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Abstract—We consider the rack-aware storage system where
n= n̄u nodes are organized in n̄ racks each containing u nodes,
and any k= k̄u+u0 (0≤u0<u) nodes can retrieve the original
data file. More importantly, the cross-rack communication cost
is much more expensive than the intra-rack communication cost,
so that the latter is usually neglected in the system bandwidth.
The MSRR (minimum storage rack-aware regenerating) code is
an important variation of regenerating codes that achieves the
optimal repair bandwidth for single node failures in the rack-
aware model. However, explicit construction of MSRR codes for
all parameters were not developed until Chen&Barg’s work. In
this paper we present another explicit construction of MSRR
codes for all parameters that improve Chen&Barg’s construction
in two aspects: (1) The sub-packetization is reduced from (d̄−k̄+

1)n̄ to (d̄− k̄+1)
⌈ n̄

u−u0
⌉

where d̄ is the number of helper racks
that participate in the repair process; (2) The field size is reduced
to |F |>n which is almost half of the field used in Chen&Barg’s
construction. Besides, our code keeps the same access level as
Chen&Barg’s low-access construction.

Index Terms—Regenerating code, rack-aware storage, optimal
repair, sub-packetization.

I. INTRODUCTION

IN large-scale distributed storage systems, node failures

occasionally happen. A self-sustaining system should be

able to recover the data stored in failed nodes by downloading

data from surviving nodes. An important metric of repair

efficiency is the repair bandwidth, i.e., the total amount of data

transmitted during the repair process. Regenerating codes are

a kind of erasure codes used in distributed storage systems

that can optimize the repair bandwidth for given storage

overhead [1]. Particularly, the ones with the minimum storage,

i.e., MSR codes, are appealing in practice in spite of their

intricate constructions [2]–[5]. The main reason that MSR

codes can achieve the optimal repair bandwidth is dividing

the data stored in each node into sub-packets of which only

a fraction is downloaded from each helper node for repair.

The number of sub-packets stored in each node is termed

the sub-packetization. It has been proved that exponential

sub-packetization is necessary for MSR codes [6]. Since the

sub-packetization level is closely related to the implementa-

tion complexity of the underlying codes, reducing the sub-

packetization is significant in practice. Another metric of repair

efficiency is the volume of accessed data at the helper nodes

This work was supported in part by the National Key R&D Program of
China (No. 2020YFA0712300) and NSFC (No. 61872353).

which characterizes the disk I/O cost. MSR codes with both

the optimal-access property and near optimal sub-packetization

were built in [7].

The MSR code applies to a homogeneous distributed storage

model where all nodes as well as communication between

them are treated indifferently. However, modern data centers

often have hierarchical topologies by organizing nodes in

racks, where the cross-rack communication cost is much

more expensive than the intra-rack communication cost. This

motivates a number of studies that address the repair problem

for hierarchical data centers. In this work, we focus on the

rack-aware storage model defined as follows. Suppose n = n̄u
and the n nodes are organized in n̄ racks each containing u
nodes. A data file consisting of B symbols is stored across the

n nodes each storing α symbols such that any k = k̄u + u0

(0≤ u0 <u) nodes can retrieve the data file. To rule out the

trivial case, we assume throughout that k ≥ u 1. Suppose a

node fails. The repair process is to generate a replacement

node that stores exactly the data of the failed node. The rack

that contains the failed node is called the host rack. The repair

is based on the two kinds of communication below:

1) Intra-rack transmission. All surviving nodes in the host

rack transmit information to the replacement node.

2) Cross-rack transmission. Outside the host rack, d̄ helper

racks each transmit β symbols to the replacement node.

Since the cost of intra-rack communication is negligible com-

pared with that of the cross-rack communication, the nodes

within each rack can communicate freely without taxing the

system bandwidth. Consequently, the β symbols provided by

each helper rack are computed from the data stored in all

nodes in that helper rack, and the repair bandwidth γ only

dependents on the cross-rack transmission, i.e., γ = d̄β.

This rack-aware storage model was introduced in [9] [10].

