequence
can be obtained by deleting n − m bits (with n − m close to
nd and d denotes the deletion probability) of a length-n binary
sequence. To get explicit upper bounds from the universal upper
bound, it requires to compute a maximization of the matching
functions over a Hamming cube containing all length-n binary
sequences. Calculating the maximization exactly is hard. Instead,
we provide a combinatorial formula approximating it. Under
certain assumptions, several approximations and an explicit upper
bound for deletion probability d ≥ 1/2 are derived.

Index Terms—Information Stable Channels; Channel Capacity

I. INTRODUCTION

THE information stable channels were introduced by
Dubrushin in [1]. Under the information stability condi-

tion, sufficiently, their capacities can be expressed as

C = lim inf
n→∞

1

n
sup
X

I (X;Y(X)). (1)

Essentially, a channel satisfies information stability is equivalent
to having the capacity expression above [2]. Preceding works
have considered a variety of more general frameworks, e.g.,
a formula for channel capacity [3] based on the information-
spectrum method; a general capacity expression for channels
with feedback [4]; general capacity formulas for classical-
quantum channels [5], to list just a few.

Despite the simplicity of the formula in (1), for some
channels with memory, explicitly computing the capacities
directly using the general formula is often not trivial. A famous
example is the binary deletion channel (BDC), which was
introduced by Levenshtein in [6] more than fifty years ago
to model synchronization errors. In his model, a transmitter
sends an infinite stream of bits representing messages over a
communication channel. Before reaching at a receiver, the
bits are deleted independently and identically with some
deletion probability d ∈ (0, 1). The receiver wishes to recover
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the original message based on the deleted bits, with an
asymptotically zero (in the length of the stream) probability
of error. The BDC satisfies the information stability [7]. Thus,
the channel capacity denoted by C(d) can be expressed via
the formula in (1). However, a precise characterization of
C(d) is still unknown; it does not seem even possible to
accurately compute the capacity numerically replying on the
existing methods, for instance, the Blahut-Arimoto Algorithm
(BAA) [8–10].

In this work, we consider discrete channels with finite
alphabets and derive a general upper bound (called the
maximum likelihood (ML) upper bound in Section III) on
the capacities of information stables channels by analyzing a
system of equations derived from the general formula in (1).
We demonstrate that for channels without memory, e.g., the
binary erasure channel (BEC) and the binary symmetric channel
(BSC). The corresponding upper bounds are tight for the BEC
and BSC and equal to their channel capacities. For channels
with memory, as a case study, we apply the ML upper bound
to derive (implicit and explicit) approximations for C(d), under
certain assumptions.

A. Background

A discrete channel with a finite alphabet can be regarded as
a stochastic matrix from an input space of all infinite-length
sequences to an output space containing all sequences that
can be obtained via the channel law. Formally, we follow
the approach in [11, 12] and define the transmitted and
received bit-streams via infinite processes. For each fixed
block-length n, there is a sequence of elements X

(n)
1 . . .X

(n)
n

selected from a finite set X , and there is a probability
distribution PXn over this sequence. Let X denote an input
process in terms of finite-dimensional sequences such that
X := {Xn = (X

(n)
1 , . . . ,X

(n)
n )}n≥1. Similarly, denote by

Y := {Ym = (Y
(m)
1 , . . . ,Y

(m)
m )}m≥1 with each Y

(m)
i in

a finite set Y the corresponding output process of finite-
dimensional sequences induced by X via the channel law
W := {Wn(·|·) : Xn → Ym}n,m≥1. So that

P (Ym = ym|Xn = xn) := Wn (ym|xn) .

Note that the block-length of received codewords m is not
necessarily equal to n, the block-length of the transmitted
codeword. Moreover, the output block-length m is allowed
to be flexible, meaning that it can be regarded as a random
variable with distribution specified by the channel law 1. In the

1Flexible output length allows us to apply this general framework to the
BDC later in Section IV.
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remaining part of this paper, we often omit the superscript m
in ym and Ym, to avoid confusion. This indicates the length
of the output sequence y is not fixed.

B. Outline of the Paper

The remaining content of the paper is organized as follows.
In Section II we give a simplified version of C(d), which is
derived from the capacity formula in (2) for information stable
channels. Based on it, we prove a general upper bound (the
ML upper bound in Theorem 1) on information stable channels
in Section III. Section III-C follows by verifying the tightness
of the ML upper bound for the BEC and the BSC. Next, in
Section IV, several approximations for the capacity of the BDC
are reported.

II. PRELIMINARIES

A. Notational Convention

We use log(·) to denote logarithms over base 2, unless stated
otherwise. Let Xn and Y denote the set of all possible length-n
sequences and the set of all induced output sequences (having
flexible lengths). Let N := |Xn| and M :=

∣∣Y∣∣. We use the
lowercase letter j to index the j-th length-n input sequence xnj ,
and the letter j to index the length-m output sequence ymi with
j = 1, . . . , N and i = 1, . . . ,M respectively. To distinguish
between random variables and their realizations, we denote the
former by capital letters and the latter by lower case letters, at
most of the places throughout this work2.

B. Capacity Proxies

For a fixed dimension n, we maximize the mutual informa-
tion between Xn ∈ Xn and Y ∈ Y in a way similar to defining
the “information capacity” for discrete memoryless channels
(DMCs) over the binary alphabet, to obtain the quantity:

Cn(W
n) :=

1

n
sup
Xn

I (Xn;Y (Xn)) (2)

where the supremum is taken over all Xn ∈ Xn with
distributions in the set

P
N :=

{
PXn ∈ RN : pj ≥ 0 ∀ j = 1, . . . , N ;

N∑
j=1

pj = 1
}
.

(3)

C. Information-stability

It turns out the quantity Cn(Wn) is asymptotically (in n) the
same as the operational capacity under the following condition
on channels, which is called information stability3.

2Except for the output length m, which is a random variable dependent on
the channel law.

3The way of classifying the channels that have an operational meaning with
the capacity expressions in (1.1) using a condition called information stability
was first introduced by Dobrushin and Guoding Hu [1, 2]. It was restated
and studied in many equivalent forms. For instance, in [11], information
stability was proved to be insufficient to classify whether a source-channel
separation holds or not. In [13], the expressions for optimistic channel capacity
and optimal source coding rate are given for the class of information stable
channels and similarly “information stable” sources respectively.

Definition 1 (Information Stability for Channels [1–3]). A
channel W is said to be information stable, if there exists an
input process X such that Cn(Wn) < ∞ for all sufficiently
large n and

lim sup
n→∞

P

{∣∣∣∣ iXn,Wn(Xn;Y (Xn))

nCn (Wn)
− 1

∣∣∣∣ > γ

}
= 0

∀ γ > 0

where iXn,Wn(xn;y) := log Wn(y|xn)
PY(y) denotes the informa-

tion density for all xn ∈ Xn and y ∈ Y . In other words, the
normalized information density 1

n iXn,Wn(xn;y) converges in
probability to Cn(Wn).

Intuitively, information stability characterizes the types of
channels in a manner similar to that the asymptotic equiparti-
tion property (AEP) characterizes stochastic sources. In fact,
information stability for a channel W implies the existence
of a class of corresponding input processes X such that X,
on being input to W, results in a near-optimal code. For the
case of discrete memoryless channels (DMCs), the operational
meaning of the single-letter quantity in Eq. (4) below appears
as a natural consequence of the law of large numbers. For
general channels, by considering the asymptotic behavior of
the information density taking on an optimal input process
X (which maximizes the mutual information), information
stability provides (with sufficient generality, for a broader
class of channels) an analogue of the law of large numbers.
Such an optimal input process X may be understood to be
equivalent to a sequence of codes that are capacity-achieving
asymptotically in the block-length n. The key idea relies
on classical achievability bounds (for instance, Feinstein’s
lemma [14], Shannon’s achievability bound [15]).

