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Realtime Global Optimization of a Fail-Safe Emergency Stop Maneuver
for Arbitrary Electrical / Electronical Failures in Automated Driving*

F. Duerr1, J. Ziehn2,†, R. Kohlhaas3, M. Roschani2, M. Ruf2 and J. Beyerer2,4

Abstract— In the event of a critical system failures in auto-
mated vehicles, fail-operational or fail-safe measures provide
minimum guarantees for the vehicle’s performance, depending
on which of its subsystems remain operational. Various such
methods have been proposed which, upon failure, use different
remaining sets of operational subsystems to execute maneuvers
that bring the vehicle into a safe state under different envi-
ronmental conditions. One particular such method proposes
a fail-safe emergency stop system that requires no particular
electric or electronic subsystem to be available after failure,
and still provides a basic situation-dependent emergency stop
maneuver. This is achieved by preemptively setting parameters
to a hydraulic / mechanical system prior to failure, which
after failure executes the preset maneuver “blindly”. The focus
of this paper is the particular challenge of implementing a
lightweight planning algorithm that can cope with the complex
uncertainties of the given task while still providing a globally-
optimal solution at regular intervals, based on the perceived
and predicted environment of the automated vehicle.

I. INTRODUCTION

The optimization of emergency maneuvers has been the
subject of comprehensive research, with a wide range of
solutions addressing different notions of what constitutes an
“emergency” in this context: From a fully operational vehicle
encountering challenging environmental conditions (e.g. [1]
for model-predictive pedestrian avoidance; [2] for reactions
to unexpected traffic situations; [3] for collision avoidance
for cooperative vehicles), to various stages of degraded
capabilities of subsystems under various internal and external
conditions (e.g. [4], [5]), including incapacitation of the
responsible human driver for systems up to SAE level 3 (e.g.
[6], [7]).

Degraded capabilities of the ego vehicle include single- or
multiple-point faults, which can be addressed by redundant
systems to provide a fail-operational behavior (cf. [8]),
possibly including graceful degradation (cf. [9]) by reducing
active vehicle functions depending on the occurring failure
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Fig. 1: Motivating example: The ego vehicle E is equipped with a hydraulic
piston accumulator, whose pressure is released onto the brakes in case of
a severe system failure. To provide a situation-dependent maneuver, the
pressure is controlled by a valve, which is adjusted at periodical intervals
∆tplan prior to failure, to prepare for a possible emergency. Since failure
can occur any time within the upcoming ∆tplan (or never at all), not one
single braking trajectory can be planned, but instead a continuous range
X of trajectories (and stopping distances) can occur, displaced over failure
time. In the given scenario, the safest decision would be to decelerate gently
enough to avoid a rear-end collision with car R, yet strongly enough to not
enter the road ahead Y. The goal of the proposed algorithm is to minimize
the risks W(t, s) over time t and arc length s within the region X with very
limited computational effort.

modes, or at least fail-safe behavior, which provides minimal
functions to assure safety in case of a failure. In each case,
the chosen fallback behavior depends on the assumed set
of remaining operational systems; a single failed sensor is
more easily compensated than a fusion or planning unit;
approaches to address various kinds of failure modes are
given in [4], [10].

An approach to establish a lower bound of possible safety
is proposed in [11], where a situation-adaptive emergency
stopping maneuver is provided without requiring the use of
any electric or electronic system after the moment of failure;
the system can therefore be used as a fallback for any failure
mode where no superior dedicated solution can efficiently be
implemented. To achieve this behavior, motivated in Fig. 1, it
uses a hydraulic / mechanical subsystem to brake the vehicle
to a halt, and an electronic system, required only prior to
failure, which periodically adjusts the hydraulic / mechanical
system to an optimal, situation-dependent braking decelera-
tion, preemptively for the case of a failure before the next
optimization interval.

This paper focuses on the planning task of the described
system, addressing the choice of an appropriate planning
model, and especially its efficient computational solution,
since the purpose of the system as a last-resort fallback
demands a lightweight implementation. To this end, Sec. II
provides a brief overview of the system presented in [11];
Sec. III establishes the basic mathematical model for the
emergency maneuver planning; Sec. IV describes the pro-
posed approach to render the problem tractable for realtime
computation; and Sec. V describes an efficient approach to
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solving this problem algorithmically. The performance of
the resulting algorithm, which provides a globally-optimal
decision for the current planning step, is discussed in Sec. VI
both in terms of result quality and of computational effi-
ciency. Section VII summarizes the main conclusions and
provides an outlook to possible future extensions.