Moreover, the authors of [10] derived a tradeoff between the

repair bandwidth and storage overhead for k̄ ≤ d̄ ≤ n̄−1. The

codes with parameters lying on the tradeoff curve are called

rack-aware regenerating codes. In particular, the minimum

storage rack-aware regenerating (MSRR) code has parameters:

α = B/k, β = α/(d̄− k̄ + 1) . (1)

1When k < u, a single node erasure can be trivially recovered by the u−1
surviving nodes within the same rack because they are sufficient to retrieve
the data file.
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sub-packetization α access per rack d̄ field size |F |

Z. Chen et al. [11] s̄n̄ u · s̄n̄−1 k̄ ≤ d̄ ≤ n̄− 1 n|(|F | − 1) and |F | ≥ n+ s̄− 1

H. Hou et al. [13] s̄⌈n̄/s̄⌉ s̄⌈n̄/s̄⌉−1 + (u− 1) · s̄⌈n̄/s̄⌉ d̄ = n̄− 1 |F | > kα
∑min{k,n̄}

i=1

(n−n̄
k−i

)(n̄
i

)

This paper s̄
⌈ n̄

u−u0
⌉

u · s̄
⌈ n̄

u−u0
⌉−1

k̄ ≤ d̄ ≤ n̄− 1 u|(|F |−1) and |F |>n

Table 1. Comparisons with existing constructions of (n = n̄u, k = k̄u + u0) MSRR codes where s̄ = d̄ − k̄ + 1.

Certainly B,α, β are all integers and α is called the sub-

packetization. On the one hand, codes with small sub-

packetization are preferred in practice due to the low com-

plexity in both the encoding and repair process. On the other

hand, α must be large enough to guarantee the existence of

MSRR codes for arbitrary n, k. It was proved in [11] that

(n = n̄u, k = k̄u, k̄ ≤ d̄ ≤ n̄− 1) optimal-access (i.e., the

symbols accessed on each helper rack are downloaded without

processing) MSRR codes exist only if α ≥ min{s̄
n̄

s̄u , s̄k̄−1},

where s̄= d̄−k̄+1.

The authors in [11] also developed the first explicit con-

structions of MSRR codes for all admissible parameters, i.e.,

n = n̄u, k = k̄u + u0 (0 ≤ u0 < u) and k̄ ≤ d̄ ≤ n̄−1 2.

However, their codes have sub-packetization s̄n̄, higher than

the proved lower bound. To our knowledge, no MSRR codes

attaining the bounds on sub-packetization have been derived

so far, even for the codes without the optimal-access property.

A. Contribution and related work

In this paper, we present an improved explicit construction

of MSRR codes for all admissible parameters. Our code

has sub-packetization s̄⌈
n̄

u−u0
⌉
, thus taking a step towards

shrinking the gap between realization and proved lower bound.

Moreover, we also reduce the field size almost by half.

Namely, in [11] the codes are built over a finite field F
satisfying n | (|F | − 1) and |F | > n+ s̄− 1, which results in

|F | ≥ 2n+1, while our code needs u | (|F |−1) and |F | > n
which results in |F | ≈ n.

In [10], after derivation of the parameters for MSRR codes,

the authors also discussed the construction. They designed spe-

cific structure for satisfying the optimal repair while leaving

the MDS property to the Schwartz-Zippel Lemma. As a result,

their constructions need some constraints on the parameters

and the finite fields being large enough.

The first explicit constructions of MSRR codes for all

admissible parameters were developed in [11]. Actually, two

constructions were derived where both have the same sub-

packetization level but the latter possesses lower access and

smaller field size. Thus we only list the parameters of the

second construction in [11] for comparison in Table 1. Note

that our code keeps the same access level as their low-access

construction, i.e., uα
s̄ symbols from each helper rack. Although

it is by a factor of u greater than the lower bound proved in

2These parameters coincide with the assumptions made when proving the
cut-set bound and deriving the MSRR code parameters in [10]. Thus in this
paper we regard this range as all admissible parameters for MSRR codes.

[11], it is the lowest access among all existing constructions

that are applicable to all admissible parameters.

In a recent work [13], Hou et al. present a coding framework

for converting any (n̄, k̄, d̄) MSR code into an (n = n̄u, k =
k̄u+u0, d̄) MSRR code with the same sub-packetization. How-

ever, for arbitrary n̄ and k̄ all existing explicit constructions

of (n̄, k̄, d̄) MSR codes have sub-packetization s̄n̄ except the

ones in [7], [14] that have sub-packetization s̄⌈
n̄

s̄
⌉ but only

apply to d̄ = n̄− 1. By using the conversion framework,

an (n, k, d̄ = n̄− 1) MSRR code is obtained. However, the

conversion again relies on the Schwartz-Zippel Lemma, so

the MSRR code exists provided the finite field is sufficiently

large. Comparisons between our MSRR code and previous

constructions are shown in Table 1.