Dobrushin in [7] proved that BDCs are information stable as
defined in Definition 1. For an arbitrary fixed n, maximizing
I (Xn;Y (Xn)) in Eq. (2) gives an optimal input distribution
P ∗Xn . Through appropriate achievability results ( [14, 15]), it is
possible to construct an (n,M, λ)-code whose error probability
vanishes as n goes to infinity. In addition, the rate logM/n
approaches Cn(Wn) <∞ for sufficiently large n. Hence for
information stable channels, the capacities exist and can be
written as4

C = lim inf
n→∞

Cn(W
n) <∞. (4)

D. System of Equations for Optimality
Recall N := |Xn| and M := |Y|m.
Our approach focuses on bounding Cn(d). Expressing the

mutual information in terms of the channel law, the capacity-
proxy Cn(Wn) defined in (2) equals to

Cn(W
n)

=
1

n
sup
PXn

∑
x,y

p (x)Wn (y|x) log Wn (y|x)∑
x p (x)W

n (y|x)
. (5)

4Note that this limiting expression does not always hold for general channels.
For instance, consider one example in [3]: a binary channel with output
codewords equal to the input codeword with probability 1/2 and changed
independently of the input codewords with probability 1/2. The capacity of
this channel is 0 since the error probability is always strictly positive and
hence not vanishes. However, the formula in (4) gives 1/2.
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Here, the supremum is taken over all distributions
{p (x)}x∈Xn in the set PN (defined in (3)) and the summation
is taken over all length-n input sequences xj ∈ Xn and all
output sequences yi ∈ ∪mYm.

From an optimization perspective, the asymptotic behavior
of Cn(W

n) can be captured by establishing a sequence
of capacity-achieving distributions {P ∗Xn}n maximizing the
following quantity for each n ≥ 1:

N∑
j=1

M∑
i=1

pjW
n (yi|xj) log

Wn (yi|xj)∑N
j=1 pjW

n (yi|xj)
. (6)

Derived from the Karush-Kuhn-Tucker conditions, the fol-
lowing lemma generalizes Theorem 4.5.1. in [16] (cf. [17]),
which was established to find channel capacities of DMCs
with non-binary input/output alphabets. The lemma states a
necessary and cufficient condition of the existence of {P ∗Xn}n
maximizing (6) and it can be proved along the same line as
in [16]. The only difference is that for general channels, the
summation is taken over all sequences in Ym (this is in general
exponential in m). While for DMCs, the summation can be
decomposed and taken over the alphabet set of each individual
coordinate of the sequence, thus the number of summations is
linear in m. For brevity the proof is omitted.

Lemma 1 ([8, 9, 16, 17]). Fix a block-length n ≥ 1. There
exists an optimal probability vector P ∗Xn = (p∗1, p

∗
2, . . . , p

∗
N )

such that the quantity in (6) is maximized if and only if there
exists λn ≥ 0 and for all j = 1, . . . , N ,

1

n

M∑
i=1

Wn (yi|xj) log
Wn (yi|xj)∑N

j=1 p
∗
jW

n (yi|xj){
= λn if p∗j 6= 0

≤ λn if p∗j = 0
. (7)

Moreover the capacity C = limn→∞ λn if the limit exists.

Indeed, (see [16, 17]) a probability distribution for an
information stable source X satisfying (7) always exists as
n grows. Thus, the capacity-achieving distribution with fixed
block-length n can be attained by solving the system (7).
Finding such an optimal P ∗Xn for the system of equations (7)
is equivalent to solving a non-linear system of equations that
consists of exponentially (in n) many variables. As introduced
in Section I, the BAA is one of the algorithms that can be
applied to search for numerical solutions of (7).

However, this approach has several limitations. On the one
hand, in direct implementation of the BAA, as n grows, it
becomes computationally intractable even to store the variables
to be computed. One the other hand, as the BAA is itself
an iterative algorithm attempting to solve the non-convex
optimization problem (7), and to the best of our knowledge for
general channels, there are no guarantees on how quickly the
numerical solution converges as a function of the number of
iterations. Therefore, instead of looking for numerical answers,
we concentrate on finding a universal upper bound on the
capacities of general channels. This motivates the next section.

III. MAXIMUM LIKELIHOOD UPPER BOUND

In the sequel, we present some definitions. First, motivated
by the notion of information stability defined in Definition 1,
we characterize a subset of the joint set Xn × Y consisting
of all possible combinations of input and output sequences.
This subset satisfies two vital properties. First, it behaves as a
“typical set” and contains nearly all pairs of (xn,y) randomly
generated according to an arbitrary distributions PXn for every
large n. Second, conditioned on the pair (Xn,Y) belongs
to the subset, the conditional mutual information does not
differ too much from Cn (W

n). Note that the concentration
of information densities is stronger than that for information
stable sources in two perspectives – the concentration is in
expectation; and it is required to hold for every source X.

Definition 2. For information stable channels with any source
X, a subset A of Xn × Y is called a concentration set if it
satisfies

lim inf
n→∞

P ((Xn,Y) ∈ A) = 1, (8)

lim sup
n→∞

E

[∣∣∣∣ iXn,Wn(Xn;Y (Xn))

nCn (Wn)
− 1

∣∣∣∣ ∣∣∣ (Xn,Y) ∈ A
]
= 0

(9)

where the randomness is over the source X and channel law
W.

Later in Section III-C and Section IV-B1, we provide
concrete and nontrivial examples of the concentration sets
for the BEC, BSC and BDC respectively.

Since A ⊆ Xn × Y , the next lemma is straightforward.

Lemma 2. For each block-length n, there exists a subset B
of Y such that

A ⊆ Xn × B.

It is useful to introduce the following “constant” version
of the stochastic matrix W, called the stochastic factors
for convenience. Again, we will carefully construct them
in Section III-C for both the BEC and the BSC, and in
Section IV-B for the BDC.

Definition 3. We call a set of functions fk(·|·) : Ym ×Xn 7→
[0, 1] stochastic factors if there exists a decomposition of B =⋃
k∈K Bk (K is a discrete set) such that∑

y∈Bk

fk (y|x) = 1, ∀ x ∈ Xn, k ∈ K, (10)

∑
k∈K

max
(x,y)∈Ak

Wn (y|x)
fk (y|x)

≤ 1 (11)

where Ak := Xn × Bk.

Based on the concentration set and the stochastic factor
defined above, we obtain the following upper bound on the
capacity of an information stable channel:

Theorem 1 (Maximum Likelihood Upper Bound5). For a
discrete information stable channel defined in Section I-A,

5For intuition on why we call a maximum likelihood (ML) upper bound,
see Section III-A1.
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assume there exist a concentration set A and stochastic factors
f defined above. The following upper bound on the channel
capacity holds for any A =

⋃
k∈K Xn × Bk and {fk}k∈K:

C ≤ lim inf
n→∞

Cn (W
n) (12)

where Cn(Wn) denotes the following quantity:

Cn(W
n) :=

1

n
max
k∈K

log

∑
y∈Bk

max
x∈Xn

fk (y|x)

 . (13)

An intuitive derivation of the bound (12) is described below
by formulating a simplified system in a greedy approach.
The formal proof using Jensen’s inequality is provided in
Section III-B.

