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Layering As Optimization Decomposition: 
Framework and Examples 

Mung Chiang, Steven H. Low, A. Robert Calderbank, John C. Doyle 

Abstract-Network protocols in layered architectures have his­
torically been obtained primarily on an ad-hoc basis. Recent re­
search has shown that network protocols may instead be holis­
tically analyzed and systematically designed as distributed solu­
tions to some global optimization problems in the form of Net­
work Utility Maximization (NUM), providing insight into what 
they optimize and structures of the network protocol stack. This 
paper presents a short survey of the recent efforts towards a sys­
tematic understanding of 'layering' as 'optimization decomposi­
tion', where the overall communication network is modeled by a 
generalized NUM problem, each layer corresponds to a decom­
posed subproblem, and the interfaces among layers are quantified 
as functions of the optimization variables coordinating the sub­
problems. Different decompositions lead to alternative layering 
architectures. We summarize several examples of horizontal de­
composition into distributed computation and vertical decomposi­
tion into functional modules such as congestion control, routing, 
scheduling, random access, power control, and coding. 

Keywords: Cross-layer design, Distributed algorithm, La­
grange duality, Network utility maximization, Optimization, 
Reverse engineering, TCP/IP, Wireless ad hoc networks. 

I. INTRODUCTION 

Layered architectures are one of the most fundamental and 
influential structures of network design. Each layer in the pro­
tocol stack hides the complexity of the layer below and provides 
a service to the layer above. While the general principle of lay­
ering is widely recognized as one of the key reasons for the 
enormous success of data networks, there is little quantitative 
understanding on a systematic, rather than an ad hoc, process 
of designing layered protocol stack for wired and wireless net­
works. One possible perspective to rigorously and holistically 
understand layering is to integrate the various protocol layers 
into a single coherent theory, by regarding them as carrying out 
an asynchronous distributed computation over the network to 
implicitly solve a global optimization problem. Different lay­
ers iterate on different subsets of the decision variables using 
local information to achieve individual optimality. Taken to­
gether, these local algorithms attempt to achieve a global ob­
jective. Such a framework of 'layering as optimization decom­
position' exposes the interconnection between protocol layers 
and can be used to study rigorously the performance tradeoff in 
protocol layering, as different ways to distribute a centralized 
computation. Even though the design of a complex system will 
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always be broken down into simpler modules, this theory will 
allow us to systematically carry out this layering process and 
explicitly trade off design objectives, which will be particularly 
useful to wireless ad hoc networks. 

The key idea in 'layering as optimization decomposition' is 
as follows. Different decompositions of an optimization prob­
lem, in the form of a generalized Network Utility Maximiza­
tion (NUM), are mapped to different layering schemes in a 
communication network, with each decomposed subproblems 
in a given decomposition scheme corresponding to a layer, and 
functions of primal or Lagrange dual variables coordinating the 
subproblems corresponding to the interfaces among the layers. 
Since different decompositions correspond to alternative layer­
ing architectures, we can also tackle the question 'how to and 
how not to layer' by investigating the pros and cons of decom­
position techniques. Furthermore, by comparing the objective 
function values under various forms of optimal decompositions 
and suboptimal decompositions, we can seek 'separation the­
orems' among layers: conditions under which strict layering 
incurs no loss of optimality. Robustness of these separation 
theorems can be further characterized by sensitivity analysis in 
optimization theory: how much will the differences in the ob­
jective value (between different layering schemes) fluctuate as 
constant parameters in utility maximization are perturbed. 

II. STRUCTURES OF NETWORK PROTOCOL STACK 

The approach of 'protocol as a distributed solution' to some 
global optimization problem in the form of NUM has been 
successfully tested in trials for Transmission Control Protocol 
(TCP) [12]. The key innovation from this line of work [13], 
[14], [15], [20], [21], [22], [27] is to view TCP/IP network as an 
optimization solver and each variant of congestion control pro­
tocol as a distributed algorithm solving a specified NUM. Other 
recent results also show how to reverse engineer contention­
based Medium Access Control (MAC) protocols into game­
theoretic selfish utility maximization. 

