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Abstract—The conventional assumption made in the design
of communication systems is that the energy used to transfer
information between a sender and a recipient cannot be reused
for future communication tasks. A notable exception to this
norm is given by passive RFID systems, in which a reader can
transfer both information and energy via the transmitted radio
signal. Conceivably, any system that exchanges information via
the transfer of given physical resources (radio waves, particles,
qubits) can potentially reuse, at least part, of the received
resources for communication later on. In this paper, a two-way
communication system is considered that operates with a given
initial number of physical resources, referred to as energyunits.
The energy units are not replenished from outside the system,
and are assumed, for simplicity, to be constant over time. A node
can either send an “on” symbol (or “1”), which costs one unit of
energy, or an “off” signal (or “0”), which does not require any
energy expenditure. Upon reception of a “1” signal, the recipient
node “harvests” the energy contained in the signal and stores it
for future communication tasks. Inner and outer bounds on the
achievable rates are derived, and shown via numerical results to
coincide if the number of energy units is large enough.

I. I NTRODUCTION

The conventional assumption made in the design of commu-
nication systems is that the energy used to transfer information
between a sender and a recipient cannot be reused for future
communication tasks. A notable exception to this norm is
given by passive RFID systems, in which a reader can transfer
both information and energy via the transmitted radio signal.
Upon reception of the radio signal from the reader, a passive
RFID tag modulates information by backscattering the radio
energy received from the reader (see, e.g., [2]). Another, less
conventional, example is that of a biological system in which
information is exchanged via the transmission of particles(see,
e.g., [4]), which can be later reused for successive commu-
nication tasks. More in general, any system that exchanges
information via the transfer of given physical resources (radio
waves, particles, qubits) can conceivably reuse, at least part,
of the received resources for later communication tasks.

This paper is motivated by the examples above to consider a
two-way communication system [3] that operates with a given
initial number of physical resources, which we will refer toas
energy units (see Fig. 1). The energy units are not replenished
from outside the system and can only decrease with time. To
simplify the analysis, assume that the two parties involved
have a common clock and that, at each time, a node can
either send an “on” symbol (or “1”), which costs one unit
of energy, or an “off” signal (or “0”), which does not require
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Figure 1. Two-way noiseless binary communication with energy exchange.
The total number of energy units is fixed (to five in the figure) and transmission
of a "1" symbol transfers energy from the sender node to the recipient.

any energy expenditure. Upon reception of a “1” signal, the
recipient node “harvests” the energy contained in the signal
and stores it for future communication tasks. In general, such
harvesting process can incur an energy loss.

Furthermore, let us assume that the binary channel in either
direction is noiseless. Clearly, if there were no limitation on
the number of energy units, the nodes could communicate 1
bit per channel use in either direction given that the channels
are ideal. However, consider now the case with a single energy
unit available in the system. Moreover, assume that there are
no energy losses so that when a “1” is received, one energy
unit is retrieved at the recipient. Then, at any time instant,
the energy unit is available at either Node 1 or at Node 2. It
follows that only the node that currently possesses the energy
unit can transmit a “1”, whereas the other node is forced to
transmit a “0”. Therefore, the design of the communication
strategy at the nodes should aim not only at transferring
the most information to the counterpart, but also to facilitate
energy transfer. Due to the constraints on the available physical
resources for transmission, it is expected that the maximum
sum-rate of two, achievable with no energy limitations, cannot
be attained with a limited number of energy units. It is this
trade-off that we are interested in studying in this paper.

A. Contributions and Related Work

In this paper, we will focus on the simple two-way binary
noiseless model illustrated above and assume that the initial
number of energy units is given, and can be transferred as
discussed above upon transmission of a “1” symbol. We will
assume, for simplicity, that there are no energy losses in the
system and investigate the set of rate pairs achievable for any
given number of energy units. Specifically, inner and outer
bounds on the achievable rates are derived, and shown via
numerical results to coincide if the number of energy units is
large enough.
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A few additional remarks are in order. The model that we
consider here is different from a conventional setting in which
a conventional total average cost constraint is imposed on the
two nodes (see e.g., [1]). Indeed, a cost constraint does not
entail any memory in the system, whereas, in the set-up at
hand of information exchange, the current transmissions affect
the available energy in the next time instants. The model is
more related to recent works that analyze communication in
the presence of energy harvesting (see [5] and the references
therein). However, in those works, one assumes that the
energy is harvested from the environment in a way that is
not affected by the communication process. Instead, here, the
energy available at a node depends on the previous actions of
all other nodes involved in the communication process.

