
Online Min Cost Circulation for Multi-Object Tracking on Fragments

Yanbing Wang∗† Junyi Ji∗ William Barbour∗ Daniel B. Work∗

Abstract— Multi-object tracking (MOT) or global data asso-
ciation problem is commonly approached as a minimum-cost-
flow or minimum-cost-circulation problem on a graph. While
there have been numerous studies aimed at enhancing algorithm
efficiency, most of them focus on the batch problem, where
all the data must be available simultaneously to construct a
static graph. However, with the growing number of applications
that generate streaming data, an efficient online algorithm
is required to handle the streaming nature of the input.
In this paper, we present an online extension of the well-
known negative cycle canceling algorithm for solving the multi-
object tracking problem with streaming fragmented data. We
provide a proof of correctness for the proposed algorithm and
demonstrate its efficiency through numerical experiments.

I. INTRODUCTION

The multi-object tracking (MOT) problem plays a pivotal
role in modern computer vision-aided cyber-physical sys-
tems. These systems rely on intelligent sensing technologies
and efficient data processing tools to monitor and control
physical infrastructures. However, challenges emerge when
dealing with the increasing data size resulting from larger
field of views covered by multiple cameras and the con-
tinuous stream of incoming data. To address these chal-
lenges, effective algorithms capable of handling significant
volumes of streaming data are required. This paper focuses
on extending a well-known algorithm designed for the MOT
problem into an online framework that can process streaming
data of any size. The algorithm described in this paper can
effectively handle “fragments,” which refer to incomplete
tracking of moving objects caused by conservative tracking
from the upstream video processing algorithms. Tracking
discontinuities can occur due to various factors such as object
occlusion and/or misalignment between adjacent cameras.

Various approaches for data association have been pro-
posed, taking into consideration factors such as association
criteria, object motion complexity, and computational re-
quirements. These approaches typically differ in their choices
of 1) matching cost (referred to as probability, affinity, en-
ergy, or confidence) and 2) matching criteria (such as global
cost minimization, greedy approach, hierarchical matching,
etc.), leading to different problem formulations. The match-
ing cost incorporates kinematic information (e.g., position
and velocity) and attribute information (e.g., shape and

Corresponding author: Yanbing Wang, yanbing.wang@vanderbilt.edu
∗Department of Civil and Environmental Engineering, and the Institute

for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
37240.

appearance), while the matching criteria guide the algorithm
in solving the data association problem.

Solving the optimal data association assignment is inher-
ently a challenging NP-hard matching problem that requires
combinatorial optimization algorithms. However, specific
characteristics of the MOT problem, such as the Markov
assumption of association cost, can be leveraged to apply
polynomial-time algorithms like bipartite matching and min-
cost flow solvers. Graph-based formulations offer efficient al-
gorithms for finding global minimum-cost tracking solutions.
In these formulations, tracks (or detections) are represented
as nodes in a graph, while pairwise matching costs are
represented as graph edges. The general data association
problem can be viewed as finding the least-cost set cover on
the track graph [1]. Several studies [2]–[4] have investigated
efficient algorithms related to bipartite matching and min-
cost flow. Interested readers are encouraged to refer to a
recent survey [5] for further exploration of this topic.

To the best of our knowledge, the majority of previous
studies on graph-based MOT approaches have focused on
offline methods. In these methods, all detections/fragments
must be available in memory to construct a static graph.
However, this approach can be a significant disadvantage,
especially as more sensing devices provide sequential data
that requires continuous monitoring. While a few online
methods, such as [6], operate on a frame-by-frame basis,
they still require multiple iterations of updates within each
frame. In contrast, our method operates on a fragments (or
tracklets) graph. This means that fragments are added to
the graph one at a time, resulting in even further reduced
computation requirements.