These reverse engineering successes provide one of the justi­
fications to employ generalized versions ofNUM for systematic 
cross-layer design. Furthermore, specific needs of applications 
and elasticity of traffic can both be modeled through general 
utility functions. As optimization's objective, utility functions 
provide a metric to define optimality of resource allocation ef­
ficiency, and different shapes of utility functions also lead to 
different notions of fairness (e.g., a-fair utilities parameterized 
by a> O: U(x) = (1 - a)- 1x 1-a [22]). 

While application needs form the objective function, i.e., net­
work utility to be maximized, restrictions in the communication 



infrastructure are translated into many constraints of a general­
ized NUM problem. Such problems may be very difficult non­
linear, nonconvex optimization with integer constraints. There 
are many different ways to decompose a given problem, each 
of which corresponds to a different layering architecture. These 
decomposition, i.e., layering schemes, have different trade-offs 
in efficiency, robustness, and asymmetry of information and 
control, thus some are 'better' than others depending on the 
criteria set by the network users and managers. 

As evidenced by the large and ever growing number of papers 
on cross layer design over the last few years, we expect that 
there will be no shortage of cross layer ideas based on piece­
meal approaches. What seems to be lacking is a level ground 
for fair comparison among the variety of cross layer designs, a 
unified view on how to and how not to layer, basic principles 
rigorously quantified, and fundamental limits on the impacts of 
layer-crossing on network performance and robustness metrics. 
'Layering as optimization decomposition' provides a candidate 
for such a unified framework. What is unique about this frame­
work is that it puts the end user application needs as the opti­
mization objective, provides the globally optimal performance 
benchmark (since the optimal solution of a generalized NUM 
problem is independent of how the problem is decomposed), 
and leads to a systematic design of decomposed solution to at­
tain the benchmark. The power of this framework has been 
illustrated through many case studies (four of which are sum­
marized in Section IV) carried out by various groups in the last 
couple of years (an incomplete list include [l], [2], [3], [4], [6], 
[7], [11], [16], [17], [18], [19], [23], [25], [26], [29], [30], [31], 
[32]), generating considerable general insights in addition to the 
specific cross-layer designs. 

Ill. REVERSE ENGINEERING LAYERS 2-4 PROTOCOLS 

Widely used network protocols, such as TCP, BGP, and IEEE 
802.11 MAC, were designed based primarily on engineering 
intuitions and ad hoc heuristics. Surprisingly, it has recently 
been shown that TCP congestion control protocols are in fact 
implicitly solving the basic NUM problem e.g., summarized in 
[20], [27], BGP inter-domain routing is implicitly solving a Sta­
ble Path Problem [10], and random access control protocols are 
implicitly using stochastic subgradient to participate in a non­
cooperative game [17], [28]. These reverse engineering results 
put network protocol for the first time on a rigorous and sys­
tematic foundation, and also provide a strong evidence that the 
mathematics of distributed optimization has a relevant and im­
portant role to play in networking. 

A. TCP congestion control solves the basic NUM 

First consider a wired communication network with L links, 
each with a fixed link capacity of c1 bps, and S sources (i.e., end 
users), each transmitting at a source rate of x 8 bps. Each source 
emits one flow, using a fixed set L( s) of links in its path, and 
has a utility function Us ( x s). The basic NUM is the following 
problem formulated in the seminal work [13] by Kelly et. al.: 

maximize 
subject to 

2=s Us(xs) 

2=s:lEL(s) Xs ::; Cz' \I[, 
(1) 
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where the variables are x, the source rate vector. 
The above basic NUM and its generalizations have recently 

been applied to study a variety of resource allocation prob­
lems in networks, in particular, Internet rate allocation through 
TCP congestion control protocols. The key innovation is to re­
verse engineer source rates as primal variables, link congestion 
prices as dual variables, and a TCP-AQM protocol as a dis­
tributed algorithm over the Internet to solve an implicit, global 
utility maximization in the form of NUM ( 1) and its Lagrange 
dual problem. Different TCP-AQM protocols solve for differ­
ent utility functions using different link prices, which are im­
plicitly feedback from links to sources. This model implies that 
the equilibrium properties of a large network under TCP/ AQM 
control, such as throughput, delay, queue lengths, loss proba­
bilities, and fairness, can be readily understood by studying the 
underlying NUM. 