Notation: [m,n] = {m,m+1, ..., n} for integersm ≤ n; N
is the set of integer numbers; NotationsH(X) andH(p(x))
are both used to denote the entropy of a random vector with
distributionp(x); If the distribution isBern(p) we will also
write H(p) for the entropy. Capital letters denote random
variables and the corresponding lowercase quantities denote
specific values of the random variables.

II. SYSTEM MODEL

We consider the binary and noiseless two-way system
illustrated in Fig. 1, in which the total number ofenergy
units in the system is limited to a finite integer number
U ≥ 1. At any given time instanti, with i ∈ [1, n], the
stateof the system(U1,i, U2,i) ∈ N

2 is given by the current
energy allocation between the two nodes. Specifically, a state
(U1,i, U2,i) indicates that at thei-th channel use there areUj,i

energy units at Nodej, with j = 1, 2. Since we assume that
U1,i+U2,i = U for each channel usei ∈ [1, n] (i.e., no energy
losses occur), then we will refer toU1,i as the state of the
system, which always imply the equalityU2,i = U− U1,i.

At any channel usei ∈ [1, n], each Nodej can transmit
either symbolXj,i = 0 or symbolXj,i = 1, and transmission
of a “1” costs one energy unit, while symbol “0” does
not require any energy expenditure. Therefore, the available
transmission alphabet for Nodej, j = 1, 2 during thei−th
channel use is

Xu = {0, 1} if Uj,i = u ≥ 1

andX0 = {0} if Uj,i = 0, (1)

so thatXj,i ∈ Xu if Uj,i = u energy units are available at
Node j. The channel is noiseless so that the received signals
at channel usei are given by

Y1,i = X2,i andY2,i =X1,i (2)

for Node 1 and Node 2, respectively.
Transmission of a “1” transfers one energy unit from the

sender node to the recipient node. Therefore, the state of Node
1 for i ∈ [1, n] evolves as follows

U1,i = (U1,i−1 −X1,i−1)
+ +X2,i−1, (3)

where we setU1,1 = u1,1 ≤ U as some initial state and
U2,i = U − U1,i. We observe that the current stateU1,i is

a deterministic function of the numberU of total energy units,
of the initial stateU1,1 and of the previously transmitted
signalsX i−1

1 and X i−1
2 . We also note that both nodes are

clearly aware of the state of the system at each time since
U1,i + U2,i = U is satisfied for each channel usei.

Node 1 has messageM1, uniformly distributed in the set
[1, 2nR1], to communicate to Node 2, and similarly for the
messageM2 ∈ [1, 2nR2] to be communicated between Node
2 and Node 1. ParametersR1 and R2 are the transmission
rates in bits per channel use (c.u.) for Node 1 and for
Node 2, respectively. We use the following definitions for an
(n,R1, R2,U) code. Specifically, the code is defined by: the
overall number of energy unitsU; two sequences of encoding
functions, namely, for Node 1, we have functionsf1,i for
i ∈ [1, n], which map the messageM1 and the past received
symbolsX i−1

2 (along with the initial state) into the currently
transmitted signalX1,i ∈ XU1,i

; similarly, for Node 2, we have
functionsf2,i for i ∈ [1, n], which map the messageM2 and
the past received symbolsX i−1

1 (along with the initial state)
into the currently transmitted signalX2,i ∈ XU2,i

; and two
decoding functions, namely, for Node 1, we have a functiong1,
which maps all received signalsXn

2 and the local messageM1

into an estimateM̂1 of messageM2; and similarly, for Node
2, we have a functiong2, which maps all received signalsXn

1

and the local messageM2 into an estimateM̂1 of message
M1. We require that the estimated messages be equal to the
true messages given the noiseless nature of the channel for
any initial stateU1,1 = u1,1 ≤ U.

We say that rates (R1, R2) are achievable withU energy
units if there exists an(n,R1, R2,U) code for all sufficiently
largen. We are interested in studying the closure of the set of
all the rate pairs(R1, R2) that are achievable withU energy
units, which we refer to as capacity regionC(U).