This paper provides the detailed algorithm for solving
the online object matching problem presented in [7], which
serves to post-process trajectory data from the newly estab-
lished I-24 MOTION project [8]. The paper is organized as
follows: Section II presents the preliminary details of the
main technique, min-cost-circulation (MCC), which serves
as the foundation for solving the MOT problem. Section III
introduces the online negative cycle canceling (NCC) al-
gorithm for solving MOT problems in a streaming input
setting. This section also includes a proof of correctness.
In Section IV, we demonstrate the application of the online
algorithm through a numerical experiment. Finally, Section V
concludes the paper by summarizing the findings.

ar
X

iv
:2

31
1.

04
74

9v
1

 [
cs

.D
S]

 8
 N

ov
 2

02
3

II. PRELIMINARY: THE MIN-COST-CIRCULATION (MCC)
PROBLEM FOR TRACKING

In this section, we outline the problem formulation for
MOT as an equivalent problem for finding the minimum-
cost circulation (MCC) of a graph. Solving for MCC on a
track graph results in trajectory sets that have the highest
maximum a posteriori (MAP). The problem formulation is
explained in literature such as [3], [9], and therefore only
highlighted briefly in this section.

A. Problem formulation
A fragment with index k is denoted as ϕk = {p1, ..., pn},

which consists of a series of positional data ordered by time
(frame). Each data point pi is a vector containing timestamp,
x and y position of a fixed point on the bounding box. We
are given a set of fragments as input Φ = {ϕi}. A trajectory
τk = {ϕk1 , ..., ϕkn} consists of one or more fragments.
A set of such trajectories form a trajectory set hypothesis
T = {τ1, ..., τK}. Assuming that fragments are conditionally
independent, the fragment association step aims at finding
T ∗, the hypothesis with the highest MAP:

T ∗ = argmaxTP (T |Φ)
= argmaxTP (Φ|T)P (T)

= argmaxT

∏
i

P (ϕi|T)
∏
τk∈T

P (τk)

s.t. τk ∩ τl = ∅, ∀k ̸= l,

(1)

with a non-overlapping trajectory constraint, since each
fragment can belong to at most one trajectory. The likelihood
P (ϕi|T) = P (ϕi) = βi indicates the probability that a
fragment is a false positive and thus should not be included
in the trajectory hypothesis. The prior of a trajectory can be
modeled as a Markov chain:

P (τk) = Penter(ϕk1
)

n−1∏
i=1

P (ϕki+1
|ϕki

)Pexit(ϕkn
), (2)

where Penter(ϕk1
) and Pexit(ϕkn

) denote the probabilities
that ϕk1

starts the trajectory and ϕkn
ends the trajectory,

respectively. Taking the negative logarithm of (1), the MAP
problem becomes equivalent to the following integer pro-
gram:

minimize
fi,fi,j ,fen

i ,fex
i

∑
i

cifi +
∑
i

ceni fen
i

+
∑
i,j

ci,jfi,j +
∑
i

cexi fex
i (3a)

subject to fi, fi,j , f
en
i , fex

i ∈ {0, 1}, (3b)

fen
i +

∑
j

fj,i = fi = fex
i +

∑
j

fi,j , (3c)

where
ceni = − logPenter(ϕi), cexi = − logPexit(ϕi),

ci,j = − logP (ϕi|ϕj), ci = − log
1− βi

βi
.

(4)

The decision variables are binary according to the unit-
flow constraint (3b). fi indicates whether ϕi should be
included in any trajectory, fen

i and fex
i determine whether a

trajectory starts or ends with ϕi, respectively. fi,j indicates
if fragment ϕj is an immediate successor of ϕi. The flow-
conservation constraint (3c) ensures non-overlapping trajec-
tories.