The remaining of the paper is organized as follows. Section

II describes a repair framework for MSRR codes that is used

in both Chen&Barg’s codes and the code in this work. Then

Section III presents the explicit construction of MSRR codes.

Section IV concludes the paper.

II. A REPAIR FRAMEWORK FOR MSRR CODES

First introduce some notations. For integers 0 ≤ m < n, let

[n] = {1, ..., n} and [m,n] = {m,m+1, ..., n}. We label the

racks from 0 to n̄− 1 and the nodes within each rack from 0
to u − 1. Moreover, we represent each of the n = n̄u nodes

by a pair (e, g) ∈ [0, n̄−1]× [0, u−1] where e is the rack index

and g is the node index within the rack.

In this section, we formalize the construction of MSRR

codes from the parity check equations. Denote r=n−k and

r̄= n̄−k̄ throughout the paper. Since the MSRR code is first

an (n, k;α) MDS array code, the code can be defined by the

following parity check equations.

∑n̄−1
e=0

∑u−1
g=0 H(e,g)c

τ
(e,g) = 0 , (2)

where H(e,g) is a rα×α matrix over a finite field F and

c(e,g)=(c(e,g),0, ..., c(e,g),α−1)∈Fα denotes the vector stored

in node (e, g). The MDS property means any k out of the

c(e,g)’s can recover all other r vectors, which is equivalent to

require the concatenation of any r distinct H(e,g)’s results in

a rα× rα invertible matrix.

Besides, the MSRR codes should satisfy the optimal repair

property. That is, each vector c(e∗,g∗) ∈ Fα can be recovered

from {c(e∗,g) | g ∈ [0, u− 1], g 6= g∗} ∪ {se | e ∈ H} for any

H ⊆ [0, n̄−1]−{e∗} with |H| = d̄, where se ∈ Fα/(d̄−k̄+1)

is computed from {c(e,g) | g ∈ [0, u− 1]}. The next theorem

gives a sufficient condition for the optimal repair property.



Theorem 1. Suppose C is an (n, k;α) array code defined by

the parity check equations in (2). Denote β = α/(d̄− k̄+ 1).
Then C satisfies the optimal repair property if for any e∗ ∈
[0, n̄− 1], there exists a matrix Se∗ ∈ F r̄β×rα such that

(a) For g∈ [0, u−1], Se∗H(e∗,g)=Pe∗Q(e∗,g), where Q(e∗,g)

is an α× α invertible matrix and Pe∗ ∈ F r̄β×α;

(b) For all e 6=e∗ and g∈ [0, u−1], Se∗H(e,g)=PeReQ(e,g),

where Pe∈F r̄β×β, Re∈F β×α, Q(e,g)∈Fα×α.

(c) For any {e1, ..., en̄−d̄−1} ∈ [0, n̄−1]−{e∗}, the matrix
(

Pe∗ Pe1 · · · Pe
n̄−d̄−1

)

∈ F r̄β×r̄β is invertible.

Proof. For any e∗ ∈ [0, n̄−1], we prove that existence of the

matrix Se∗ implies the optimal repair of any individual node

in rack e∗. Actually, multiply Se∗ from the left on both sides

of (2), then we have

Pe∗

u−1
∑

g=0

Q(e∗,g)c
τ
(e∗,g)+

∑

e6=e∗

PeRe

u−1
∑

g=0

Q(e,g)c
τ
(e,g) = 0 . (3)

Furthermore, for all e ∈ [0, n̄− 1] denote

c̃
τ
e =

∑u−1
g=0 Q(e,g)c

τ
(e,g) (4)

then (3) becomes

Pe∗ c̃
τ
e∗ +

∑

e6=e∗ Pe(Rec̃
τ
e) = 0 . (5)

The condition (c) of the hypothesis implies that by download-

ing the vector s
τ
e = Rec̃

τ
e from the helper rack e ∈ [0, n̄ −

1] − {e∗, e1, ..., en̄−1−d̄}, one can recover
{

c̃
τ
e∗
}

∪
{

Rei c̃
τ
ei |

i ∈ [n̄− d̄− 1]}. Obviously, se ∈ F β , thus only β symbols

are downloaded from each helper rack. Moreover, from the

condition (a) of the hypothesis one can further derive c(e∗,g∗)

from c̃e∗ and {c(e∗,g) | g ∈ [0, u− 1], g 6= g∗}.