III. A CHIEVABLE RATES

In this section, we consider various communication strate-
gies. We start by the simplest, but intuitively important, case
with U= 1, and we then generalize toU> 1.

A. U= 1 Energy Unit

We start with the special case of one energy unit (U = 1)
and assume the initial stateu1,1 = 1, so that the energy unit is
initially available at Node 1. The other case, namelyu1,1 = 0,
can be treated in a symmetric way. In this setting, during each
channel use, “information” can be transferred only from the
node where the energy unit resides towards the other node,
and not vice versa, since the other node is forced to transmits
the “0” symbol. This suggests that, whenU = 1, the channel is
necessarily used in a time-sharing manner, and thus the sum-
rate is at most one bit per channel use. The first question is
whether the sum-rate of 1 bit/c.u. is achievable, and, if so,
which strategy accomplishes this task.

1) A Naïve Strategy:We start with a rather naïve encoding
strategy that turns out to be insufficient to achieve the upper
bound of 1 bit/c.u.. The nodes agree on a frame sizeF = 2b >
1 channel uses for some integerb and partition then channel



uses inn/F frames (assumed to be an integer for simplicity).
The node that has the energy unit at the beginning of the frame
communicatesb = log2 F bits to the other node by placing
the energy unit in one specific channel use among theF = 2b

of the frame. This process also transfers the energy unit to
the other node, and the procedure is repeated. The sum-rate
achieved by this scheme is

R1 +R2 =
log2 F

F
[bits/c.u.], (4)

which is rather inefficient: the maximum is achieved withF =
2, leading to a sum-rate ofR1 +R2 = 1/2 bits/ c.u..

The previous strategy can be easily improved by noting
that the frame can be interrupted after the channel use in
which the energy unit is used, since the receiving node can
still decode the transmittedb bits. This strategy corresponds
to using a variable-length channel code. Specifically, we can
assign, without loss of optimality within this class of strategies,
the codeword “01” to information bit “0” and the codeword
“1” to bit “1”. The average number of channel uses per bit
is thus 1/2 + 1/2·2 = 3/2 . Therefore, the overall number
of channel uses necessary for the transmission ofm bits is
upper bounded by3m2 +mǫ with arbitrarily small probability
for largem by the weak law of large numbers (see, e.g., [1]).
It follows that an achievable sum-rate is given by

R1 +R2 =
1

3/2
=

2

3
, (5)

which is still lower than the upper bound of 1 bit/c.u..
2) An Optimal Strategy:We now discuss a strategy that

achieves the upper bound of1 bit/c.u.. The procedure is based
on time-sharing, as driven by the transfer of the energy unit
from one to the other node. Specifically, each Nodej has
m bits of informationbj,1, ..., bj,m. Since the initial state is
u1,1 = 1, Node 1 is the first to transmit: it sends its information
bits, starting withb1,1 up until the first bit that equals “1”.
Specifically, assume that we haveb1,1 = b1,2 = · · · b1,i1−1 = 0
andb1,i1 = 1. Thus, in thei1−th channel use the energy unit
is transferred to Node 2. From the(i1 + 1)−th channel use,
Node 2 then starts sending its first bitb2,1 and the following
bits until the first bit equal to “1”. The process is then repeated.
It is easy to see that the total time required to finalize this two-
way communication is constant and equal to2m and thus the
achieved sum-rate is equal toR1 +R2 = 1 bit/c.u..

B. U > 1 Energy Units

In the sum-capacity strategy discussed above withU = 1
energy unit, both nodes transmit equiprobable symbols “0”
and “1”. When there areU > 1 energy units in the system,
maximizing the sum-capacity generally requires a different
approach. Consider the scenario withU = 2 energy units:
now it can happen that both energy units are available at one
node, say Node 1. While Node 1 would prefer to transmit
equiprobable symbols “0” and “1” in order to maximize the
informationflow to the recipient, one must now also consider
theenergyflow: privileging transmission of a “1” over that of
a “0” makes it possible to transfer energy to Node 2, leading

to a state in which both nodes have energy for the next channel
use. This might be beneficial in terms of achievable sum-rate.