B. Equivalent MCC formulation

In seminal work [3], it is shown that (3) has a natural
graph interpretation, and solving for (3) is equivalent to
solving the min-cost-flow of a tracklet graph, which has a
polynomial solution [10]. Later in the work of [11], it is
proven that the min-cost-flow problem for MOT is equivalent
to a min-cost-circulation problem on a slightly modified
graph. Many efficient algorithms are developed to solve this
problem [12]–[15], and simplification are made to further
improve the algorithmic efficiency in the MOT context [3],
[6], [9]. The graph is constructed such that each fragment ϕi

is represented as two nodes ui and vi, with a directed edge
(ui → vi) and a cost $(ui → vi) = ci indicating inclusion of
ϕi; edges between two fragments ϕi and ϕj are represented
as (vi → uj), with the cost $(vi → uj) = cij related to the
likelihood of ϕj following ϕi. The edge direction implies the
sequential order between fragments. Furthermore, the graph
has a dummy node s that has an incident edge to every u, and
every v directs back to s. The resulting graph is therefore
a directed circulation graph, see Figure 1. We denote this
circulation graph as G(V,E), with node set V and edge
set E. Each edge e := (u, v) ∈ E has a unit capacity
r(e) = 1, a cost $(e) and a binary flow f(e) ∈ {0, 1}. The
data association problem can be formulated as finding a set
of non-overlapping circulations f on G with the lowest total
cost. The total cost of the circulations is

∑
e∈f $(e)f(e).

C. Negative cycle canceling

One efficient algorithm is the negative cycle canceling
algorithm (NCC) proposed by Klein [14] and later on
optimized by Goldberg et al. [13], [15], based on the
Ford-Fulkerson’s method for incremental improvement. To
understand the algorithm we first recall the definition of an
important concept – a residual graph Gr:

Definition 1: The residual graph Gr(V,Er) for the orig-
inal directed graph G(V,E) with respect to a flow f is
generated by replacing each edge e = (u → v) ∈ E by
two residual edges e′ = (u → v) ∈ Er and er = (v →
u) ∈ Er, with cost $(e′) = $(e) and residual capacity
r(e′) = r(e)−f(e), while $(er) = −$(e) and r(er) = f(e).
In the context of MOT graph as shown in Figure 1, the
construction of residual graph can be simplified. The edges
in the flow of the original graph simply needs to be reversed
and costs on the edges negated, to form the corresponding
residual graph.

The idea of NCC is to repeatedly find a cycle with negative
cost in the residual graph Gr and push flow through the

2

Fig. 1: Left: fragments in time-space coordinates. In this example ϕ1 and ϕ3 should be associated, and ϕ2 and ϕ4 should
be associated. The numbers indicate the order of last timestamp. Middle: fragments as a circulation graph. Red edges are
the entering edges with cost ceni ; blue edges are inclusion edges with cost ci; green ones are exiting edges with cost cexi
and yellow ones are transition edges with cost cij . Right: the residual graph after running the negative cycle canceling
algorithm to obtain the min-cost circulation. The residual edges that carry the min-cost circulation are highlighted in bold.
The fragment association assignment can be obtained by tracing along the bold edges.

cycles. The algorithm terminates when no more negative
cycles can be found (optimality condition). We direct in-
terested readers the above reference for the details and proof
of correctness of this algorithm, and only provide an outline
in Algorithm 1.

First, a circulation graph G(V,E) is constructed from the
set of fragments Φ (ConstructTrackletGraph) and we itera-
tively look for a negative cycle in Gr based on, for example,
Bellman-Ford algorithm. If such cycle exists, then update
the residual graph according to Definition 1 (PushFlow).
When the iteration stops (no more negative cycle can be
found), the assignment, or the trajectories, can be extracted
by traversing along all the cycles through the residual edges
in Gr (FlowToTrajectories).

Note that the NCC algorithm guarantees feasibility at
each iteration because every node is balanced (inflow equals
outflow). The algorithm terminates immediately if no feasible
flow can be found. The proof for correctness of the general
NCC algorithm is detailed in [12]. The central idea is based
on the theorem of negative cycle optimality conditions:

Theorem 1: (Negative Cycle Optimality Conditions) A
feasible circulation f in G is optimal if and only if the
residual graph Gr contains no negative-cost cycles.

Additionally we mention the following useful lemma that
is specific to the MOT context, and was proved in [11]:

Lemma 1: A circulation with total integer flow amount K
can only be sent through K distinct cycles.

Next we show an online extension of the NCC algorithm
and provide proof for correctness based on this important
theorem.

