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Abstract—We address the recently suggested problem of causal
lossless coding of a randomly arriving source samples. We
construct variable-to-fixed coding schemes and show that they
outperform the previously considered fixed-to-variable schemes
when traffic is high both in terms of delay and Age of Information
by appealing to tools from queueing theory. We supplement our
theoretical bounds with numerical simulations.

Index Terms—Age of Information, delay, lossless source coding,
queueing theory.

I. INTRODUCTION

Real-time communications has become a topic of growing
interest in recent years due to rising demand in applications
such as vehicular communications [1], telemedicine [2] and
satellite control [3]. Under this regime, the objective is to
convey messages in a timely fashion, in contrast to classic
communications where relatively long delays may be tolerated.

Two figures of merit have been suggested to measure the
performance of real-time communication systems: Age of
Information (AoI) [4]–[6] and delay [4], [7]. The AoI of a
system quantifies the freshness of the data at the receiver by
assigning an “age” to the most recent update of the system and
measuring the time difference between updates. Delay, on the
other hand, quantifies the timeliness of a system by measuring
the elapsed end-to-end time difference from a symbol arrival to
the encoder to its decoding at the decoder. These two quantities
are similar in nature and indeed in some schemes [8], [9], they
can be simultaneously minimized.

In this work, we concentrate on the recently suggested
setting of lossless transmission of causal source samples with
random arrival times [9], [10]. This setting is simple to
formulate and can apply to many different settings, e.g., a
multi-user scenario where data is transmitted through a single
channel.

So far, the majority of works dealing with real-time lossless
source coding, have focused on one-to-variable encoding, fol-
lowing the work of Larmore [7]. Additionally, for deterministic
(periodic) arrivals, some work has been done on the more
general case of block-to-variable coding [8]. These coding
schemes, while effective in low-traffic scenarios, exhibit large
delays as the traffic increases, and the waiting time becomes
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Fig. 1. Block diagram of the system model.

dominant. However, in the case of deterministic arrivals, a
variable-to-variable scheme in which the block size is set on
the fly according to the number of symbols waiting to be
coded, can be used to facilitate lower latency as was suggested
in [11].

To alleviate this problem, we propose in this work a
variable-to-fixed coding scheme. The motivation for variable-
to-fixed codes stems from two main reasons: First, a work
in queueing theory by Rogozin [12] states that, under some
restrictions, the waiting time of a queue is minimized by a
deterministic service time. While this does not prove that
variable-to-fixed codes are optimal, it suggests that they
might perform well when the waiting time is the dominant
component of the AoI and the delay, i.e., in high-traffic
scenarios. Secondly, fixed-length codes synergize well with
error correcting codes when real-time transmission is carried
over noisy channels.

The rest of the paper is organized as follows. Sec. II
presents the system model and objectives. Sec. III provides
necessary background from queueing theory. In Sec. IV, we
provide an analysis of the delay for variable-to-fixed codes,
with Sec. IV-A dedicated to an analysis of the waiting time.
Sec. V contains some simulation results. We conclude with
a summary of the work and suggestions for future work in
Sec. VI.

II. PROBLEM SETUP

We formulate here the real-time source coding setup that
will be treated in this work, depicted in Fig. 1. Operation of
the system is set to begin at time 0.

Source: At each (positive) time step, the source generates a
new sample with known probability q ∈ (0, 1). The generation
process samples across time are assumed independent and
identically distributed (i.i.d.). We define the n-th arrival time
An as the generation time of the n-th symbol. We further
define the n-th time difference between arrivals by

Dn = An −An−1,
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with A0 set to 0. Clearly, {Dn}∞n=1 are i.i.d. according to a
geometric distribution with parameter q.

The sample values, {Xn}∞n=1, are i.i.d. and are drawn from
a finite alphabet X according to a known probability mass
function (p.m.f.) pX .