A. Intuition

Recall that the system of equations in (7) gives, for every
fixed dimension n, an optimizing probability distribution P ∗Xn

for the capacity proxy Cn(Wn) in (5). Since actually solving
the system of equations in (7) is computationally intractable for
large n, it is desirable to relax this system to a computationally
tractable system that nonetheless provides a good outer bound
to (7). Our starting point is the observation that an information
stable input process X̂ = {X̂n = (X̂

(n)
1 , . . . , X̂

(n)
n )}n≥1

(with corresponding sequence of probability distributions
{PX̂n = p̂1, . . . .p̂N}n≥1) satisfies all but an asymptotically
(in n) vanishing fraction of the constraints in (7). To see this,
one may notice that by the definition of information stability
(in Definition 1), for any fixed γ > 0 it holds that there is a
sufficiently large Nγ such that for all n > Nγ , in probability
(over the input process X and the channel law W it holds
that the ratio of the information density log Wn(y|xn)

PY(y) over
nCn(W

n) converges to 1. Moreover, for an arbitrary but fixed
integer n and for all x ∈ Xn,∑

y∈Y

Wn (y|x) = 1. (14)

Therefore, for all sufficiently large n, w.h.p. using the
distribution of the information stable process X̂, the quantity
on the LHS of (7) is approximately equal to Cn(Wn). Thus
any information stable input process X̂, for sufficiently large n,
becomes a reasonable approximation of the input process X∗

optimizing (7). This encourages us to construct a new input
process X by maximizing, for every integer n, the probability
in (15) below (using a greedy approach):

P

{∣∣∣∣∣ iXn
,Wn(X

n
;Y (Xn))

nCn(d)

∣∣∣∣∣ = 1

}
. (15)

Through this process we are able to introduce such a process
X (with corresponding distribution PX

n ) that mimics the one
for information stability in Definition 1.

1) Approximate Information Stable Processes: To find a
system that obtains such a sub-optimal input distribution PX

n

efficiently, one simple heuristic method is to maximize the
probability in (15) greedily.

For fixed input block-length n, we consider the set of all
output sequences y in the concentration set B. For each y in B,
we greedily choose the corresponding x ∈ Xn that maximizes
the a posteriori probability of an instance x being transmitted
under the channel law W (this is intuitively where the term
maxx fk (y|x) comes from) that shows up in Eq. (13).6

Now, guided by the intuition in the previous paragraph about
the LHS of (7) being approximately equal to Cn(Wn) for many
j, we fix the information density

iXn,Wn(xj ;yi) = log
maxx∈Xn fk (yi|x)∑n
j=1 p

n
jW

n (yi|xj)

for each such (xj ,yi) drawn in above to equal a certain
constant λn (which shows up later, in Eq. (16)).7 The fixing
of the information density iXn,Wn(xj ;yi) is done in a
manner such that, using Bayes’ rule, a probability distribution
PX

n = (pnj )j=1,...,N is induced on xj . In particular, the value
of λn is chosen so that the summation of pnj over all xj equals
1.

2) Simplified System: Formally, we describe the new (as a
simplified version of (7)) system as follows.

For all y ∈ Bk, k ∈ K and some λn ≥ 1, we let

1

n
log

maxx∈Xn fk (y|x)∑n
j=1 p

n
jW

n (y|xj)
= λn. (16)

As explained above, by exhausting the set Bk, the constraints
in (16) suggest a greedy approach for finding the sub-optimal
distribution PX

n .
Recall that (Definition 3 in Section III)

∑
y∈Bk

fk (y|x) = 1

for all x ∈ Xn and k ∈ K. Given an input process X satisfying
Eqs. (16) for each integer n, we can rewrite the constraints in
(16) as

maxx∈Xn fk (y|x)∑n
j=1 p

n
jW

n (y|xj)
= 2nλn , ∀ y ∈ Ak.

Summing both sides over all y ∈ Bk,

∑
y∈Bk

maxx∈Xn fk (y|x)
2nλn

=
∑
y∈Bk

N∑
j=1

pnjW
n (y|xj)

=

N∑
j=1

pnj
∑
y∈Bk

Wn (yi|xj)

=

N∑
j=1

pnj = 1.

6This procedure coincides with the greedy decoding suggested in [18] for
the BDC, which can be used to derive lower bounds on C(d). However,
making use of the system (7), the greedy selection is also capable to give
upper bounds.

7We do not claim to have an efficient computational process for determining
this constant λ(n). However, this λn(d) has a strong operational meaning –
it provides an outer bound on the capacity C(d) of the deletion channel, as
discussed in Eq. (17).
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Multiplying both sides with 2nλn and taking logarithms,

Cn(W
n) :=

1

n
max
k∈K

log

∑
y∈Bk

max
x∈Xn

fk (y|x)

 = λn. (17)

The number of constraints in (16) is much smaller than in
(7)), suggesting λn ≥ λn (without a proof) for each n. This
indicates that the ML upper bound defined in Theorem 3 makes
sense. Next we prove Theorem 1.

B. Proof of Theorem 1

Denote by P ∗Xn the optimizing probability distribution
maximizing the quantity in (6). Based on Definition 2, Lemma 2
and Definition 3, we prove Theorem 1.

Considering the constraints in (7), it follows that

Cn(W
n) =

1

n

M∑
i=1

Wn (yi|xj) log
Wn (yi|xj)∑N

j=1 p
∗
jW

n (yi|xj)
(20)

for all j ∈ {1, . . . , N} with p∗j 6= 0.
Now we introduce an auxiliary probability distribution

QnX := (q1, . . . , qN ) with qj = 0 once p∗j = 0 in the set
P
N . Multiplying both sides of (20) by qj and summing over

all j,

Cn(W
n) ≤ 1

n

N∑
j=1

M∑
i=1

qjW
n (yi|xj) log

Wn (yi|xj)∑N
j=1 p

∗
jW

n (yi|xj)
.

Making use of the concentration set A in Definition 2,
we get (18) where γn → 0 as n → ∞. Moreover, the
decomposition A =

⋃
k∈KAk (with Ak := Xn × Bk)

yields (19). Since logarithmic functions are concave and
Eq. (10) implies∑
(xj ,y)∈Ak

qjfk (y|xj) =
∑
y∈Bk

N∑
j=1

qjfk (y|xj) =
N∑
j=1

qj = 1,

applying Jensen’s inequality to (19), it follows that∑
k∈K

∑
(xj ,y)∈Ak

Wn (y|xj)
fk (y|xj)

qjfk (y|xj) log
Wn (y|xj)∑N

j=1 p
∗
jW

n (y|xj)

≤ max
k∈K

log

( ∑
(xj ,y)∈Ak

qjW
n (y|xj) fk (y|xj)∑N
j=1 p

∗
jW

n (y|xj)

)
(21)

where the last inequality holds since Eq. (10) guarantees that∑
k∈K

max
(x,y)∈Ak

Wn (y|x)
fk (y|x)

≤ 1.

Next, we set qj = p∗j for all j ∈ {1, . . . , N}. The quantity
inside the logarithm of (21) becomes∑

(xj ,y)∈Ak

p∗jW
n (y|xj) fk (y|xj)∑N
j=1 p

∗
jW

n (y|xj)
(22)

=
∑
y∈Bk

∑N
j=1 p

∗
jW

n (y|xj) fk (y|xj)∑N
j=1 p

∗
jW

n (y|xj)
(23)

≤
∑
y∈Bk

max
x∈Xn

fk (y|x) . (24)

Putting (21) and (22) into (18), for any concentration set
A =

⋃
k∈K Xn × Bk and stochastic factors {fk}k,

Cn(W
n) ≤ Cn(Wn)

:=
1

n
max
k∈K

log

( ∑
y∈Bk

max
x∈Xn

fk (y|x)
)
+ γn. (25)

Note that the term γn is vanishing (in n). Hence, for
information stable channels, the general formula in (4) implies
that

C ≤ lim inf
n→∞

Cn(W
n).