III. ONLINE NEGATIVE CYCLE CANCELING

The streaming data coming from modern sensing tech-
nologies necessitates an online and memory-bounded version
of Algorithm 1. In other words, the tracking graph G is
dynamic: new fragments are added in order of time and
older fragments are removed from the graph. In this section
we introduce an online version of the NCC algorithm which
can be applied to a dynamic graph for online MOT.

Algorithm 1 Negative cycle cancellation for min-cost-flow
on a tracklet graph
Input: Set of fragments Φ = {ϕi}
Result: Set of trajectories T = {τi}
G(V,E,C)← ConstructCirculationGraph(Φ)
f ← 0
Gr ← G

while a negative-cost cycle Γ exists in Gr do
// Update residual graph
Gr ← PushFlow(Gr,Γ)

end
T ← FlowToTrajectories(Gr)

A. Algorithm

A naive online extension of Algorithm 1 is to construct
a circulation graph for each newly added fragment ϕk from
scratch and rerun the NCC algorithm. However, it is inef-
ficient because the majority of the graph remains the same
and the majority of the computation on the min-cost cycle
is wasted. This opens opportunities for an online extension
of the algorithm to minimize repeated calculations.

The proposed online algorithm is based on the assumption
that fragments are added to the graph in the order of last
timestamp, which is a reasonable assumption in practice
as this is the order that fragments are generated from
object tracking. The online algorithm proceeds by adding
each fragment ϕk to the residual graph from the previous
iteration G+

r,k−1 one at a time, to obtain a new graph G−
r,k

(AddNode(G−
r,k−1, ϕk)). This step adds two nodes uk and vk

to the graph along with edges (s→ uk), (uk → vk), (vk →
s) and possibly additional transition edges incident to uk.
Then, we search for the least-cost negative cycle Γ in
G−

r,k (FindMinCycle(G−
r,k)) and push flow through the cycle

to obtain the updated residual graph G+
r,k. When all the

fragments are processed, we output the trajectories T by
tracing all the cycles in the final residual graph. It can be
proved that pushing flow through Γ, G+

r,k contains the min-

3

Fig. 2: Scenario 1: the new fragment (ϕ5) starts a new trajectory. The residual graph from the previous iteration is G+
r,4,

with the min-cost circulation highlighed in bold. G−
r,5 is obtained by AddNode(G+

r,4, ϕ5), with the added nodes highlighted
in yellow. The min-cost cycle Γ in G−

r,5 is colored yellow. Finally, G+
r,5 is obtained by PushFlow(G−

r,5, Γ).

Fig. 3: Scenario 2: the new fragment is connected to the tail of an existing trajectory. In this example the new node u5 has
candidate connections to v1 and v3 based on the motion model described in [7]. The min-cost cycle in this scenario also
includes the post-node of ϕ3, v3, which means that ϕ5 succeeds ϕ3 as the new tail of this trajectory.

Fig. 4: Scenario 3: the new fragment breaks an existing trajectory. In this case, the min-cost cycle contains the pre-node of
ϕ3 and the post-node of ϕ1, meaning ϕ5 has a higher tendency to be a continuation of ϕ1 and ϕ3 is siloed.

cost circulation because the flow is feasible and no further
negative cycles can be found in G+

r . We denote the residual
graph after adding ϕk at iteration k to be G+

r,k. The algorithm
is shown in Algorithm 2.

A visual illustration of how the online NCC algorithm
works is shown in Figure 2-4. We show three scenarios for
adding a new fragment ϕ5 to the current MOT result with
4 fragments (The MOT result up to k = 4 is maintained by
G+

r,4, where ϕ1 and ϕ3 are temporarily associated, and ϕ2

and ϕ4 are temporarily associated).