Encoder: The memoryless encoder accumulates Bi ∈ N
samples and maps them into Li ∈ N bits using a prefix-free
one-to-one mapping (i being the block index):

E : I ⊆ X∗ → {0, 1}∗,

such that X∗ ⊆×∞i=1
I, i.e., any stream of source symbols is

mapped to a stream of code bits. The encoder then sends the
Li-length codeword over the channel. Note that both Bi and
Li are finite with probability 1 and that {Bi}∞i=1 and {Li}∞i=1

have i.i.d. samples. The average rate of the memoryless
encoder (average number of coded bits per symbol) is given by

rcode =
E [L]

E [B]
, (1)

where B and L are general samples of their respective
processes.

It is customary to divide the class of lossless encoders into
three families:
• Variable-to-fixed. This is the encoding scheme used in

this work. The output of this encoder is of fixed length
Li ≡ `. The best known representative of this family is
the Tunstall code [13], featuring a memoryless encoder
which minimizes E [B] given `; this code will be dis-
cussed and used in later sections.

• Fixed-to-variable. This family of codes was considered
previously for the problem at hand in [8], [9], [11]. The
input length of this encoder is of fixed length Bi ≡ b. The
best known representative of this family is the Huffman
code [14, Ch. 5.6], featuring a memoryless encoder which
minimizes E [L] given b.

• Variable-to-variable. This is the most general family in
which both the input and the output lengths are not fixed
and depend on the encoded sequence. The most famous
code in this family is the arithmetic code [14, Ch 13.3].
Note that an encoder employing this code does not fall
under the definitions given here.

Channel: The channel is modeled by a first-in, first-out
(FIFO) queue, which receives codewords from the encoder and
outputs them to the decoder at a fixed known rate rch ∈ R.
From a queueing perspective, we can view the codewords as
clients entering the queue. This will be analyzed in Sec. IV.
Remark 1. In general, the rate of emission from the FIFO may
be any positive real number. This is the case for asynchronous
FIFOs which have different input and output clock domains.

Decoder: Once Li bits are received from the FIFO, they are
mapped back to Bi symbols, applying the inverse of E

E−1 : {0, 1}∗ → X∗.

Because the channel is noiseless and the encoder is prefix-
free and lossless, we are guaranteed perfect reconstruction.

The time of decoding of the n-th symbol is denoted Rn. Note
that the decoding time is shared between Bi symbols. We shall
denote the shared decoding time by Ri.
Remark 2. Throughout this work we assume that the decoder
is privy to the FIFO’s status, e.g., via a side-channel or a
special symbol reserved for this scenario, as is common in
FIFO architecture.

Delay: The delay of the n-th symbol, ∆n = Rn − An, is
defined as the difference between its decoding time and arrival
time. The mean delay of the system can then be defined by
averaging over all symbol delays

∆̄ = lim
n→∞

1

n

n∑
k=1

∆k. (2)

AoI: The (peak) AoI of block i, Γi = Ri−Ai−1, is defined
as the time difference between said decoding time of block i
and the arrival of the most recent symbol in block i−1. 1 The
mean peak AoI is then given by

Γ̄ = lim
i→∞

1

i

i∑
k=1

Γk. (3)

We refer the reader to [9] for a graphical illustration of AoI.
Objectives: The objective of this encoding scheme is to

minimize either the delay or the AoI. Note that for the
case of fixed-to-variable encoding, the two quantities are
simultaneously minimized.

III. BACKGROUND: RESULTS FROM QUEUEING THEORY

We now introduce some notations and known results from
queueing theory to be used later in our analysis. We define the
inter-arrival time Ti as the time passing between the arrival of
client (i − 1) and client i, and the service time Si—as the
amount of time client i spends inside the queue.
Remark 3. The definitions given here hold for any distributions
of Ti and Si with finite means [15]. For example, Ti may
receive only integer values and Si may receive values that are
multiples of 1/rch as described in Sec. II.

We are interested in results for the GI/GI/1 queue [16], i.e.,
the setting of a single server, and independent i.i.d. processes
{Ti} and {Si} with known (possibly different) distributions.
General samples of theses processes are denoted by T and S.

We now present some known results for the GI/GI/1 queue
waiting time, Wi, which is defined as the amount of time that
client i waits in order to enter the queue.