This completes the proof of Theorem 1. �

C. Verification of the Tightness for the BEC and BSC

This section is devoted to verifying the tightness of the upper
bound in Theorem 1 on the BEC and the BSC. Denote by
p ∈ (0, 1) the erasure/bit-flip probability. Note that under the
settings of the BEC(p) and BSC(p), we have the following
realizations of the input and output spaces:

XnBEC = XnBSC := {0, 1}n

and

YBEC := {0, 1, E}n ,
YBSC := {0, 1}n .

Denote by dE (·) the number of erasures (marked as E)
in a given the Hamming distance and dH (·, ·) the Hamming
distance. We select the following concentration sets (and the
corresponding decompositions) for the two types of channels
respectively.

Definition 4. We consider the following concentration sets
denoted by ABEC and ABSC for the BEC and BSC respectively
according to Definition 2:

ABEC :=
⋃
k∈Kε

ABEC
k , (26)

ABSC :=
⋃
k∈Kε

ABSC
k (27)

where ABEC
k and ABSC

k are defined as follows in agreement
with Definition 3:

Kε := bn (p− ε) , n (p+ ε)e ,

ABEC
k :=

{
(x,y) ∈ {0, 1}n × {0, 1, E}n : dE (y) = k

}
,

(28)

ABSC
k :=

{
(x,y) ∈ {0, 1}n × {0, 1}n : dH (x,y) = k

}
(29)

and the sets BBEC
k and BBSC

k are defined as

BBEC
k :=

{
y ∈ {0, 1, E}n : dE (y) = k

}
, (30)

BBSC
k := {0, 1}n (31)

with some ε satisfying min{p, 1− p} > ε > 0.

Lemma 3. The concentration sets ABEC and ABSC defined
in above satisfy the conditions (8)-(9) in Definition 2.



6

Cn(W
n) ≤ 1

n

∑
(xj ,y)∈A

qjW
n (y|xj) log

Wn (y|xj)∑N
j=1 p

∗
jW

n (y|xj)
+ γn. (18)

∑
(xj ,y)∈A

qjW
n (y|xj) log

Wn (y|xj)∑N
j=1 p

∗
jW

n (y|xj)
≤
∑
k∈K

∑
(xj ,y)∈Ak

Wn (y|xj)
fk (y|xj)

qjfk (y|xj) log
Wn (y|xj)∑N

j=1 p
∗
jW

n (y|xj)
. (19)

Proof. For the BEC(p), since each bit of the length-n input
sequence is erased i.i.d., the number of erased bits is distributed
according to Bernoulli(n, p). Therefore, fix input length n, by
the Chernoff bound (see [19, 20]), source X, the probability
of the output sequence being inside the concentration set
ABEC defined in (26) is always bounded from below by
1 − 2 exp

(
−npε2/3

)
. Moreover, the information densities

corresponding to the outliers must be bounded. Thus, the
concentration set ABEC satisfies the condition in (9). For the
BSC, we have a trivial decomposition ABSC = {0, 1}n×YBSC,
automatically guarantees the condition in (9).

Furthermore, we associate the following stochastic factors
to both channels.

Definition 5. The stochastic factors for the BEC and BSC are
defined as follows.

fBEC
k (x,y) :=

{
1/
(
n
k

)
if dE (y) = k

0 otherwise
(32)

and

fBSC
k (x,y) :=

{
1/
(
n
k

)
if dH (x,y) = k

0 otherwise
(33)

with 1 ≤ k ≤ n satisfying

bn (p− ε)c ≤ k ≤ dn (p+ ε)e (34)

for some ε ∈ (0,min{p, 1− p}).

Lemma 4. The stochastic factors fBEC
k (x,y) and fBSC

k (x,y)
defined in above satisfy the conditions (10)-(11) in Definition 3.

Proof. We check the stochastic factors defined above satisfy
the conditions in (10)-(11). For the BEC(p), plugging in (28)
and (32),∑
y∈BBEC

k

fBEC
k (y|x) =

∣∣BBEC
k

∣∣
2n−k

· 1(
n
k

) = 1, ∀ x ∈ Xn, k ∈ K.

Since Wn (y|x) = pk (1− p)n−k for all (x,y) ∈ ABEC
k ,∑

k∈K

max
(x,y)∈ABEC

k

Wn (y|x)
fBEC
k (y|x)

=

dn(p+ε)e∑
k=bn(p−ε)c

(
n

k

)
pk (1− p)n−k ∈ [0, 1]

showing that fBEC
k (x,y) are stochastic factors.

For the the BSC(p), similarly, based on the definitions in
(33), since for each fixed x ∈ {0, 1}n, there are in total

(
n
k

)

many y ∈ BBSC
k = {0, 1}n satisfying dH (x,y) = k, it follows

that∑
y∈BBSC

k

fBSC
k (y|x) =

(
n

k

)
· 1(

n
k

) = 1, ∀ x ∈ Xn, k ∈ K.

Moreover, Wn (y|x) = pk (1− p)n−k for all (x,y) ∈ ABSC
k ,

clearly,

0 ≤
∑
k∈K

max
(x,y)∈ABSC

k

Wn (y|x)
fBSC
k (y|x)

. (35)

From the definition of the set ABSC
k ,∑

k∈K

max
(x,y)∈ABSC

k

Wn (y|x)
fBSC
k (y|x)

=
∑
k∈K

max
(x,y):dH(x,y)=k

Wn (y|x)
fBSC
k (y|x)

=

dn(p+ε)e∑
k=bn(p−ε)c

(
n

k

)
pk (1− p)n−k ∈ [0, 1]

verifying that the stochastic factors in (32)-(33) satisfy the
conditions in Definition 2 and Definition 3.

Based on the concentration sets ABEC and ABSC defined
in (26)-(31) and the stochastic factors in (32)-(33), the ML
upper bound in Theorem 1 is tight, as stated in the following
theorem.

Theorem 2 (Tightness for the BEC and BSC). Let p ∈ (0, 1)
be the erasure/bit-flip probability. The ML upper bound in
Theorem 1 is tight for the BEC and BSC, i.e.,

lim inf
n→∞

1

n
max
k∈Kε

log
( ∑

y∈BBEC
k

max
x∈Xn

BEC

fBEC
k (y|x)

)
= 1− p,

lim inf
n→∞

1

n
max
k∈Kε

log
( ∑

y∈BBSC
k

max
x∈Xn

BSC

fBSC
k (y|x)

)
= 1− h (p)

where h(p) := −p log p − (1− p) log (1− p) denotes the
binary entropy.

Proof. Note that the parameter ε > 0 can be arbitrarily small,
taking k = dnpe and applying Theorem 1, the capacity of the
BEC denoted by CBEC(p) satisfies

CBEC(p) ≤ lim inf
n→∞

1

n
log

( ∑
y∈BBEC

dnpe

max
x∈Xn

BEC

fBEC
dnpe (y|x)

)

= lim inf
n→∞

1

n
log

(∣∣∣BBEC
dnpe

∣∣∣/( n

dnpe

))
.
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Putting
∣∣∣BBEC
dnpe

∣∣∣ = 2n(1−p)( n
dnpe

)
into above,

CBEC(p) ≤ lim inf
n→∞

1

n
log

(
2n(1−p)

(
n

dnpe

)/( n

dnpe

))
= 1− p. (36)

Furthermore, for the BSC, the capacity CBSC(p) is bounded
from above as

CBSC(p) ≤ lim inf
n→∞

1

n
log

( ∑
y∈BBSC

dnpe

max
x∈Xn

BSC

fBSC
dnpe (y|x)

)

= lim inf
n→∞

1

n
log

(∣∣∣BBSC
dnpe

∣∣∣ /( n

dnpe

))
.