B. Proof for correctness

Next we prove the correctness of Algorithm 2. Recall the
negative cycle optimality condition in Theorem 1, we need
to prove the following lemma:

Algorithm 2 Online NCC for MCC on a tracklet graph
Input: Set of fragments Φ = {ϕi}
Result: Set of trajectories T = {τi}
f ← 0
G+

r,0 ← {s}
k ← 1

for each ϕk (ordered by last timestamp) do
G−

r,k ← AddNode(G+
r,k−1 , ϕk)

Γ← FindMinCycle(G−
r,k)

G+
r,k ← PushFlow(G−

r,k, Γ)
k ← k + 1

end
T ← FlowToTrajectories(G+

r,k)

4

Lemma 2: The circulation in G+
r,k is optimal, i.e., there is

no more negative cycles in G+
r,k for every k.

Proof: We prove by induction. The base case is
G+

r,0, which contains a single node s and therefore has no
circulation nor negative cycle. During the first iteration, G−

r,1

has one cycle: s → u1 → v1 → s. If the cost of this
cycle is positive, then G+

r,1 = G−
r,1 and no more negative

cycle remains in G+
r,1. Otherwise if the cost for this cycle

is negative, G+
r,1 is G−

r,1 with all edges reversed and costs
negated, therefore the only cycle G+

r,1 has a positive cost.
For the induction, we want to prove that given G+

r,k−1

which has no negative cycle, G+
r,k remains optimal (no

negative cycles) after pushing flow through the min-cost
cycle Γ in G−

r,k. Note that if Γ does not exist on G−
r,k, i.e.,

G+
r,k = G−

r,k, then G+
r,k remains optimal. If Γ exists, it is

obvious that Γ must contain the subpath uk → vk → s (one
of the three scenarios illustrated in Figure 2-4). We proceed
the proof by contradiction.

Suppose there exists a negative-cost cycle ∆ in G+
r,k. Let

Γ̄ be the residual cycle in G+
r,k obtained by reversing and

negating the cost of Γ. If Γ̄ and ∆ share no common edges,
then ∆ must not contain the subpath uk → vk → s, nor
any incident edges to uk. This is because any flow that
goes through an incident edge to uk must come out through
the edge uk → vk per the flow conservation constraint.
Therefore if ∆ exists it must have already existed in G+

r,k−1,
which contradicts the precondition that G+

r,k−1 is optimal (no
negative cycles).

On the other hand if there exists a subpath π(u, v) ∈ Γ
and the residual path π(v, u) ∈ ∆, i.e., Γ̄ and ∆ share a
common subpath π(v, u), we can prove that Γ is not the
min-cost cycle in G−

r,k. Let the subpath π(u, v) and Γ
′

form
the cycle Γ, and the subpath π(v, u) and ∆

′
form the cycle

∆ (see Figure 5). We have $(π(u, v)) = −$(π(v, u)) given
the definition of a residual graph, along with the assumptions
that Γ and ∆ are negative cost:

$(Γ) = $(π(u, v)) + $(Γ
′
) < 0, and

$(∆) = $(∆
′
)− $(π(v, u)) < 0,

We can get

$(Γ
′
) + $(∆

′
) = $(Γ) + $(∆),

meaning that the cycle formed by Γ
′

and ∆
′

in G−
r,k has a

lower cost than either Γ or ∆. It contradicts the fact that Γ
is the least-cost cycle on G−

r,k.
Therefore we proved that G+

r,k obtained from each itera-
tion in Algorithm 2 must be optimal.

C. Improvements

We outline a few improvements on the runtime and
memory of running the online NCC algorithm in practice.

Fig. 5: Proof that the larger cycle composed of ∆
′

and Γ
′

is
of lesser cost than Γ in G−

r,k.

1) Runtime improvements: The offline NCC algorithm
has time complexity of O(|V ||E|2 log |V |), given that the
step of finding the minimum mean cycle (the cycle whose
average cost per edge is smallest) takes O(|V ||E|). The
FindMinCycle step in the online NCC algorithm can be
further improved based on the following result from the proof
in the previous section:

Corollary 1: If a negative cycle exists on G−
r,k after

adding the new fragment ϕk, then it must contain a subpath
π(uk, s) = (uk → vk → s).
This observation is helpful because we can limit our search
for the min-cost cycle at each iteration to include this
subpath. In order to find Γ, which has the cost of $(Γ) =
$(π(s, uk))+$(π(uk, s)), we simply need to find the shortest
path from s to uk in G−

r,k and check if $(π(s, uk)) +
$(π(uk, s)) < 0, as there is only one path for π(uk, s) and
the cost of which is fixed. The step of FindMinCycle can
be reduced to finding the single-source shortest path, which
reduced the runtime to Θ(|E|+|V | log |V |) at every iteration.