Based on this insight, in the following, we propose a coding
strategy that employs rate splitting and codebook multiplexing.
The strategy is a natural extension of the baseline approach
discussed above for the caseU = 1. Each Nodej constructs
U codebooks, namelyCj|u, with u ∈ [1,U], where codebook
Cj|u is to be used when the Nodej has u energy units.
Each codebookCj|u is composed of codewords that all have
a specific fractionp1|u of “1” symbols. The main idea is that,
when the numberu of available energy units is large, one
might prefer to use a codebook with a larger fractionp1|u of
“1” symbols in order to facilitate energy transfer.

Proposition 1. The rate pair(R1, R2) satisfying

R1 ≤
U
∑

u=1

πuH(p1|u)

andR2 ≤
U
∑

u=1

πuH(p2|u) (6)

for some probabilities0 < p1|u, p2|u < 1, u = 1 . . .U, with
p1|0 = p2|U = 0, is included in the capacity regionC(U),
where the probabilitiesπu ≥ 0, u = 0 . . .U satisfy the fixed-
point equations

πu = πu(φ0,0|u + φ1,1|u) + πu−1φ0,1|u + πu+1φ1,0|u (7)

with π−1 = πU+1 = 0,
∑U

u=1 πu = 1, and we have defined

φ0,0|u = (1− p1|u)(1 − p2|U−u)

φ0,1|u = (1− p1|u)p2|U−u

φ1,0|u = p1|u(1− p2|U−u)

andφ1,1|u = p1|up2|U−u. (8)

This proposition is proved by resorting to random coding argu-
ments, whereby codebookCj|u is generated with independent
and identically distributed (i.i.d.)Bern(pj|u). As introduced
above, the idea is that, when the state isU1,i = u, Node
j transmits a symbol from the codebook associated with that
state, namely codebookC1|u for Node1 and codebookC2|U−u

for Node 2 (which hasU− u energy units). Both nodes know
the current stateU1,i and thus can demultiplex the codebooks
at the receiver side. According to the random coding argument,
the stateU1,i evolves according to a Markov chain: the system
stays in the same stateu with probabilityφ0,0|u+φ1,1|u (both
nodes transmit “0” or “1”), changes to the stateu + 1 with
probabilityφ1,0|u (Node 1 transmits a “1” and Node 2 a “0”)
or changes to the stateu − 1 with probability φ0,1|u (Node
1 transmits a “0” and Node 2 a “1”). The definition of the
conditional probabilities (8) reflects the fact that the codebooks
are generated independently by the two nodes. A full proof is
given in Appendix A.

IV. OUTER BOUNDS

In this section, we derive an outer bound to the capac-
ity region C(U). To set up the notation, for a given joint



distribution φx1,x2|u ≥ 0, conditional on some valueu,
with x1, x2 ∈ {0, 1} and

∑

x1,x2∈{0,1} φx1,x2|u = 1, we

define the marginal distributionsφx1|u =
∑1

x2=0 φx1,x2|u and
φx2|u =

∑1
x1=0 φx1,x2|u, and the conditional distributions

φx1|x2,u = φx1,x2|u/φx2|u andφx2|x1,u = φx1,x2|u/φx1|u, for
x1, x2 ∈ {0, 1}.

Proposition 2. If the rate pair (R1, R2) is included in
the capacity regionC(U), then there exist probabilities
πu ≥ 0 with

∑U

u=1 πu = 1, and φx1,x2|u ≥ 0 with
∑

x1,x2∈{0,1} φx1,x2|u = 1 for all u ∈ {0, 1, ...,U}, such that
φ1,x2|0 = 0 for x2 ∈ {0, 1}, φx1,1|U = 0 for x1 ∈ {0, 1},
condition (7) is satisfied, and the following inequalities hold

R1 ≤
U
∑

u=0

πu

1
∑

x2=0

φx2|uH
(

φ1|x2,u

)

(9)

R2 ≤
U
∑

u=0

πu

1
∑

x1=0

φx1|uH
(

φ1|x1,u

)

(10)

andR1 +R2 ≤
U
∑

u=0

πuH
(

φx1,x2|u

)

. (11)

The outer bound above can be interpreted as follows. Suppose
that, when the state isU1,i = u, the nodes were allowed
to choose their transmitted symbols according to ajoint
distributionφx1,x2|u = Pr[X1,i = x1, X2,i = x2]. Note that
this is unlike the achievable strategy described in the previous
section in which the codebook were generated independently.
Intuitively, allowing for correlated codebooks, leads to alarger
achievable rate region, as formalized by Proposition 2, whose
proof can be found in Appendix B.