To that end, first define Ui as the difference between the
service and arrival times of client i

Ui , Si − Ti. (4)

Note that Ui is also an i.i.d. process; we denote a general
sample from the process as U . The waiting time of the i-th
client, Wi, is given by

Wi = max(0,Wi−1 + Ui−1), (5)

1Some works, e.g., [8], [11], study the average AoI. Both peak and average
AoI exhibit similar behavior and we therefore treat only the former in the
interest of space.



with W1 set to 0. A queue is said to be stable if the waiting
time series {Wi}∞i=1 is bounded with probability 1. It was
shown in [16] that a queue is stable iff2

E [U ] < 0. (6)

Moreover, if the queue is stable, then the waiting time series
tends to a random variable, W , that is bounded with probabil-
ity 1. Finding the mean value of W requires solving integral
equations that generally have no analytic solutions [16]. To
overcome this, several upper bounds for E [W ] have been
derived in the literature. We now present two of them, which
will be used throughout the paper. The first bound, which will
be refererd to as the low-moment bound, is given by [16]

E [W ] ≤ Var (U)

−E [U ]
. (7)

To derive the second bound, we start by defining the moment
generating function (m.g.f.) of U :

φU (θ) = E
[
eθU
]
. (8)

Then, the m.g.f. bound is given by

E [W ] ≤ 1

ν
, (9)

where ν , sup {θ > 0|φU (θ) < 1}.

IV. DELAY AND AOI OF VARIABLE-TO-FIXED CODES

As was stated in Sec. II, a memoryless variable-to-fixed
binary encoder is a function that encodes a block of symbols
of varying length B which depends on the symbol values,
to a binary codeword of fixed length `. The coding rate (1)
specializes, therefore, to

rcode =
`

E [B]
. (10)

From a queuing perspective, we can think of the noiseless
channel as a queue with the encoder inserting clients with a
fixed service time

Si ≡
`

rch
, (11)

and an inter-arrival time of

Ti =

Bi∑
n=1

Dn. (12)

Note that {Dn}∞n=1, {Bi}∞i=1 are independent processes. This
will be used later in our analysis.

By substituting (4), (10), (11), and (12) in (6) we arrive at
the following stability condition: The queue is stable iff

rcode <
rch
q
, (13)

where E [T ] = E [B] /q by Wald’s identity [17].
Remark 4. This result is similar to the one-to-variable scheme
(b = 1 and random Li) of [9], where the code rate (1), which

2 [16] showed that the queue is stable if (6) holds. The other direction is
trivial by noting that Wi ≥

∑i−1
k=0 Uk by (5).

specializes to rcode = E [L] for that scheme, was to be kept
smaller than rch/q to maintain stability.

Furthermore, because the encoder is lossless, the code rate
satisfies H(X) ≤ rcode, where H(X) denotes the source
entropy [14, Ch. 5.3]. Consequently, rch/q of a stabilizable
system must be bounded from below by the source entropy

H(X) <
rch
q
, (14)

which leads to the following lemma.

Lemma 1. The AoI and delay are bounded iff (14) holds.

Proof. The necessity of (14) follows from (13) and the afore-
mentioned bound H(X) ≤ rcode. To prove the sufficiency,
consider a sequence of Tunstall codes with increasing block-
length `. The rate of this sequence is known to converge to
the entropy of the source [13]:

lim
`→∞

rcode = H(X).

Therefore, (13) is satisfied for a Tunstall code with a suffi-
ciently large ` ∈ N.

We now return to the system objectives described in Sec. II.
To that end, we describe the delay and the AoI, each, as the
sum of three known quantities, which are defined next.