Since
∣∣∣BBSC
dnpe

∣∣∣ = 2n, it follows that

CBSC(p) ≤ lim inf
n→∞

1

n
log

(
2n
/( n

dnpe

))
= 1− h(p). (37)

The theorem above indicates that the ML upper bound in
Theorem 1 is actually tight for some memoryless channels,
e.g., the BEC(p) and BSC(p). In next section, we analyze the
binary deletion channel (BDC) as an example for channels
with memory, and show that the ML upper bound is capable
of providing a nontrivial and explicit approximation for the
capacity C(d) (d denotes the deletion probability) assuming
Hypothesis 2 in Section IV-C.

IV. BINARY DELETION CHANNEL

For brevity, we consider specifically the binary deletion
channel (BDC), though the approach generalizes to arbitrary
alphabet sizes. The following section is devoted to summarizing
related work on finding the capacity C(d) of the BDC. In
particular, we focus on the existing upper bounds on C(d) and
the known asymptotic results. The survey by Mitzenmacher [18]
elucidates critical problems, useful techniques and further
applications in a more comprehensive way. The recent paper
by Cheraghchi also provides a decent summary of the state-of-
the-art literature [21]. Before moving to the contexts, we first
give a brief summary of known bounds on C(d), the capacity
of the BDC, at the risk of missing much of the literature.

A. Previous Work

1) Existing Upper Bounds: Recently, Cheraghchi in [21]
gave an explicit and concise upper bound on C(d) such that
C(d) ≤ 1−d log (4/φ) for d < 1/2 and C(d) ≤ (1−d) log φ
for d ≥ 1/2 where φ :=

(
1 +
√
5
)
/2 is the golden ratio.

The bound was obtained by first deriving an upper bound on
C(1/2); then applying the fact that C(d) is convex as showed
in [22].

Running the BAA (cf. [8, 9]) up to n = 17, tighter numerical
upper bounds were provided in [10] improving the upper
bounds in [23] for a wide range of the deletion probability d.
They proved that increasing the dimension n in the BAA always
provides a better upper bound on C(d). The convexity of C(d)
in [22] can be used to tighten the bounds in [10]. However,
the space complexity of BAA is exponential in n, prohibiting

obtaining better bounds by trying larger dimensions. Following
previous literature ([24]), we sometimes replace the maximized
finite-length mutual information Cn(W

n) with Cn(d) since
the quantity is determined entirely by d and n in particular
for deletion channels. Denote by CBAA

n,T (d) the approximation
of Cn(d) using the BAA with T iterations. A priori, if one
could use the BAA to obtain the value of Cn(d) precisely, one
would be able to get a log(n+ 1)/n additive approximation
to the capacity C(d) (for n ≤ 17). In [10], essentially this
approach is followed to obtain numerical solutions for (7), for
n ≤ 17.

However, this approach has several limitations. On the one
hand, in direct implementation of BAA, as n grows, it becomes
computationally intractable even to store the variables to be
computed. One the other hand, as BAA is itself an iterative
algorithm attempting to solve the non-convex optimization
problem (7), and to the best of our knowledge there are no
guarantees on how quickly CBAA

n,T (d) converges to Cn(d) as a
function of the number of iterations t.

In fact, in [7], Dobrushin showed the following quantitative
bound on Cn(d) providing a log(n+ 1)/n-additive approxi-
mation to C(d) (see also, [24, 25]. A tighter bound can be
found in [26]):

Cn(d)−
log(n+ 1)

n
≤ C(d) ≤ Cn(d). (38)

2) Asymptotic Results: Besides the upper bounds, in [25]
Kanoria and Montanari gave a polynomial expression of
channel capacity which is optimal with a residual term O(d3−ε)
through the optimality of sources with i.i.d. coordinates
distributed as Bernoulli (1/2) when d = 0 and a perturbed
version when d is slightly larger than 0. Meanwhile for the
regime d → 1, Dalai in [24] provided an asymptotic result
limd→1 C(d)/(1− d) ≤ 0.4143 with constant surpassing the
upper bound 0.49 given in [10] by Fertonani and Duman.
Furthermore, [27] studied the mutual information for deletion
channels concerning both general sources and memoryless
sources. In particular, their results for memoryless sources
coincide with Kanoria and Montanari’s expansion of mutual
information [25] as d → 0.

In the sequel, we apply the ML upper bound in Theorem 1
to derive approximations for the capacity C(d) of the BDC.

B. Capacity Upper Bound via Theorem 1
1) Concentration Set and Stochastic Factors: The input and

output spaces of the BDC are

XnBDC := {0, 1}n

and

YBDC :=
⋃

1≤m≤n

{0, 1}m .

We consider the following concentration set and the corre-
sponding decompositions for the BDC:

Definition 6 (Concentration Set for the BDC). For the BDC, we
define the following concentration set according to Definition 2:

ABDC :=
⋃
k∈K

ABDC
k (39)
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with the following decomposition in agreement with Defini-
tion 3:

Kε := bn (d − ε) , n (d + ε)e ,
ABDC
k := {0, 1}n × {0, 1}n−k ,
BBDC
k := {0, 1}n−k. (40)

As n grows without bound, standard concentration inequali-
ties (for instance, Chernoff bound) imply that the length of the
output sequence m is tightly concentrated around the “typical
length” n(1− d) in probability. Using the bounds in (38), [24]
showed that C(d) is continuous (the continuity can be verified
via various approaches, for instance, the information spectrum
method [28]). Leveraging the continuity, Theorem 1 in [24]
(cf. [10, 25]) proved that it is sufficient to consider output
sequences with lengths in Kε = bn (d − ε) , n (d + ε)e. In
detail, Dalai showed that the following lemma holds.

Lemma 5 (Theorem 1 [24]). For any 0 < ε ≤ min{d , 1− d},

lim inf
n→∞

1

n
E
[
iXn,Wn(Xn;Y (Xn))

∣∣ (Xn,Y) ∈ ABDC
]

= lim inf
n→∞

Cn (W
n) = C(d).

The lemma above validates that ABDC is a concentration
set according to Definition 2.

Lemma 6. The concentration set ABDC defined in above
satisfies the conditions (8)-(9) in Definition 2.

Proof. Since by definition the concentration set ABDC con-
tains all received codewords with lengths in the range
bn (d − ε) , n (d + ε)e, standard concentration inequalities (e.g.
Chernoff bound) guarantees the condition in (8), and

lim inf
n→∞

P
(
(Xn,Y) ∈ ABDC

)
= 1.

Moreover, using Lemma 5 above, directly,

lim sup
n→∞

E

[∣∣∣∣ iXn,Wn(Xn;Y (Xn))

nCn (Wn)
− 1

∣∣∣∣ ∣∣∣ (Xn,Y) ∈ ABDC

]
= 0.

Before proceeding to the corresponding stochastic factors, it
is helpful to introduce a quantity pertinent to relationships
between length-n input sequences x and length-m output
sequences y.