Remark 1. Theorem 1 presents a specific but simpler repair

framework for MSRR codes. More details are given below.

1) The matrix Se∗ actually means selecting r̄β parity check

equations from (2) which then define an (r̄+d̄, d̄;β) MDS

array code as shown in (5), where for e 6= e∗, Rec̃
τ
e ∈ F β

represents one component of the MDS array codeword,

and c̃
τ
e∗ ∈Fα represents d̄−k̄+1 components. The MDS

property comes from the condition (c).

2) The condition (a) and (b) guarantee that after multiplying

the matrix Se∗ a common divisor Pe can be drawn out

for each rack e. Therefore, all u nodes in rack e play as

a whole (i.e., the c̃e defined in (4)) in the repair process.

3) The matrix Re means a compression from α symbols

to β symbols, while for the host rack e∗ there is no

compression. This guarantees the ratio of downloaded

data size to recovered data size.

4) The condition (a) requires that Q(e∗,g), g ∈ [0, u− 1],
are invertible matrices, which implies the same selection

of parity check equations (i.e., Se∗ ) can be used for the

repair of any single node failure in rack e∗.

Although Theorem 1 proposes a stronger requirement than the

optimal repair property, it also simplifies the design of MSRR

codes and provides some insights into the constructions of [11]

and this work.

Remark 2. The repair of single node failures in rack e∗

uses only part of the rα parity check equations in (2) which

exactly correspond to the nonzero columns of Se∗ . Divide the

rα parity check equations into r blocks each containing α
equations. In [11] a total of r̄ blocks of check equations are

used for the repair of single node failures in one rack. By

contrast, we use r̄(u−u0) blocks of check equations to repair

single node failures in u−u0 racks. That is, more parity check

equations are used to repair more racks in our construction.

As a result, a smaller exponent (i.e., ⌈ n̄
u−u0

⌉) in the sub-

packetization is enough to ensure the repair of all n̄ racks.

III. THE EXPLICIT CONSTRUCTION

Suppose k= k̄u+u0 (0≤ u0 <u) and k̄≤ d̄≤ n̄ − 1. We

construct an (n̄u, k, d̄) MSRR code C with sub-packetization

α = s̄m, where s̄ = d̄− k̄+1 and m = ⌈ n̄
u−u0

⌉. The code C is

defined by parity check equations as in (2). First we introduce

some notations related to the expression of H(e,g)’s.

• Divide H(e,g) into r row blocks Ht,(e,g), t ∈ [0, r−1],
where Ht,(e,g) ∈ Fα×α is the (t+1)-th α rows of H(e,g).

• Label the rows and columns of Ht,(e,g) by the integers in

[0, α− 1]. For any a, b ∈ [0, α− 1], Ht,(e,g)(a, b) denotes

the (a, b)-th entry of Ht,(e,g).

• For each integer a∈ [0, α−1], let (a0, ..., am−1) be its s̄-

ary expansion, i.e., a=
∑m−1

τ=0 aτ s̄
τ , aτ ∈ [0, s̄−1]. For any

v∈ [0, s̄−1] and τ ∈ [0,m−1], let a(τ, v) be the integer that

has the s̄-ary expansion (a0, ..., aτ−1, v, aτ+1, ..., am−1).
• For e∈ [0, n̄−1], define π(e)= e−(u− u0)⌊

e
u−u0

⌋, i.e.,

e ≡ π(e) mod (u− u0).

Secondly we choose some specific elements in a finite field

F , where u|(|F | − 1) and |F | > n.

1) Let ξ be a primitive element of F and η be an element

of F with multiplicative order u.

2) Denote λ(e,g) = ξeηg for e∈ [0, n̄−1], g∈ [0, u−1]. It can

be seen λ(e,g) 6=λ(e′,g′) for (e, g) 6=(e′, g′)∈ [0, n̄−1]×

[0, u−1], because (ξe−e′ )u 6= 1 for e 6= e′ ∈ [0, n̄ − 1]
while (ηg

′−g)u = 1 for all g, g′ ∈ [0, u− 1].
3) Let µ1, · · · , µs̄−1 be s̄ − 1 distinct nonzero elements in

F such that {µ1, · · · , µs̄−1}∩{ξeu : e ∈ [0, n̄− 1]} = ∅.