Tarry time: The tarry time of the `-th symbol, J`, is defined
as the amount of time it waits to be coded. To inject bits
into the channel, the encoder has to accumulate B symbols.
Consequently, JB = 0, whereas for other symbols:

J` =

B∑
n=`+1

Dn, ` ∈ {1, . . . , B − 1}. (15)

The mean tarry time, J̄ , is equal to

J̄ , lim sup
k→∞

∑k
n=1 Jn
k

(16a)

= lim
m→∞

1
m

∑m
i=1

∑Bi
`=1 J`

1
m

∑m
i=1Bi

(16b)

=
E
[∑B

`=1 J`

]
E [B]

(16c)

=
E
[∑B

n=2(n− 1)Dn

]
E [B]

(16d)

=
E
[
B2
]
− E [B]

2qE [B]
, (16e)

where (16b) is due to the encoder construction (recall Sec. II),
(16c) follows from ergodicity by recalling that {Bi}∞i=1 and
{Dn}∞n=1 are i.i.d. and independent of each other, (16d)
follows from (15) and exchange of order of summation,
and (16e) follows from Wald’s identity and the sum of an
arithmetic series.

Inter-arrival time: The inter-arrival time is given by (12).
Service time: The service time is fixed and is given by (11).



Waiting time: The waiting time is defined as the time
that passes between a codeword entering the FIFO and the
beginning of its service as described in Sec. III. Bounds on
the mean waiting time are provided Sec. IV-A.

The mean delay (2) of the system can now be expressed as
the sum of the means of three delay elements

∆̄ = J̄ + E [S] + E [W ] . (17)

The mean peak AoI (3) can be expressed similarly as

Γ̄ = E [T ] + E [S] + E [W ] .

A. Analysis of the Mean Waiting Time

As was stated in Sec. III, obtaining an analytic expression
for the waiting time is difficult, in general. Instead, we evaluate
the two upper bounds of Sec. III for the suggested scheme.

To derive low-moment bound (7), we first derive an expres-
sion for U by substituting (11) and (12) in (4):

U =
B∑
n=1

Dn −
`

rch
.

Thus, the low-moment bound (7) specializes to

E [W ] ≤ Var (B) + (1− q)E [B]

q(E [B]− q `
rch

)
,

with the variance and mean of T given by Wald’s identity.
Next, we derive the m.g.f. bound (9). To that end, we start

by deriving the m.g.f. of U (8):

φU (θ) = E
[
e
θ
(

`
rch
−
∑B
n=1Dn

)]
= e

`
rch

θE

[(
qe−θ

1− (1− q)e−θ

)B]
,

(18)

where the second equality follows from the law of total expec-
tation, the fact that {Dn}∞n=1 are i.i.d. according to a geometric
distribution with parameter q and are independent of B, and
by substituting the m.g.f. of Dn—φD(θ) , E

[
eθDn

]
=

qeθ

1−(1−q)eθ . Because φU (θ) is a continuous function, the bound
can be found by solving the equation

φU (θ) = 1,

which, by (18), can be rewritten as

bmax∑
b=1

(
qe−θ

1− (1− q)e−θ

)b
P (B = b) = e

− `
rch

θ
,

or, equivalently, as(
1− (1− q)e−θ

)bmax
e
−θ `

rch

−
bmax∑
b=1

P (B = b)
(
1− (1− q)e−θ

)bmax−b
qe−θb = 0,

with bmax being the maximal value that B can attain with
a non-zero probability. The solutions for this equation can
be found using an appropriate root finding algorithm, e.g.,

the Newton–Raphson algorithm [18].3 Once the solutions are
found, the bound is derived by taking the minimum of the real
solutions, and substituting it in (9).4

V. SIMULATION STUDY

In this section, we simulate variable-to-fixed Tunstall codes
and compare their performance to those of the optimized fixed-
to-variable codes of [8].

To that end, we generated several simulations of 2×106 i.i.d.
Bernoulli distributed source samples of {Xn|n = 1, . . . , 2 ×
106}, each simulation with a different parameter p , Pr(Xi =
1) ∈ (0, 1/2], corresponding to a different source entropy.
Note that an increase in the entropy corresponds to an increase
in traffic since a higher (average) rate is required to describe
a source sample. The probability of arrival in all simulations
was set to q = 1/2.