B. MAC contention resolution participates in a non­
cooperative game 

Currently, the Distributed Coordination Function (DCF) is 
the standardized MAC protocol in IEEE 802.11. However, 
it has been concluded by many researchers that DCF and its 
Binary Exponential Backoff (BEB) mechanism for contention 
resolution can be inefficient and unfair in face of location­
dependent contentions. Various new algorithms have been de­
veloped to tackle these issues. To better understand the BEB 
protocol in wireless MAC, we pose the following question: are 
the distributed and selfish actions by each link in the BEB pro­
tocol in fact implicitly maximizing some local utility functions? 

It has been shown [17], [28] that the contention resolution 
algorithm in backoff-based random-access protocols is implic­
itly participating in a non-cooperative game. Each link attempts 
to maximize a selfish local utility function, whose exact shape 
is reverse engineered from the protocol description, through a 
stochastic subgradient method in which the link updates its per­
sistence probability based on its transmission success or failure. 
Existence of Nash equilibrium is guaranteed in general. The 
minimum amount of backoff aggressiveness needed for unique­
ness of Nash equilibrium and convergence of the best response 
strategy are established as a function of user density. Conver­
gence properties and connection with the best response strategy 
are also known for variants of the stochastic-subgradient-based 
dynamics of the game. 

This motivates the need for forward engineering: what kind 
of new distributed MAC algorithms will be provably conver­
gent to the global optimum of total network utility? After for­
mulating a probabilistic-modeled NUM problem for wireless 
MAC, we develop optimal algorithms to solve the NUM prob­
lem, and these algorithms are then turned into random access 
MAC protocols [17]. Through this design approach, optimality 
with respect to prescribed user utilities, which in tum determine 
protocol efficiency and fairness, is guaranteed. 

IV. FORWARD ENGINEERING: FOUR SAMPLES OF 

SYSTEMATIC CROSS-LAYER DESIGN 

In all four sample cases summarized below, a NUM problem 
that is more complicated than the basic NUM represents a more 



general networking problem encompassing more than the con­
gestion control function, and some functions of the Lagrange 
dual variables tum out to be the optimal 'layering variables'. 

A. Jointly optimal congestion control and adaptive coding 

Adaptive error correction channel coding in physical layer 
can change the 'pipe sizes' of communication channels, adding 
another dimension in the 'supply-demand' balance in NUM. 
Indeed, the entire concept of signal quality is absent from the 
basic NUM (1). The link 'capacities' c in (1) implicitly assume 
fixed decoding error probabilities Pe= {Pe,z}. In wireless net­
works, adaptive channel coding (including adaptive control be­
tween diversity-gain and multiplexing-gain in space-time cod­
ing) can change the rate-reliability tradeoff. A link can have a 
larger ct and accommodate more flows, by increasing its de­
coding error probability Pe,z, or vice versa. A source may 
transmit at a higher rate if the end-to-end signal quality is al­
lowed to degrade, i.e., the end-to-end decoding error probabil­
ity Pe,s ~ 2=tEL(s) Pe,l is larger. Of course, each source's 
utility depends on both rate X8 and reliability Pe,s· In [16], we 
develop distributed algorithms to obtain the globally optimal 
rate-reliability tradeoff in the following NUM, with nonconvex 
constraints over variables { X8 , Pe,l }: 