Note s̄− 1+ n̄ = d̄− k̄+ n̄ < 2n̄, so these µi’s exist for

u ≥ 2 and |F | > n.

Next we give Algorithm 1 for defining the Ht,(e,g)’s. The

whole parity check matrix is established by running Algorithm

1 for t ∈ [0, r − 1].
We give some explanations of Algorithm 1. Actually, Line 1

defines the diagonal entries of Ht,(e,g)’s, Line 4 initializes all

non-diagonal entries as zeros, and then Line 6-7 updates the

non-diagonal entries in some blocks (i.e., t ≡ π(e) mod u),

some rows (i.e., aτ = 0) and some columns (i.e, b∈{a(τ, v) |
v 6= 0}). In the following we prove C is an MSRR code

by showing it satisfies the MDS property and optimal repair

property.

Remark 3. The proofs are derived in an inductive way, which

depends on a partition on the coordinates of a vector in Fα. In

more detail, for each vector in Fα, its coordinates are indexed



Algorithm 1

Defining Ht,(e,g)’s for e ∈ [0, n̄− 1] and g ∈ [0, u− 1].

1: Diagonal: for a∈ [0, α−1], set Ht,(e,g)(a, a)=λt
(e,g);

2: Non-diagonal:

3: for e ∈ [0, n̄− 1], g ∈ [0, u− 1] and a∈ [0, α−1] do

4: Initialize Ht,(e,g)(a, b)= 0 for all b 6= a;

5: Denote τ = ⌊ e
u−u0

⌋;

6: if aτ = 0 and t ≡ π(e) mod u then

7: Set Ht,(e,g)(a, b)=λ
π(e)
(e,g)µ

⌊ t

u
⌋

v for b=a(τ, v), v∈ [s̄−1];
8: end if

9: end for

by subscripts ranging in [0, α−1]. For any a∈ [0, α−1], let w(a)
be the number of digits that equal 0 in a’s s̄-ary expansion

(a0, ..., am−1). Denote Lσ = {a ∈ [0, α− 1] | ω(a) = σ}.

Obviously, ∪m
σ=0Lσ forms a partition of the set [0, α−1]. We

prove the two properties of C by induction on σ.

A. Proof of the MDS property

Theorem 2. The code C satisfies the MDS property, i.e., for

any r nodes (e1, g1), ..., (er, gr) ∈ [0, n̄− 1]× [0, u− 1], the

matrix H = (H(e1,g1) H(e2,g2) · · · H(er ,gr)) is invertible.

Proof. It suffices to show for any x ∈ (Fα)r, Hx
τ = 0

always implies x = 0. Denote x = (x1, ...,xr) and xi =
(xi,0, xi,1, ..., xi,α−1) ∈ Fα for i ∈ [r]. Using the partition

defined in Remark 3, next we prove x = 0 by showing

{xi,Lσ
| i∈ [r]} contains only zeros for all σ ∈ [0,m]. This is

accomplished by induction on σ.

For simplicity, denote Ht = (Ht,(e1,g1) · · · Ht,(er,gr)) for

t ∈ [0, r − 1]. Then the linear system Hx
τ = 0 becomes

Htx
τ =

∑r
i=1 Ht,(ei,gi)x

τ
i = 0, ∀t ∈ [0, r − 1] . (6)

First consider the base case σ = 0. For any a ∈ L0, by the

definition of Ht,(e,g) in Algorithm 1 we know the a-th row of

Ht,(e,g) are all zeros except the (a, a)-th entry. Choose the a-

th rows in the linear system (6), one can obtain the following

linear system

∑r
i=1 λ

t
(ei,gi)

xi,a = 0, ∀t ∈ [0, r − 1]. (7)

Since λ(e1,g1), ..., λ(er ,gr) are distinct elements in F , it imme-

diately follows x1,a = · · · = xr,a = 0. Thus {xi,L0
| i ∈ [r]}

contains only zeros.

Now suppose it has been proved {xi,Lσ
| i ∈ [r]} contains

only zeros for some σ ≥ 0. Then for any a ∈ Lσ+1, the a-th

rows in (6) are

r
∑

i=1

λt
(ei,gi)

xi,a+

r
∑

i=1

s̄−1
∑

v=1

ft(a, ei)λ
π(ei)
(ei,gi)

µ
⌊ t

u
⌋

v xi,a(⌊
ei

u−u0
⌋,v) = 0,

(8)

where

ft(a, ei) =

{

1 if a⌊ ei

u−u0
⌋ = 0 and t ≡ π(ei) mod u

0 otherwise.