Definition 7 (Deletion Pattern). A deletion pattern from a
length-n input sequence x to a length-m output sequence
y is a binary sequence denoted by d ∈ {0, 1}n. If the i-th
coordinate di = 1, the corresponding i-th coordinate xi in x
is deleted; otherwise di = 0 implies that xi is kept.

Below we define a function computing the number of
possible ways that a fixed length-n sequence is deleted to form
a fixed shorter length-m sequence. Previous studies have been
focusing on similar quantities, Drmota et al. defined a similar
quantity as the number of occurrences of a shorter sequence in
a longer sequence, Liron and langberg characterized the number
of subsequences obtained from a fixed length-n sequence via
deletions [27, 29], to name just a few.

Definition 8 (Number of Deletion Patterns8). We define
the number of deletion patterns as a quantity #(x,y) ∈{
1, . . . ,

(
n
m

)}
counting the number of distinct deletion patterns

from an input x ∈ {0, 1}n to an output y ∈ {0, 1}m.

Over the years it has been repeatedly noted that the number of
deletion patterns plays an important role in finding the capacity
C(d). Part of the reason is that the number of deletion patterns
can be regarded as a “normalized version” of the transition
probability Wn (y|x), as the following remark explains .

Remark 1. Denote by Wn (·|·) the corresponding stochastic
matrix for the BDC (with block length n). Since the probability
of a particular deletion pattern of weight n −m occurring
equals (1− d)mdn−m, hence

#(x,y) =
Wn (y|x)

(1− d)mdn−m
. (41)

The fact that #(y,x) is a scaled version of Wn (y|x)
(corresponding to a conditional probability distribution for
the input x being mapped to the fixed output y) takes on
operational significance later. For instance, it ensures us to
define stochastic functions. In Section IV-D, on the other hand,
we utilize the operational meaning of #(y,x) to derive explicit
bounds on C(d).

Definition 9. The corresponding stochastic factors for the
BDC are set to be

fBDC
k (x,y) :=

{
#(x,y)/

(
n
k

)
if y ∈ {0, 1}n−k

0 otherwise
. (42)

It remains to check the validity of the stochastic factors
fBDC
k (x,y). We first claim that they satisfy the definition of

stochastic factors.

Lemma 7. The stochastic factors fBEC
k (x,y) and fBSC

k (x,y)
defined in above satisfy the conditions (10)-(11) in Definition 3.

Proof. Plugging in (40) and (42),∑
y∈BBDC

k

fBDC
k (y|x) =

∑
y∈{0,1}n−k

#(x,y)(
n
k

) = 1,

∀ x ∈ Xn, k ∈ Kε. (43)

Considering (41),∑
k∈K

max
(x,y)∈ABDC

k

Wn (y|x)
fBDC
k (y|x)

(44)

=

dn(p+ε)e∑
k=bn(p−ε)c

(
n

k

)
pk (1− p)n−k ∈ [0, 1] (45)

showing that fBDC
k (x,y) are stochastic factors.

Making use of the concentration set and stochastic factors
constructed in (40) and (42), and substituting them into the
ML upper bound in Theorem 1, the following upper bound on
C(d) holds.

8This counting function is alternatively called hidden pattern matching
function in [30] using the terminology in statistics.
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Theorem 3. For all d ∈ (0, 1) and m := dn(1 − d)e, the
capacity C(d) of the BDC is bounded from above by

C(d) ≤ C(d) := lim inf
n→∞

Cn(d)− h(d) (46)

where h(d) = −d log d − (1− d) log (1− d) denotes the
binary entropy and

Cn(d) :=
1

n
log

( ∑
y∈{0,1}m

max
x∈{0,1}n

#(x,y)

)
. (47)

Proof. Since 0 < ε ≤ min{d , 1 − d} is arbitrary, taking the
maximizing k = m := dn(1 − d)e and applying Theorem 1,
the capacity of the BDC satisfies

C(d) ≤ lim inf
n→∞

1

n
log

( ∑
y∈BBDC

m

max
x∈Xn

BDC

fBDC
m (y|x)

)
.

Applying the definitions of the sets BBDC
m and the stochastic

factors fBDC
m (in Definition 6 and 9),

C(d) ≤ lim inf
n→∞

1

n
log

( ∑
y∈{0,1}m

max
x∈{0,1}n

#(x,y)(
n
m

) )
(48)

= lim inf
n→∞

1

n
log

( ∑
y∈{0,1}m

max
x∈{0,1}n

#(x,y)

)
+ lim inf

n→∞

1

n
log

1(
n
m

)
=Cn (d)− h(d),

which gives the desired bound in (46).

Remark 2. Note that for any x ∈ {0, 1}n and y ∈ {0, 1}m,
it always holds that

0 ≤ #(x,y) ≤
(
n

m

)
.

Putting this into (48), we recover the trivial upper bound
C(d) ≤ 1− d .

2) Experimental Results: We implement the BAA up to n =
18 to compare Cn(d), Cn(d) and the best known numerical
bounds on C(d). See Fig. 1.

In next section we make use of the operational meaning of
the number of deletion patterns and analyze the quantity Cn(d)
in a more careful way. This allows us to derive upper bounds
on C(d) based on an approximation ratio of a combinatorial
problem defined later in Section IV-B.

C. Maximal Number of Deletion Patterns

The remaining context of this paper is dedicated to approxi-
mate the terms in (48), which is summarized as the following
combinatorial problem.

Fig. 1. The ML upper bounds (solid, blue and red) Cn(d) for BDC with
block-length n = 18 and n = 13, together with the (convexified) numerical
estimate of the capacity-proxy Cn(d) (dashed and marked black) for n = 17.
The lower curve (dashed gray) is also known as the best numerical upper
bounds provided in [22].

1) The Maximum Deletion Matching problem:

Definition 10 (MDM Problem). The maximum deletion match-
ing (MDM) problem is to solve the following. Let n,m ∈ N+

with 1 ≤ m ≤ n. Given an arbitrary length-m binary sequence
y ∈ {0, 1}m, the goal is to find the maximum corresponding
length-n binary sequence x such that

x (y) := argmax
x∈{0,1}n

#(x,y)

where #(x,y) denotes the number of deletion patterns of
generating y from x defined in Definition 8. For notational
convenience, write the maximal number of deletion patterns

#(y) := max
x∈{0,1}n

#(x,y) = # (x (y) ,y) .

2) Run-length Representation: One way to approximate
#(y) and find approximation ratio of the MDM problem is
to consider consecutive bits in y as a “run” and jointly a
distribution of run-lengths. Although encoding each sequence
y to the run-length representation suffers a loss of information
(for instance, the ordering of runs is no longer kept in the run-
length representation), it offers a concise approach to describe
a binary sequence. Reprising the definitions from previous
work [25, 29, 31], we consider the follows.

First, we associate each length-m binary sequence y with
an integer sequence embedding the information of number of
consecutive bits of y. We call a subsequence yi, . . . , yi+`−1

of y an `-run if all the bits in the subsequence are the same
and they differ from the bits next to the subsequence, i.e.,
yi 6= yi−1, yi+`−1 = · · · = yi and yi+` 6= yi+`−1. Thus, let
R

(`)
y be an integer counting the number of `-runs in y. It
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Exact Approximation Duplication
y x #(y) xdup #dup (y) Ratio

0000 00000000 70 00000000 70 1

0001 00000011 40 00000011 40 1

0010 00001100 24 00001100 24 1

0011 00001111 36 00001111 36 1

0100 00110000 24 00110000 24 1

0101 00101011 16 00110011 16 1

0110 00111100 24 00111100 24 1

0111 00111111 40 00111111 40 1

TABLE I
A TABLE SHOWING THE CORRESPONDING RATIOS GIVEN m = 4 AND n = 8. WHEN m ≤ 4, THE RATIO IS ALWAYS 1.