To encode the source, we used an off-the-shelf Tunstall code
for each parameter p, which minimizes the code rate rcode
(10) for a given `; note that the queue is stabilizable with
some variable-to-fixed code with a given ` iff it is stabilizable
with a Tunstall code with this ` for the given distribution. The
output length was set to ` = 4, which is the minimal length
for the chosen region of p that satisfies (13), and therefore
minimizes the service time.

In order to test the performance of the waiting time bounds,
we compare between the empiric results and the analytic
expression of the delay given in (17), with the waiting time
bounded as described in Sec. IV-A.

We compare our results to a fixed-to-variable scheme
adapted from a work by Zhong et al. [8]. To that end, we
derive a bound for the waiting time using (7)

E [W ] ≤ Var (L)/r2ch + (1− q)b/q2

b/q − E [L] /rch
.

The mean delay is then bounded by

∆̄ ≤ Var (L)/r2ch + (1− q)b/q2

b/q − E [L] /rch
+

E [L]

rch
+
b− 1

2q
.

The mean peak AoI is bounded similarly by

Γ̄ ≤ Var (L)/r2ch + (1− q)b/q2

b/q − E [L] /rch
+

E [L]

rch
+
b

q
.

Note that a fixed-to-variable code that minimizes each of the
two bounds will necessarily minimize the other as they differ
only by a constant. Such a fixed-to-variable code was found
using Larmore’s convex hull algorithm [7]. The block size was
set to b = 4, which is the minimal block size that maintains
stability for the chosen region of p (as per [8]).

The mean delay ∆̄ (2) and mean peak AoI Γ̄ (3) versus
H(X) of each scheme are depicted in Fig. 2, along with the
analytical upper bounds of Sec. IV.

3If `
rch

is integer, the equation can be solved by substituting z = e−θ and
solving the resulting polynomial equation.

4The bound is guaranteed to exist since φU (0) = 1. In the case that this
is the only real solution, the bound trivializes to ∞.



Fig. 2. Mean delay and mean peak AoI as a function of source entropy for
random arrivals. rch = 1/6.5. fixed-to-variable block size b = 4. variable-
to-fixed output length ` = 4.

As we can see, the variable-to-fixed Tunstall code outper-
forms the fixed-to-variable coding scheme in the high-traffic
region, while the fixed-to-variable scheme offers better results
in the low-traffic region. Furthermore, we observe that the low-
moment bound, while easier to obtain than the m.g.f. bound,
is less tight, especially in the high-traffic region.

VI. DISCUSSION AND FUTURE WORK

We put forward variable-to-fixed coding for real-time source
coding as an alternative to the hitherto used fixed-to-variable
coding. We analyze our proposed method and demonstrate that
it outperforms its fixed-to-variable counterparts when traffic is
high both in terms of delay and AoI. We suggest the following
topics for future work which are currently under investigation:
• We have used off-the-shelf Tunstall codes and demon-

strated that even such codes outperform optimized fixed-
to-variable codes when traffic is high (large H(X)).
However, although these codes are optimal in terms
of stabilizability (cf. Huffman codes in fixed-to-variable
coding) they are not necessarily optimal in terms of
minimum mean delay (cf. optimized codes of Zhong et
al. [11]). Designing minimum mean delay codes is an
interesting research avenue.

• Extension of the problem setup to allow several symbols
arriving at the same time instant.

• As suggested by Sec. V, variable-to-fixed codes out-
perform fixed-to-variable codes for some parameters,
and vice versa. Designing variable-to-variable coding
schemes that outperform both of these classes of codes
holds promise. This approach was explored in [11] where
an adaptive choice of the block size was investigated for
the simpler setting of periodic (deterministic) arrivals.

• Throughout this work, an implicit indicator signal was
assumed available at the decoder that states whether the

FIFO queue is empty or not. Studying this problem in
the absence of such an indicator signal, in which case
the event of not enough (or none at all) source symbols
to encode needs to be taken into account (and encoded).
This has been done for fixed-to-variable coding in [9].

• Formulation of the m.g.f. waiting-time bound for fixed-
to-variable codes to use in lieu of the low-moment bound
for the design of optimal fixed-to-variable codes.
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