However, for the parameters t, ei such that ft(a, ei) 6= 0,

it must have a(⌊ ei
u−u0

⌋, v) ∈ Lσ for v ∈ [s̄− 1], and then

xi,a(⌊
ei

u−u0
⌋,v) = 0 by the induction hypothesis. As a result, (8)

becomes
∑r

i=1λ
t
(ei,gi)

xi,a=0 for t∈ [0, r−1]. Similar to (7),

it follows x1,a = · · · = xr,a = 0. Thus {xi,Lσ+1
| i ∈ [r]} con-

tains only zeros. Therefore, the inductive proof is finished.

B. Proof of the repair property

Theorem 3. The code C satisfies the optimal repair property,

i.e., for any node (e∗, g∗) and any H⊆ [0, n̄−1]−{e∗} with

|H|= d̄, the vector c(e∗,g∗) can be recovered from

{c(e∗,g) | g ∈ [0, u− 1], g 6= g∗} ∪ {se | e ∈ H}

where se∈ F β is computed from {c(e,g) | g ∈ [0, u− 1]}.

Proof. We firstly select a system of the parity check equations

with respect to the values of t, i.e.,

n̄−1
∑

e=0

u−1
∑

g=0

Ht,(e,g)c
τ
(e,g) = 0, ∀ t ∈ Te∗ (9)

where Te∗ = {t ∈ [0, r − 1] | t ≡ π(e∗) mod u}. Since r =
n− k = (n̄− k̄)u− u0 = r̄u− u0, it obviously has

Te∗ = {π(e∗) + iu | i ∈ [0, r̄ − 1]} . (10)

Denote τ∗=⌊ e∗

u−u0
⌋ and A(τ∗, 0)={a∈ [0, α−1] | aτ∗ = 0}.

Then, for all a ∈ A(τ∗, 0) we pick the a-th rows from the

equations in (9) which will be used to enable the repair of

single node failures in rack e∗.

For simplicity, denote Aσ = A(τ∗, 0) ∩ Lσ for σ ∈ [m].
Obviously, ∪m

σ=1Aσ forms a partition of A(τ∗, 0). First con-

sider the a-th rows in (9) for all a ∈ A1 which induce the

following linear system

u−1
∑

g=0

λiu
(e∗,g) · λ

π(e∗)
(e∗,g)c(e∗,g),a+

s̄−1
∑

v=1

µi
v

(

u−1
∑

g=0

λ
π(e∗)
(e∗,g)c(e∗,g),a(τ∗,v)

)

+
∑

e6=e∗

u−1
∑

g=0

λiu
(e,g) · λ

π(e∗)
(e,g) c(e,g),a=0, ∀ i∈ [0, r̄−1] . (11)

We give some explanations about (11). By Algorithm 1,

for any a ∈ A1 and t ∈ Te∗ the a-th row of Ht,(e∗,g)

has nonzero entries in the diagonal position and s̄−1 non-

diagonal positions, which respectively correspond to the first

two terms in the left side of (11). For any e 6= e∗, it has
(

⌊ e
u−u0

⌋, π(e)
)

6=
(

τ∗, π(e∗)
)

. Combining with the fact that

aτ 6=0 for all τ 6=τ∗ due to a∈A1, the conditions a⌊ e

u−u0
⌋ = 0

and t ≡ π(e) mod u can not simultaneously hold for all

t ∈ Te∗ . Therefore, the a-th rows of Ht,(e,g)’s only have

nonzero entries in the diagonal positions which result in the

third term in the left side of (11). Moreover, according to the

expression of Te∗ in (10), one can finally derive (11).

Then for all e ∈ [0, n̄− 1], denote

c̃e =

u−1
∑

g=0

λ
π(e∗)
(e,g) c(e,g) = (c̃e,0, ..., c̃e,α−1) ∈ Fα . (12)



Obviously, c(e∗,g∗) can be computed from c̃e∗ and the intra-

rack transmission {c(e∗,g) |g∈ [0, u− 1], g 6=g∗}.