Exact Approximation Duplication
y x #(y) xdup #dup (y) Ratio

0000000 00000000000000 3432 00000000000000 3432 1

0000001 00000000000011 1848 00000000000011 1848 1

0000010 00000000001100 1008 00000000001100 1008 1

0000011 00000000001111 1512 00000000001111 1512 1

0000100 00000000110000 840 00000000110000 840 1

0000101 00000000101011 602 00000000110011 560 0.93023.

0000110 00000000111100 840 00000000111100 840 1

0000111 00000000111111 1400 00000000111111 1400 1

0000111 00000000111111 1400 00000000111111 1400 1
...

...
...

...
...

...
0001010 00000000111111 396 00000011001100 320 0.80808.

0001011 00000010101111 530 00000011001111 480 0.90566.

0010100 00001010101000 351 00001100110000 288 0.90566.

0010101 00001010101011 270 00001100110011 192 0.71111.

0010110 00001010111100 312 00001100111100 288 0.92308.

0010111 00001010111111 530 00001100111111 480 0.90566.

0011010 00001111010100 300 00001111001100 288 0.96

0100101 00110000101011 200 00110000110011 192 0.96

0101000 01010101000000 396 00110011000000 320 0.80808.

0101001 01010101000011 231 00110011000011 192 0.83117.

0101010 00101010101010 204 00110011001100 128 0.62745.

0101011 00101010101111 270 00110011001111 192 0.71111.

0101100 00101011110000 300 00110011110000 288 0.96

0101101 00101011110011 200 00110011110011 192 0.96

0101110 00101011111100 340 00110011111100 320 0.94118.

0101111 00101011111111 602 00110011111111 560 0.93023.

0110100 00111101010000 312 00111100110000 280 0.89743.

0110101 00111101010101 231 00111100110011 192 0.83117.

0111010 00111111010100 340 00111111001100 320 0.94118.

TABLE II
AN INCOMPLETE LIST COMPARING THE MAXIMAL NUMBER OF DELETION PATTERNS WITH THE DUPLICATION APPROXIMATIONS FOR m = 7 AND n = 14.

THE TABLE CONTAINS ALL RATIOS THAT ARE NOT EQUAL TO ONE. THE SMALLEST DUPLICATION RATIO γ (n,z) IS OBTAINED AT THE “FLIPPING
SEQUENCE” yflip = 0101010.

follows that
m∑
`=1

`R(`)
y = m (49)

for all y ∈ {0, 1}m.
3) Approximation and Duplication Ratio: Figuring out

the the maximal number of deletion patterns #(y) as an
explicit expression using the number of `-runs R(1)

y ,. . . , R(m)
y

is a nontrivial task. Instead, one might turn to consider
approximations of the quantity #(y). Suppose z := n/m

is an integer. Intuitively, duplicating z times each bit in y
may provide a decent estimate of #(y), which motivates the
following definition.

Definition 11. Suppose m divides n. Denoted by z := n/m ∈
N

+. We define the duplication ratio γ (n,z,y) ≤ 1 of the
MDM problem to be the ratio of the approximated number of
deletion patterns by duplicating each bit z times in y and the
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maximal number of deletion patterns #(y):

γ (n,z,y) :=
#dup (y)

# (y)
. (50)

where #dup (y) is given by

#dup (y) :=

m∏
`=1

(
`z
`

)R(`)
y

. (51)

Note that #dup (y) in (51) equals to the number of deletion
patterns of the length-m binary sequence y in the length-n
sequence xdup (y) by setting

xdup (y) = y1, y1, . . . , y1︸ ︷︷ ︸
z many

, . . . , ym, ym, . . . , ym︸ ︷︷ ︸
z many

.

4) Numerical Results: We compute the duplication ratios
with different block-lengths n and m. We exemplify part of
the results in Table I and Table II. Furthermore, setting n = 18,
we plot the following quantities:

Cn(d) :=
1

n
log

( ∑
y∈{0,1}dn(1−d)e

max
x∈{0,1}n

#(x,y)

)
,

C̃n(d) :=
1

n
log

( ∑
y∈{0,1}dn(1−d)e

max
x∈{0,1}n

#dup (x,y)

)
.

The output block-length m in above is set to be an integer
between 1 and n = 18. In order to approximate the values of
Cn(d) and C̃n(d) when m is not divided by n, we consider
the following three different approaches:

Approach 1 (Assign-to-the-last Approximation):
First, duplicate z times each bit in y where z is the largest

integer satisfying mz ≤ n; then for the remaining n −mz
bits, assign them proportionally to the last several runs in y.
For instance, suppose m = 6, n = 15 and y = 010001. An
approximation can be obtained by first constructing a length-12
sequence by duplicating the bits in y; then assigning 1 bit to
the last run and 2 bits to the second last run.

Approach 2 (Assign-by-the-length Approximation):
The first step is the same as Approach 1. For the remaining

bits, longer runs get more bits, i.e., assign them to the longest
run (of length `) until the length exceeds `n/bmc. For example,
suppose m = 6, n = 15 and y = 010001. Then the formed
new length-n sequence is 001100000000011.

Approach 3 (Gamma Function Approximation):
An alternative approximation is to substitute the binomial

coefficients in Eq. (51) by Gamma functions, thus ensuring
z = n/m taking non-integers.

The three approximations of C̃n(d) and the ML upper bound
Cn(d) are depicted in Figure 2, together with the best known
numerical upper bounds reported in [22].

Fig. 2. The ML upper bound (solid, red) Cn(d) for BDC with block-length
n = 18, together approximations of C̃n(d) obtained via the three approaches.
The lower curve (dashed gray) corresponds to the best known numerical upper
bounds provided in [22].

Some observations are summarized as hypotheses in sequel.

Hypothesis 1. For any block-lengths n,m ∈ N+ and z =
n/m ∈ N+,

min
y∈{0,1}n/z

γ (n,z,y) =
zn/z

#(yflip)

where yflip denotes a length-m binary sequence with flipping
bits, i.e., R(1)

y = m and R(`)
y = 0 for all ` > 1.

Moreover, the approximations are tight, such that

Hypothesis 2. For any block-lengths n,m ∈ N+ and z =
n/m ∈ N+,

lim
n→∞

1

n
log γ (n,z) = 0.

Furthermore, based on Hypothesis 1, Hypothesis 2 is true
when d → 1. Denote by γ (n,z) := miny∈{0,1}n/z γ (n,z,y)
for notational convenience. We conclude the following asymp-
totic behavior of γ (n,z,y):

Lemma 8.

lim
m/n→1

lim
n→∞

1

n
log γ (n,z) = 0.

Proof. Noe that γ (n,z) = zn/z

#(yflip)
≥ zn/z

(n
m)

. Using Stirling’s
approximation (see (52)), we get(

n

m

)
≤ e

2π
· 2nh( m

n )√(
1− m

n

)
m
.

Since z = n/m,

γ (n,z) ≥ 2π

e
·
( n
m

)m √(1− m
n

)
m

2nh( m
n )

.
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(
`z
`

)
=

(`z)!

`! (`z− `)!
≤ exp (−`z+ 1) (`z)

`z+1/2(√
2π exp(−`)``+1/2

)
·
(√

2π exp(− (`z− `)) (`z− `)(`z−`)+1/2
) (52)

Thus, taking logarithm and letting n→∞,

lim
n→∞

1

n
log γ (n,z) ≥ lim

n→∞

1

n

(
m log

n

m
− nh

(m
n

))
= lim
n→∞

(
1− m

n

)
log

(
1

1−m/n

)
,

which goes to 0 as m/n→ 1.