maximize 
subject to 

2=s Us(Xs,Pe,s) 
2=s:lEL(s) Xs ::; ct(Pe,z), \I[ 

(2) 

where each function ct ( Pe,t) represents a nonlinear, generally 
nonconcave, and rather complicated dependency of a link's at­
tainable throughput ct on the desired decoding error probability 
Pe,l · We show that, when each link provides the same decoding 
error probability for all flows through the link (an 'integrated' 
approach to dynamic reliability optimization), as in the formu­
lation (2), a new distributed algorithm that uses pricing on both 
rate and reliability can be proved to converge to global optimal­
ity, as long as the channel codes are strong enough. When each 
link provides different decoding error probabilities for different 
flows (a 'differentiated' reliability approach), which expands 
the model in (2), the problem becomes a nonconvex optimiza­
tion with coupling among the terms, even for strong channel 
codes. Using various decoupling techniques and change of vari­
able, convergence to a global optimum can be proved for utility 
functions whose curvature is sufficiently negative, i.e., if the 
traffic is elastic enough. 

B. Jointly optimal congestion and contention control 

In [17], we investigate joint end-to-end congestion control 
and per-link medium access control in ad-hoc wireless net­
works. Using a generalized NUM formulation, we can accom­
modate multi-class services as well as exploit the tradeoff be­
tween efficiency and fairness of resource allocation by adjusting 
the types of utility functions. 

We define Laut ( n) as a set of outgoing links from node n, 
and Nfo(l) as the set of nodes whose transmission cause in­
terference to the receiver of link l, excluding the transmitter 
node of link l. Each node decides to contend the medium with 
a persistence probability pn, with each of its outgoing link's 
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contention probability denoted as pz. The effective link ca­
pacity becomes a product form as in the following generalized 
NUM with both source rates { x s} and persistence probabilities 
{pz, pn} as optimization variables: 

maximize 
subject to 

2=s Us(xs) 
2=s lEL(s) Xs = Czpz f1kEN{

0
(l)(l - pk), \I[ 

2=tELaut(n)Pl = pn, \In 
0 ::; pn ::; 1, \In 

(3) 
Despite the inherent difficulties of nonconvexity and non­

separability of the optimization problem, we show that, again 
under curvature negativity conditions on utility functions, we 
can develop a distributed algorithm, with limited message pass­
ing, that converges to the globally and jointly optimal rate allo­
cation and persistence probabilities. These results can accom­
modate general concave utility function (the special case oflog­
arithmic utility function is readily separable [29]). Different 
from the other three sample case studies in this section, it is 
better to use a primal penalty function approach rather dual de­
composition in this case, the engineering implication of which 
is that global congestion control and local contention control 
can operate on the same timescale. 

C. Jointly optimal congestion control, routing, and scheduling 

In multihop ad hoc wireless networks, end-to-end conges­
tion control, routing, and scheduling among contending links 
are coupled. Route choices not only affect congestion control 
in the transport layer, but also determine schedulable regions 
at the physical layer. In [2], we model contention relations be­
tween wireless links as a conflict graph [24], which indicates 
the set of links that mutually interfere and cannot be active si­
multaneously. This determines a feasible rate region II. 

Consider an ad hoc wireless network with a set N of nodes 
and a set L of logical links. We assume fixed physical layer 
resource allocations so that each logical link l has a fixed ca­
pacity c1 when it is active. The feasible rate region at the link 
layer is the convex hull of the corresponding rate vectors of in­
dependent sets of the conflict graph. Let xf be the flow rate 
generated at node i for destination k. Let Ji~ be the amount of 
capacity of link ( i, j) allocated to the flows on that link for fi­
nal destination k. Consider the following generalized NUM in 
variables { x 8 } (where X 8 is a shorthand for xf) and {Ji~}: 

maximize 
subject to 

2=s Us(xs) 
xf ::; L:j (i,j)EL Ji~ - L:j (j,i)EL J t, Vi, j, k 
J E II. 