Moreover, because λ(e,g) = ξeηg and η has multiplicative

order u, it has λiu
(e,g) = (ξeu)i. Using the notation defined in

(12), the linear system (11) becomes

n̄−1
∑

e=0

(ξeu)ic̃e,a+

s̄−1
∑

v=1

µi
v c̃e∗,a(τ∗,v)=0, ∀i∈ [0, r̄−1] . (13)

By the selection of ξ and µv’s, (13) actually defines a (r̄+d̄, r̄)
GRS codeword (c̃0,a, ..., c̃n̄−1,a, c̃e∗,a(τ∗,1), ..., c̃e∗,a(τ∗,s̄−1)), so

downloading {c̃e,a | e ∈ H} can recover {c̃e∗,a, c̃e∗,a(τ∗,1), ...,
c̃e∗,a(τ∗,s̄−1)} ∪ {c̃e,a | e ∈ [0, n̄−1]−H}.

Furthermore, we prove {c̃e∗,a(τ∗,0), ..., c̃e∗,a(τ∗,s̄−1) |a∈Aσ}
can be recovered from {c̃e,b | b ∈ ∪σ

δ=1Aδ, e ∈ H} for all

σ ∈ [m]. This is accomplished by induction on σ and the

above is the proof for the base case σ=1.

Let us see the inductive step. For any a ∈ Aσ+1, we still

pick the a-th rows from the parity check equations in (9) and

obtain a linear system similar to (13) except the left side has

the fourth term corresponding to the nonzero non-diagonal

entries in the a-th rows of Ht,(e,g) for the e 6= e∗ satisfying

π(e) = π(e∗) and a⌊ e

u−u0
⌋ = 0. However, from e 6= e∗ and

π(e) = π(e∗), it must have ⌊ e
u−u0

⌋ 6= ⌊ e∗

u−u0
⌋ = τ∗, thus

a(⌊ e
u−u0

⌋, v) ∈ Aσ for v ∈ [s̄−1]. Therefore, by the induction

hypothesis the fourth term can be computed from {c̃e,b |
e ∈ H, b ∈ ∪σ

δ=1Aδ}. Then similar to (13), one can recover

{c̃e∗,a, c̃e∗,a(τ∗,1), ..., c̃e∗,a(τ∗,s̄−1)}
⋃

{c̃e,a | e ∈ [0, n̄−1]−H}
by additionally downloading {c̃e,a | e ∈ H} for all a ∈ Aσ+1.

Therefore, by downloading se = (c̃e,a)a∈A(τ∗,0) ∈ F β

from each helper rack e ∈ H along with the intra-rack

communication, the repair is accomplished.

Remark 4. Although Theorem 3 is proved by an inductive

process according to a partition of the coordinates (see Remark

3), it actually coincides with the sufficient conditions given in

Theorem 1 for the optimal repair.

1) Selection of parity check equations for repair. In Theorem

1 the matrix Se∗ selects a linear system from (2) which

then induces an MDS array code defined in (5). In

Theorem 3 this selection is sequentially accomplished by

the restriction to the set Te∗ defined in (10) and then to

the rows indexed by A(τ∗, 0). The resultant MDS code

is defined in (13).

Since Te=Tπ(e) for all e∈ [0, n̄−1] and π(e) ranges in

[0, u−u0−1], u−u0 linear systems are used for repair in

our code. By contrast, [11] only used the linear system

labeled by T0 for repair.

2) All u nodes in a rack play as a whole in the repair.

From (12) one can see our code C also follows this rule.

Specifically, since in (11) it has λiu
(e,g) = (ξeu)i for all

g ∈ [0, u−1], (ξeu)i is like the common divisor Pe drawn

out for each rack e in Theorem 1, and the diagonal matrix

λ
π(e∗)
(e,g) Iα corresponds to the matrix Q(e,g) in Theorem 1,

where Iα is the α×α identity matrix. Obviously, λ
π(e∗)
(e,g) Iα

is invertible for all e ∈ [0, n̄− 1].

Remark 5. From (12) and the proof of Theorem 3 one can

easily see the repair of a node failure needs to access α/s̄
symbols from each node in the helper racks, which is the

same as the low-access construction in [11].

IV. CONCLUSION AND FUTURE WORK

In this work, by using the parity-check equations in an

more efficient way for repair, we reduce the sub-packetization

of existing explicit constructions of MSRR codes from (d̄ −

k̄ + 1)n̄ to (d̄ − k̄ + 1)⌈
n̄

u−u0
⌉
, which helps to bridge the

gap from the proved lower bound. Further reducing the sub-

packetization and proving a lower bound without the optimal-

access hypothesis are left as future work. Besides, constructing

optimal-access MSRR codes for nontrivial parameters seems

to be an even harder problem.
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