2) Memory bound: To limit the size of the graph at each
iteration, we add a step CleanGraph(G+

r,k, τ) to remove the
trajectory (circulation) that is timed out at a customized time
threshold τ . Since all the fragments are added in order of
time, we can simply check the tails of each trajectory, or the
succeeding nodes to the dummy node s at each residual graph
G+

r,k for timeout. If timeout exceeds τ , all the nodes along
the entire circulation (except for s) can be safely removed
from G+

r,k.
The removal of a circulation keeps the remaining flow in

G+
r,k feasible because according to Lemma 1, removing one

5

cycle does not interfere with other cycles as no cycles have
shared edges. The remaining of G+

r,k is still optimal because
no negative cycle can be created in a subgraph of an optimal
residual graph.

Algorithm 3 Memory-bounded online NCC
Input: Set of fragments Φ = {ϕi}
Result: Set of trajectories T = {τi}
f ← 0
G+

r,0 ← {s}
k ← 1
τ ← A time window

for each ϕk (ordered by last timestamp) do
G−

r,k ← AddNode(G+
r,k−1 , ϕk)

Γ← FindMinCycle(G−
r,k)

G+
r,k ← PushFlow(G−

r,k, Γ)
G+

r,k ← CleanGraph(G+
r,k, τ)

k ← k + 1
end
T ← FlowToTrajectories(G+

r,k)

IV. EXPERIMENTS

In this section, we showcase the practical application of
the online NCC algorithm through a numerical experiment
focused on tracking vehicles on a highway. The experiment
utilizes vehicle trajectory data, which consists of bound-
ing boxes captured at a rate of 10Hz. The trajectory data
is generated using TransModeler, a traffic microsimulation
software, and then artificially segmented and degraded into
fragments representing partial trajectories. The objective
of this experiment is to demonstrate that by sequentially
processing these fragments using the proposed online NCC
algorithm, we can successfully recover the ground truth data
association assignments. Additionally, we aim to illustrate
that the algorithm effectively manages the graph size and
computational time, thereby providing a bounded solution.

The tracking performance can be evaluated with standard
MOT metrics specified in [16]–[19]:

• Switches per GT: total number of track switches per
ground truth trajectory (target: 0).

• Fragments per GT: total number of switches from
tracked to not tracked per ground truth trajectory (target:
0).

A. Experiment setup

The simulation dataset we utilized consists of 137 vehicles
moving along a 4-lane highway segment spanning a distance
of 2000 ft. The simulation was conducted for a duration
of 200 seconds, and lane-change occurs at random location
and time throughout the simulation. A time-space diagram
is shown in Figure 6. Each trajectory is assigned a distinct
color, allowing for easy differentiation.

To simulate the effects of conservative tracking commonly
encountered in modern multi-camera systems, we introduced
a mask that persists throughout the entire simulation time-
frame. This mask covers the region from 1550 ft to 1700 ft
and has a width of 150 ft. It mimics the discontinuity effect
of a visual occlusion during the object tracking process, such
as a highway overpass with vehicles passing underneath.
Additionally, we incorporated two additional locations at
700 ft and 1400 ft where trajectories are fragmented. This
behavior emulates the challenges faced when tracking across
adjacent cameras with overlapping fields of view. As vehicles
traverse between cameras, their IDs change, resulting in
trajectory fragmentation. Furthermore, the fragments exhibit
a slight overlap of approximately 100 ft, representing po-
tential inaccuracies arising from camera misalignment or
homography transformations. The time-space diagram of
these fragments can be seen in Figure 7.