(4) 
After formulating the above joint congestion control and 

routing problem subject to schedulability constraint, we ap­
ply Lagrangian relaxation and dual decomposition and derive a 
distributed subgradient algorithm for joint congestion control, 
routing and scheduling. This leads to a jointly optimal cross­
layer design where a source adjusts its sending rate based on 
the congestion prices generated locally at the node, the back­
pressure from the differential price of neighboring nodes is used 
to perform optimal scheduling, and routing is automatically 



generated by the scheduling decision. We also prove that it con­
verges arbitrarily close to the system optimum, and remain sta­
ble and optimal (on average) when the schedulability constraint 
set is modulated by a Markov chain representing time-varying 
channels. 

D. TCP/IP interactions 

TCP reverse engineering assumes fixed routing { L( s)}. The 
routing is computed by variants of Internet Protocol (IP) and 
updated on a different timescale, based on traffic condition in 
the network. There is hence a feedback loop where IP routing 
decision at time t determines flow rates x(t) and congestion 
prices A.(t) through the capacity constraints in (1), and the con­
gestion prices A.( t) affects routing in the next time instance. 
First consider the case where TCP converges faster than each 
IP update. It is shown in [30] that an equilibrium of TCP/IP, 
if exists, indeed solves NUM over both source rates { x s} and 
routes { L ( s)}, provided congestion prices are used as link costs 
in the shortest-path computation. Since the routing matrix is 
discrete, the NUM problem is no longer a convex optimization 
problem. An equilibrium exists if and only if this NUM and 
its Lagrange dual have zero duality gap. In this case, TCP/IP 
incurs no penalty in not splitting traffic across multiple paths. 
When there is a non-zero duality gap, the gap can be interpreted 
as the penalty (in utility) in not splitting the traffic. In TCP/IP 
systems, the primal NUM problem is in general NP-hard, but 
the subclass of NUM that has zero duality gap is polynomial­
time solvable. 

In [11], we further consider three alternative timescale sep­
arations between TCP and IP dynamics, and examine the sta­
bility and optimality of each system. Analytic characterizations 
and simulation experiments demonstrate how the step size of 
the congestion-control algorithm affects the stability of the sys­
tem, and how the timescale of each control loop and homo­
geneity of link capacities affect system stability and optimality. 
In particular, the stringent conditions on capacity configuration 
for TCP/IP interaction to remain stable suggests that congestion 
price, on its own, would be a poor layering price for TCP and 
IP in practice. 

V. ALTERNATIVE DECOMPOSITIONS 

Master Problem 

First Level 
Decomposition 

Second Level 
Decomposition 

Fig. I. An example of a multilevel primal/dual decomposition with two levels. 

The basic idea of decomposition is to divide the original 
large problem into distributively solvable subproblems which 

55 

are then coordinated by a master problem by means of some 
kind of signalling. Most of the existing decomposition tech­
niques can be classified into primal decomposition and dual de­
composition methods. The former is based on decomposing the 
original primal problem, whereas the latter based on decom­
posing the Lagrange dual of the problem. Primal decomposi­
tion methods have the interpretation that the master problem 
directly gives each subproblem an amount of resources that it 
can use; the role of the master problem is then to properly al­
locate the existing resources. In dual decomposition methods, 
the master problem sets the price for the resources to each sub­
problem which has to decide the amount of resources to be used 
depending on the price; the role of the master problem is then 
to obtain the best pricing strategy. 

Almost all the papers in the vast, recent literature on NUM 
use a standard dual-based distributed algorithm. Contrary to the 
apparent impression in the community that such a decomposi­
tion is the only possibility, we show that [26] there are in fact 
many alternatives to solve a given network utility problem in 
different but all distributed manners, including multi-level and 
partial decompositions. Each of the alternatives provides a pos­
sibly different tradeoff among three important considerations: 
convergence speed, amount and asymmetry of message pass­
ing' s communication overhead, and architecture of distributed 
computation. There is no universally 'best' way to distribute 
the solution process across a network: which alternative is the 
most desirable depends on the specific problem formulation and 
application. 