The remaining part of this work is based on Hypothesis 2.

D. Explicit Approximation of C(d)

Based on Hypothesis 2, we can further bound the capacity
C(d) of the BDC when the deletion probability d ≥ 1/2.

Lemma 9. Suppose Hypothesis 2 is true. For any block-lengths
n,m ∈ N+ and z = n/m ∈ N+, the following bound on
C(d) holds:

C(d) ≤ lim inf
n→∞

1

n
log

∑
y∈{0,1}m

m∏
`=1

(
`z
`

)R`(y)

− h (d) (53)

where m = dn(1− d)e.

Proof. We start with repeating Theorem 3:

C(d) ≤ C(d) = 1

n
log
( ∑

y∈{0,1}m
#(y)

)
− h (d) (54)

provided m = dn(1− d)e.
Suppose m divides n. Considering the definition of γ (n,z),

the logarithmic term in above can be bounded as

1

n
log

∑
y∈{0,1}m

#(y)

≤ 1

n
log

( ∑
y∈{0,1}m

∏m
`=1

(
`z
`

)R(`)
y

γ (n,z)

)

=
1

n
log

( ∑
y∈{0,1}m

m∏
`=1

(
`z
`

)R(`)
y

)
− 1

n
log γ (n,z) (55)

Taking the limits n→∞ and d → 1, Hypothesis 2 implies
(53).

We will then show the following lemma holds:

Lemma 10. Suppose m = dn(1 − d)e. For all deletion
probability d ∈ [1/2, 1),

1

n
log

∑
y∈{0,1}m

m∏
`=1

(
`z
`

)R`(y)

=h(d) + 1− d +
1

n
log
(
E
[
exp (−µd (Y))

])
(56)

where

µd (y) :=
1

2

m∑
`=1

R(`)
y ln

((
2π

e

)2

d`

)
,

and the expectation is over a random length-m sequence
Y wherein each bit is a random variable with distribution
Bernoulli (1/2).

Proof. Applying Stirling’s approximation (inequalities) to the
binomial coefficients, (53) follows. Therefore(

`z
`

)
≤ e (`z)

`z+1/2

2π``+1/2 (`z− `)(`z−`)+1/2

=
e

2π
· (`z)

`z

`` (`z− `)(`z−`)
·
√

z
` (z− 1)

. (57)

Since z = 1
1−d , we have z

z−1 = 1
d . Thus,

(`z)
`z

`` (`z− `)(`z−`)
= 2`zh((z−1)/z) = 2`zh(d), (58)√

z
` (z− 1)

=

√
1

d`
. (59)

Putting (58) and (59) into (57),(
`z
`

)
≤ e

2π
· 2

`zh(d)

√
d`

.

Therefore,

ln

(
m∏
`=1

(
`z
`

)R(`)
y

)

=

m∑
`=1

R(`)
y ln

(
`z
`

)
≤

m∑
`=1

(ln 2) `R(`)
y zh(d)

+

m∑
`=1

R(`)
y ln

e

2π
− 1

2

m∑
`=1

R(`)
y ln (d`) .

According to (49),
∑m
`=1 `R

(`)
y = m, implying that

m∑
`=1

`R(`)
y zh(d) = mzh(d) = nh(d).

Continuing from above,

ln

(
m∏
`=1

(
`z
`

)R(`)
y

)

≤ (ln 2)nh(d) +

m∑
`=1

R(`)
y ln

e

2π
− 1

2

m∑
`=1

R(`)
y ln (d`) (60)

=(ln 2)nh(d)− 1

2

m∑
`=1

R(`)
y ln

((
2π

e

)2

d`

)
. (61)
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Recall that

µd (y) :=
1

2

m∑
`=1

R(`)
y ln

((
2π

e

)2

d`

)
.

Thus, summing over all y ∈ {0, 1}m, (61) yields that

1

n
log

∑
y∈{0,1}m

m∏
`=1

(
`z
`

)R`(y)

≤ 1

n
log

∑
y∈{0,1}m

exp
(
(ln 2)nh(d)− µd (y)

)
(62)

=h(d) +
1

n
log

∑
y∈{0,1}m

exp
(
−µd (y)

)
.

The summation
∑

y∈{0,1}m exp (−µd (y)) can be regarded
as 2m times the expectation of exp (−µd (Y)) given that each
bit in Y is selected Bernoulli (1/2). Therefore,

1

n
log

∑
y∈{0,1}m

m∏
`=1

(
`z
`

)R`(y)

≤h(d) + 1

n
log
(
2mE

[
exp (−µd (Y))

])
=h(d) + 1− d +

1

n
log
(
E
[
exp (−µd (Y))

])
. (63)

Taking the expectation outside, we derive the following
approximation of the last term in (63):

1

n
E

[
log
(
exp (−µd (Y))

)]
= − 1

n
E
[
(log e)µd (Y)

]
. (64)

For a Bernoulli (1/2) process, the distribution of the number
of `-runs R(1)

y ,. . . , R(m)
y is proportional to the “run-length

distribution” defined in [25], which is {1/2`}∞`=1. Hence,
considering (49), the expectation of the number of runs is
m/2`+1, i.e.,

E
[
R

(`)
Y

]
=

m

2`+1
.

It follows that

E
[
µd (Y)

]
=E

[
1

2

m∑
`=1

R(`)
y ln

((
2π

e

)2

d`

)]

=
1

2

m∑
`=1

E
[
R

(`)
Y

]
ln

((
2π

e

)2

d`

)

=
m

2

m∑
`=1

1

2`+1
ln

((
2π

e

)2

d`

)
. (65)

Combining (53), (56), the approximation (65) and the identity
(64) above, the approximation C̃(d) defined below holds:

C̃(d) :=1− d − lim
n→∞

1

n
E
[
(log e)µd (Y)

]
=1− d − 1

2
ψ (1− d) (66)

where

ψ :=

∞∑
`=1

1

2`+1
log

((
2π

e

)2

d`

)

=
1

2
log d +

∞∑
`=1

log
(
(2π/e)

√
`
)

2`
.

1

2
log d + 1.09179.

A figure depicting the explicit approximation C̃(d) for d ≥
1/2 is provided below.

Fig. 3. The ML upper bound (solid, red) Cn(d) for BDC with block-length
n = 18, the approximation of C̃n(d) obtained via the gamma function, and
the explicit approximation C̃(d) derived in (66). The lower curve (dashed
gray) corresponds to the best known numerical upper bounds provided in [22].

V. CONCLUSION

We derive a general ML upper bound (See Theorem 1) for
information stable channels. The corresponding bounds are
shown to be tight for simple channels, e.g., the BEC and the
BSC. Furthermore, we demonstrate the usage of the bound on
the BDC, whose capacity remains unknown. The corresponding
upper bound for the BDC derived from the general bound
coincides with an intriguing combinatorial problem (defined as
the MDM problem in Definition 10). Approximations for the
derived upper bound are provided via three different approaches.
Furthermore, analyzing and approximating the limiting behavior
of the derived upper bound gives an explicit bound reported
in (66) (and shown in Figure 3), validating that the general
bound is capable of providing nontrivial results for sophisticated
channels with memory. The next step is to validate the upper
bounds on a varriety types of channels and formalize a more
general framework based on the main result (Theorem 1) stated
in the paper.
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