The results for running the online NCC algorithm on the
fragments are presented next.

B. Results

First, we demonstrate that the online NCC algorithm
applied to the fragments achieves 100% accuracy. Table I
illustrates that there are no mismatches between any frag-
ments, as indicated by a count of 0 for both “fragments per
ground truth (GT)” and “switches per GT”. It verifies that
all 137 ground truth objects are correctly recovered.

For this specific example, we assigned costs to each
edge as follows: ceni = cexi = 0, ci = −10−6, and ci,j
as a distance function that measures the motion similarity
between two fragments, based on a probabilistic motion
model (refer to equation (12) in [7]). The rationale behind
this choice is that there are no false positive fragments in
this example; each fragment must be part of a real object’s
trajectory and thus no penalties on the entering and exiting
edges. Additionally, a small reward is assigned for including
each fragment through ci. If for other settings false positive
fragments are present, the corresponding costs on those edges
need to be adjusted.

Next, we demonstrate that the graph size remains bounded
during the online NCC procedure. We choose a window
size of 5 seconds, meaning that when adding fragment
ϕk with a last timestamp of tk, all existing trajectories
with a last timestamp older than tk − 5 are removed from
the graph using the CleanGraph step. Figure 9 illustrates
the relationship between the graph size and the number
of fragments processed k. We observe that the number of
nodes is maintained between 20-30, and the number of edges
between 20-35, ensuring it remains “memory-bounded”. The
graph size decreases each time when timed-out trajectories
(nodes) are removed from the graph. Towards the end of the
iteration, the size temporarily increases because fewer nodes
are removed as the time cursor no longer advances forward.

The cumulative run-time for each process in the online
NCC algorithm is shown in Figure 10. The total run-time

6

Fig. 6: Time-space plot of the ground truth trajectories. Each object is represented as a distinct color.

Fig. 7: Fragments created from the simulated trajectory data. Each fragment is colored distinctly.

Fig. 8: Data association result after online NCC, with additional data imputation and smoothing described in [7].

of this example is approximately 5 seconds, averaging about
0.01 seconds per iteration. This time is well below the input
rate and scales linearly with the number of fragments in
the dataset. In this example, the majority of the run-time
is consumed during the AddNode step, where the cost of
every pair of fragments in the time window needs to be
computed. Notably, the runtime of FindMinCycle and Push-
Flow combined constitutes only 1% of the total computation
time at each iteration (10−4sec per iteration), which is the
optimization target of the online NCC algorithm.

The numerical experiment setup for this study is delib-
erately simplistic, with the majority of vehicles traveling at
free flow with a low lane-change rate, and the fragmentations
occurring only at fixed locations. However, in real-world sce-
narios, fragmentations can occur randomly, and the lengths of

tracks can vary significantly. Despite these complexities, the
proposed algorithm remains versatile and does not impose
any restrictions on the structure of the fragmentation or
the location of missing tracks. For a more comprehensive
evaluation of the proposed method, readers can refer to [7],
where a manually labeled dataset from the I-24 MOTION
tracking system serves as the ground truth for benchmarking
purposes. This extensive evaluation provides a more accurate
assessment of the algorithm’s performance under various
real-world conditions and showcases its potential to handle
more complex and diverse traffic scenarios.

V. CONCLUSION

We present an online extension of the well-known neg-
ative cycle canceling algorithm for solving the min-cost-

7

Fig. 9: Graph size at each iteration of online NCC.

Fig. 10: Cumulative runtime (sec) for each step during the
online NCC.

Metrics / Statistics Ground truth Fragments After online NCC

Distinct objects 137 493 137
Fragments per GT ↓ 0 3.60 0 (-100%)
Switches per GT ↓ 0 0 0 (-0%)

TABLE I: Evaluation results.

circulation problem on a graph, which has the same global
solution to the MOT problem. We provide proof for cor-
rectness of the algorithm, and demonstrate the application
on a fragment association problem. The run-time analysis
shows that the cumulative run-time is linear with respect to
the input size, and is well below the real-time requirement.
Additionally, the algorithm is shown to be memory-bounded,
which can be suitable for settings with streaming input data.