V. NUMERICAL RESULTS

Fig. 2 compares the achievable sum-rate obtained from
Proposition 1 and the upper bound (11) on the sum-rate
obtained from Proposition 2 versus the total number of energy
units U. As for the achievable sum-rate, we consider both a
conventional codebook design in which the same probability
pj|u = 0.5 is used irrespective of the stateU1.i = u, and
one in which the probabilitiespj|u are optimized. It can be
seen that using conventional codebooks, which only aim at
maximizing information flow on a single link, leads to sub-
stantial performance loss. Instead, the proposed strategywith
optimized probabilitiesp∗j|u, which account also for the need
to manage the energy flow in the two-way communication
system, performs close to the upper bound. The latter is indeed
achieved whenU is large enough.

A remark on the optimal probabilitiesp∗j|u is in order. Due
to symmetry, it can be seen that we havep∗1|u = p∗2|U−u.
Moreover, numerical results show thatp∗1|u increases mono-
tonically asu goes from0 to U, such thatp∗

1,U
> 0.5. In

particular, when the number of statesU + 1 is odd, it holds
that p∗1,U/2 = p∗2,U/2 = 0.5. It is finally noted that the energy
neutral transitions (both nodes emitting “0” or both emitting
“1”) occur with equal probability (i.e.,(1− p∗1,u)(1− p∗2,u) =
p∗1,up

∗
2,u).
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Figure 2. Achievable sum-rate obtained from Proposition 1 and upper bound
(11) versus the total number of energy unitsU.

VI. CONCLUSION

In resource-constrained systems in which the resources
(e.g., energy) used for communication can be “recycled”,
new performance trade-offs arise due the need to balance
the maximization of the information flow with the resulting
resource exchange among the communicating nodes. This
paper has illustrated this aspect by studying a simple two-way
communication scenario with noiseless channels and limited
resources. Various extensions of this work are of interest,
including a generalization to a scenario with energy losses.

APPENDIX A
PROOF OFPROPOSITION1

1) Code construction:We generateU codebooks for each
Node j = 1, 2, namely Cj|u, with u ∈ [1,U]. The code-
book Cj|u for u > 0 hasKj,u codewords, each consisting
of nj,u symbols x̃j,u,l ∈ {0, 1}, which are randomly and
independently generated asBern(pj|u) variables, withl =
1, 2, ..., nj,u and nj,u = nδj,u, for some0 ≤ δj,u < 1. We
denote the codewords as̃xnj,u

j,u (mj,u) with mj,u ∈ [1,Kj,u].
Note that the parameterδj,u does not depend onn, and hence,
if n → ∞, then we havenj,u → ∞ for all j, u. We set
2nRj =

∏U

u=1 Kj,u, while the relations among the remaining
parameters (Kj,u,δj,u,pj|u) will be specified below.

2) Encoding: Each node performs rate splitting. Namely,
given a messageMj ∈ [1, 2nRj ], Node j finds a U−tuple
[mj,1, ...,mj,U] with mj,u ∈ [1,Kj,u] that uniquely repre-
sentsMj . This is always possible since we have2nRj =
∏U

u=1 Kj,u. Then, the selected codewords̃xnj,u

j,u (mj,u) for
u ∈ [1,U] are transmitted via multiplexing based on the
current available energy. Specifically, each Nodej initializes
U pointerslj,1 = lj,2 = · · · = lj,U = 1 that keep track of the
number of symbols already sent from codewordsx̃

nj,1

j,1 (mj,1),

x̃
nj,2

j,2 (mj,2), ..., x̃
n
j,U

j,U
(mj,U), respectively. At channel usei,

if the state isU1,i = u, then the nodes operate as follows.



• Node 1: If u = 0, thenx1,i = 0. Else, if l1,u ≤ n1,u,
Node 1 transmitsx1,i = x̃1,u,l1,u(m1,u) and increments
the pointerl1,u by 1. Finally, if l1,u = n1,u+1 the pointer
v1,u is not incremented, and the transmitter usesrandom
padding, i.e., it sendsx1,i = 1 with probabilityp1,u and
x1,i = 0 otherwise.