VI. A MORE GENERAL EXAMPLE OF GENERALIZED NUM 
FOR WIRELESS NETWORKS 

We now summarize an example of generalized NUM for 
wireless ad hoc networks [4] that includes earlier examples as 
special cases. Notice again that the NUM problem formulation 
itself has no layering but it can be solved through a variety of 
layered algorithms through decompositions: 

maximize Li Ui(xi, Pe,i) + Lj Vj(wj) 
subject to Rx:::'. c(w, Pe), (5) 

xEC1(Pe), xEC2(F), 
RE R, FE F, w E W. 

Here, xi denotes the rate for source i and Wj denotes the phys­
ical layer resource at network element j. The utility functions 
Ui and Vj may be any nonlinear, monotonic functions. R is 
the routing matrix and c are the logical link capacities as func­
tions of both physical layer resources w and the desired decod­
ing error probabilities Pe· The issue of signal interference and 
power control can be captured in this functional dependency. 
The rates must also be constrained by the interplay between 
physical layer decoding reliability and upper layer error con­
trol mechanisms like ARQ in link layer. This constraint set is 
denoted as C1 (Pe)· The issue of rate-reliability tradeoff and 
coding is captured in this constraint. The rates are further con­
strained by the medium access success probability, represented 
by the constraint set C2 (F) where Fis the contention matrix. 
The issue of packet collision and medium access control is cap­
tured in this constraint. The sets of possible physical layer re­
source allocation schemes, of possible scheduling or contention 



based medium access schemes, and of single-path or multi-path 
routing schemes are represented by W, F, R, respectively. The 
optimization variables are x, w, Pe, R, F. Different specifica­
tions of 5 lead to various concrete problem statements. 

VII. CONCLUSION 

'Layering as optimization decomposition' is a unifying 
framework for understanding and designing distributed control 
and cross-layer resource allocation in wired and wireless net­
works. It has been developed by various research groups over 
the last several years, and is now emerging to provide a math­
ematically rigorous and practically relevant approach to quan­
tify the risks and opportunities of modifying existing layered 
network architecture. It shows that network protocols in lay­
ers 2, 3, and 4 can be reverse-engineered as implicitly solving 
some optimization-theoretic or game-theoretic problems. By 
distributively solving generalized NUM formulations through 
decomposed subproblems, we can systematically generate lay­
ered protocol stacks. There are many alternatives for both hori­
zontal decomposition into disparate network elements and ver­
tical decomposition into functional modules (i.e., layers). Sim­
ilarly, while queuing delay or buffer occupancy is often used as 
the 'layering price', it may sometimes lead to unstable interac­
tions. A variety of techniques to tackle coupling and noncon­
vexity issues in the objective and constraints have become avail­
able. A more detailed survey of recent efforts to establish 'lay­
ering as optimization decomposition' as a common 'language' 
for systematic network design can be found in [5]. 

While this short survey has focused on deterministic flow 
models, there has been progress on characterizing stability un­
der feedback delay and stochastic models at session, packet, 
and channel levels. Nonconcave utility maximization and 
heterogeneously-priced interactions have also been investigated 
recently. Many issues in this area remain open, however, es­
pecially on constructing utility functions, modeling of sophis­
ticated physical and link layer algorithms, and characterizing 
effects of stochastic models and transient behaviors. 

Industry adoption of 'layering as optimization decomposi­
tion' has already started. For example, insights from reverse­
engineering TCP has lead to an improved version of TCP im­
plemented over the last several years: FAST (Fast AQM Scal­
able TCP) [8], [12]. Putting end-user application utilities as the 
objective function has lead to a new way to leverage innova­
tions in the physical and link layer beyond the standard metrics 
of BER, e.g., in FAST (Frequency, Amplitude, Space, Time) 
Copper Project for fiber/DSL broadband access systems [9]. 
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