ACKNOWLEDGMENT

This study is based upon work supported by the National
Science Foundation (NSF) under Grant No. 1837652, and the

USDOT Dwight D. Eisenhower Fellowship program under
Grant No. 693JJ322NF5201.

REFERENCES

[1] C.-Y. Chong, “Graph approaches for data association,” in 2012 15th
international conference on information fusion, pp. 1578–1585, IEEE,
2012.

[2] G. Castnnón and L. Finn, “Multi-target tracklet stitching through
network flows,” in 2011 Aerospace Conference, pp. 1–7, IEEE, 2011.

[3] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-
object tracking using network flows,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8, IEEE, 2008.

[4] N. Vyahhi, S. Bakiras, P. Kalnis, and G. Ghinita, “Tracking moving
objects in anonymized trajectories,” in International Conference on
Database and Expert Systems Applications, pp. 158–171, Springer,
2008.

[5] L. Rakai, H. Song, S. Sun, W. Zhang, and Y. Yang, “Data association
in multiple object tracking: A survey of recent techniques,” Expert
Systems with Applications, vol. 192, p. 116300, 4 2022.

[6] P. Lenz, A. Geiger, and R. Urtasun, “Followme: Efficient online
min-cost flow tracking with bounded memory and computation,”
in Proceedings of the IEEE International Conference on Computer
Vision, pp. 4364–4372, 2015.

[7] Y. Wang, D. Gloudemans, Z. N. Teoh, L. Liu, G. Zachár, W. Barbour,
and D. Work, “Automatic vehicle trajectory data reconstruction at
scale,” arXiv preprint arXiv:2212.07907, 2022.

[8] D. Gloudemans, Y. Wang, J. Ji, G. Zachar, W. Barbour, and D. B.
Work, “I-24 motion: An instrument for freeway traffic science,” arXiv
preprint arXiv:2301.11198, 2023.

[9] C. Wang, Y. Wang, Y. Wang, C.-T. Wu, and G. Yu, “mussp: Efficient
min-cost flow algorithm for multi-object tracking,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[10] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, vol. 8, pp. 399–404, 1956.

[11] C. Wang, Y. Wang, and G. Yu, “Efficient global multi-object tracking
under minimum-cost circulation framework,” IEEE transactions on
pattern analysis and machine intelligence, 2020.

[12] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows.
Cambridge, Mass.: Alfred P. Sloan School of Management, Mas-
sachusetts . . . , 1988.

[13] P. T. Sokkalingam, R. K. Ahuja, and J. B. Orlin, “New polynomial-
time cycle-canceling algorithms for minimum-cost flows,” Networks,
vol. 36, no. 1, pp. 53–63, 2000.

[14] M. J. Klein, “A primal method for minimal cost flows with applications
to the assignment and transportation problems,” Management Science,
vol. 14, pp. 205–220, 1966.

[15] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost circulations
by canceling negative cycles,” Journal of the ACM (JACM), vol. 36,
no. 4, pp. 873–886, 1989.

[16] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

[17] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler,
“Mot16: A benchmark for multi-object tracking,” arXiv preprint
arXiv:1603.00831, 2016.

[18] Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybrid-
boosted multi-target tracker for crowded scene,” in 2009 IEEE con-
ference on computer vision and pattern recognition, pp. 2953–2960,
IEEE, 2009.

[19] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Per-
formance measures and a data set for multi-target, multi-camera
tracking,” in European conference on computer vision, pp. 17–35,
Springer, 2016.

8

	Introduction
	Preliminary: The Min-Cost-Circulation (MCC) Problem for Tracking
	Problem formulation
	Equivalent MCC formulation
	Negative cycle canceling

	Online Negative Cycle Canceling
	Algorithm
	Proof for correctness
	Improvements
	Runtime improvements
	Memory bound

	Experiments
	Experiment setup
	Results

	Conclusion
	References