• Node 2: Ifu = U (i.e., no energy is available at Node 2),
thenx2,i = 0. Else, ifl2,U−u ≤ n2,U−u, Node2 transmits
x2,i = x̃2,U−u,2,l

2,U−u
(m2,U−u) and increments the

pointer l2,U−u by 1. Finally, if l2,U−u = n2,U−u + 1,
the pointerl2,U−u is not incremented, and Node 2 sends
x2,i = 1 with probabilityp2,U−u andx2,i = 0 otherwise.

The random padding method used above is done for technical
reasons that will be clarified below.

3) Decoding: We first describe the decoding strategy for
Node 2. By construction, the nodes are aware of the state
sequenceUn

1 , and thus can determine the ordered set

Nu = {i|U1,i = u}, (12)

of channel use indices in which the state isu with u ∈ [0,U].
For all u ∈ [1,U], if |Nu| ≥ n1,u, then Node 2 takes the
first n1,u indices iu,1 < iu,2 < · · · < iu,n1,u

from the set
Nu and obtains the list of messagesm1,u ∈ [1,K1,u] that
satisfy x̃1,u,k(m1,u) = x1,iu,k

for all k ∈ [1, n1,u]. Note that
the list cannot be empty due to the fact that the channel is
noiseless. However, it contains more than one message, or if
|Nu| < n1,u, then Node 2 puts out the estimatêm1,u = 1.
Instead, if the list contains only one messagem1,u, then Node
2 setsm̂1,u = m1,u. Finally, the message estimate is obtained
asm̂1 = [m̂1,1, ..., m̂1,U].

Node 1 operates in the same way, with the only caveat that
theuth codebookC2|u of Node 2 is observed at channel uses
in the setNU−u for u ∈ [1,U].

4) Analysis:We evaluate the probability of error on average
over the messages and the generation of the codebooks,
following the random coding principle. From the definition of
the decoders given above, the event that any of the decoders is
in error is included in the setE =

⋃

j=1,2

⋃U

u=1(E
(1)
j,u ∪ E

(2)
j,u ),

where: (i) E
(1)
j,u is the event that|Nu| < n1,u for j = 1 and

that |NU−u| < n2,u for j = 2, that is, that the number of
channel uses in which the system resides in the state in which
the codeword̃xnj,u

j,u (mj,u) from the codebookCj,u is sent is

not sufficient to transmit the codeword in full; (ii ) E
(2)
j,u is

the event that two different messagesm′
j,u,m

′′
j,u ∈ [1,Kj,u]

are represented by the same codewords, i.e.,x̃
n1,u

j,u (m′
j,u) =

x̃
n,1u

1,u (m′′
1,u).

The probability of error can thus be upper bounded as

Pr[E ] ≤
2

∑

j=1

U
∑

u=1

(

Pr[E
(1)
j,u ] + Pr[E

(2)
j,u ]

)

. (13)

In the following, we evaluate upper bounds on this terms.
It immediately follows from the packing lemma of [1] that

Pr[E
(2)
j,u ] → 0 asnj,u → ∞ as long as

log2 Kj,u

nj,u
< H(pj|u)− δ(ǫ) (14)

with δ(ǫ) → 0 as ǫ → 0. For analysis of the probabilities
Pr[E

(1)
j,u ], we observe that, under the probability measure

induced by the described random codes, the evolution of the
stateU1,i across the channel usesi ∈ [1, n] is a Markov
chain withU+1 states. Specifically, the chain is a birth-death
process, since, if the state isU1,i = u in channel usei, the next
stateU1,i+1 can only be eitheru−1 oru+1. More precisely, let
qu|w = Pr(U1,i+1 = u|U1,i = w) be the transition probability.
Note that, due to the use of random padding, the transition
probability qu|w remains constant during alln channel uses,
so that the Markov chain is time-invariant.

We now elaborate on the Markov chainU1,i. To this end,
we first define asφx1,x2|u, wherex1, x2 ∈ {0, 1} be the joint
probability that Node 1 transmitsX1,i = x1 and Node 2
transmitsX2,i = x2 during the i−th channel use in which
the state isU1,i = u. Specifically, from the way in which the
codebooks are generated, we have (). We can now write the
non-zero values of the transition probabilityqu|w as follows:

qu,u−1 = φ1,0|u qu,u+1 = φ0,1|u

qu,u = 1− qu,u−1 − qu,u+1 (15)

With a slight abuse of the notation and noting thatφ1,0|0 =
φ1,1|0 = 0 andφ0,1|U = φ1,1|U = 0 the expressions above also
represent the transitions for the two extremal statesu = 0 and
u = U, as they implyq0|−1 = 0 andqU|U+1 = 0.

If p1,0 = p2,0 = 0 and 0 < p1,u, p2,u < 1 for all u > 0,
then it can be seen that the Markov chain is aperiodic and
irreducible, and thus there exist a unique set of stationary
probabilitiesπ0, π1, · · · , πU, which are given by solving the
linear system, defined by takingU equations of type (7) for
u = 0 . . .U− 1 and adding the condition

∑U

u=0 πu = 1.

We are now interested in the statistical properties of the set
|Nu| of channel uses in which the state satisfiesU1 = u. Using
the ergodic theorem and the strong law of large numbers [6,
Theorem 1.10.2], it can be shown thatlimn→∞

Vu(n)
n = πu

with probability 1. Therefore, if we choose:

l1,u = l2,U−u = n(πu − ǫ) (16)

thenPr[E
(2)
1,u] = Pr[E

(2)

2,U−u
] can be made arbitrarily close to

0 asn → ∞. This concludes the proof.

APPENDIX B
PROOF OFPROPOSITION2

Consider any(n,R1, R2,U) code with zero probability of
error, as per our definition of achievability in Sec. II. We have



the following inequalities:

nR1 = H(M1) = H(M1|M2, U1,1 = u1,1)

(a)
= H(M1, X

n
1 , U

n
1 |M2, U1,1 = u1,1)

(b)
= H(Xn

1 , U
n
1 |M2, U1,1 = u1,1) (17)

=

n
∑

i=1

H(X1,i, U1,i|X
i−1
1 , U i−1

1 ,M2, U1,1 = u1,1)

=

n
∑

i=1

H(U1,i|X
i−1
1 , U i−1

1 ,M2, U1,1 = u1,1) (18)

+H(X1,i|X
i−1
1 , U i

1,M2, U1,1 = u1,1) (19)

(c)
=

n
∑

i=1

H(X1,i|X
i−1
1 , U i

1,M2, U1,1 = u1,1) (20)

(d)

≤
n
∑

i=1

H(X1,i|U1,i, X2,i) (21)

(e)
= H(X1|U1, X2, Q) (22)

≤ H(X1|U1, X2), (23)

where (a) follows sinceXn
1 , U

n
1 are functions ofM1,M2 and

u1,1; (b) follows sinceH(M1|Xn
1 , U

n
1 ,M2, U1,1 = u1,1) = 0

holds due to the constraint of zero probability of error;
(c) follows sinceU1,i is a function ofX i−1

1 ,M2 and u1,1;
(d) follows by conditioning reduces entropy; (e) follows by
defining a variableQ uniformly distributed in the set[1, n]
and independent of all other variables, along withX1 = X1Q,
X2 = X2Q andU1 = U1Q.

Similar for nR2 we obtain the boundnR1 ≤
H(X1|U1, X2). Moreover, for the sum-rate, similar steps lead
to

n(R1 +R2) = H(M1,M2) = H(M1,M2|U1,1 = u1,1)

= H(M1M2, X
n
1 , X

n
2 , U

n
1 |U1,1 = u1,1)

= H(Xn
1 , X

n
2 , U

n
1 |U1,1 = u1,1)

=

n
∑

i=1

H(U1,i|X
i−1
1 , X i−1

2 , U i−1
1 ,M2, U1,1 = u1,1)

+H(X1,i, X2,i|X
i−1
1 , X i−1

2 , U i
1,M2, U1,1 = u1,1)

≥
n
∑

i=1

H(X1,i, X2,i|U1,i)

= H(X1, X2|U1). (24)

Let us now defineπu = Pr[U1 = u] and φx1,x2|u =
Pr[X1 = x1, X2 = x2|U1 = u] for i, j ∈ {0, 1} and for
all u1 ∈ {0, 1, ...,U}. Probability conservation implies that the
relationship (7) be satisfied. This concludes the proof.
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