II. SYSTEM OVERVIEW

The system’s goal is to assure that an “optimal”, situation-
dependent emergency stop maneuver is executed without
requiring any electric or electronic components after the
time of failure, tfail. This is achieved, as described in [11]
and shown in Figs. 2 and 2b, by electronically presetting
hydraulic / mechanical components prior to failure in an
“optimal”, situation-dependent way, such that upon failure,
only hydraulic / mechanical processes are required to execute
the preset maneuver. If no failure occurs, the hydraulic /
mechanical components remain inactive, and the planned
emergency maneuver is not executed.

This section will briefly outline the system, as far as
relevant to the maneuver optimizer (D in Figs. 2a and 2b),
whose optimization algorithm is the subject of this paper and
will be detailed in Secs. III through V.

The optimization algorithm D determines, at regular in-
tervals ∆tplan, a target braking deceleration anext, which is
used to adjust a pressure regulation valve B. If the system
fails within the current interval (i.e. before the next step of
the optimizer), pressure is released immediately, regulated
by the valve, to act on the brake master cylinder, executing
an emergency stop using the preset anext. The optimizer
has to determine some anext based on the vehicle’s current
situation at tnow (e.g. traffic, vehicle dynamics, predictions
with uncertainties), conditioned on the assumption that the
vehicle fails before the next planning cycle at tnow+∆tplan =:
tplan. Since the electric/electronic (E/E) system is still live
upon optimization, E/E components can be used to determine
anext, such as processors and data from the vehicle sensors.

On the other hand, the computation must be extremely
lightweight, since under typical conditions, the system should
rarely ever be required at all; and it must be able to cope
with additional complications, arising from uncertainty of the
exact time of failure, and from the non-negligible time the
pressure regulation valve B takes to reach the state anext.

The final requirement is that the optimizer be consistent
with a given regular maneuver planner; this allows to nat-
urally specify its key parameters based on the parameters
of the regular maneuver planner, and, more importantly, to
reuse results to reduce computational effort.

To assure predictability of the lateral motion, moderate
force is applied to maintain the current steering wheel angle
upon failure (while still allowing a human driver to inter-
vene), such that the lateral motion of the vehicle can be as-
sumed to be an arc with known curvature. The optimizer can
thus make use of path-velocity decomposition (PVD, [12]),
without optimizing lateral motion, and accounting only for a
limited added degree of positional uncertainty, which further
includes uncertainties in perception and prediction, road
friction and initial speed due to measurement uncertainties
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(a) Reduced layout of the system originally presented in [11]. Upon failure of the
E/E systems (right), detected by a watchdog mechanism E, the hydraulic / mechanical
subsystem (left, originally in [13]) engages. Valve B opens and releases the pressure
from piston accumulator A towards the pressure regulation valve C, whose state is
adjusted by the maneuver optimizing unit D (the subject of this paper) at regular
intervals to choose the optimal deceleration profile for the vehicle’s current situation.

C
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(b) Exemplary timing diagram of the developed system, as in [11]. Prior to failure, the
emergency planning system D computes a new target deceleration anext at regular
intervals (spaced by ∆tplan), used to set a pressure regulation valve C. The valve
transitions for some time tvalve (hatched areas) before reaching anext. (For simplicty,
we consistently denote the hydraulic valve state directly by its associated, calibrated
deceleration, in the sense that the valve is preset to achieve this deceleration.) When
the watchdog signal ceases, the lock valve B releases the pressure onto valve C, whose
current state freezes upon failure and effects a constant braking deceleration.

(c) Hydraulic prototype of the system in a VW Golf VII Variant, developed by the
Institute of Vehicle System Technology (FAST) at KIT.

Fig. 2: Overview of the system controlled by the optimization algorithm.

or accelerations at the moment of failure. An experimental
evaluation of the predictability of vehicle motion for this use
case is provided in [11], which describes in more detail how
uncertainties are included in the planning process.

III. MATHEMATICAL MODEL

As previously stated, we aim to define the emergency
planning problem such that it is consistent with regular
maneuver planning of the automated vehicle. Therefore,
we first describe the assumed problem statement of the
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Vehicle speed v0 ⩽ 45 m/s (≈ 160 km/h, 100 mph)

Braking decelerations a ∈ [−9 m/s2,−1 m/s2]

Planning horizon thzn = 10 s

Replanning interval ∆tplan = 0.25 s

Valve speed κ = 100 m s−3

Valve transition time ∆tvalve ⩽ 0.08 s = (amax − amin)/κ

TABLE I: Numerical reference values of relevant parameters introduced
throughout the paper, used only where explicitly indicated and exclusively
to provide realistic orders of magnitude, without loss of generality.

regular maneuver planning, and then derive the statement of
emergency maneuver planning from a special case thereof.

A. Regular Planning
The regular trajectory planning we assume to be modeled

as a variational problem, as used e.g. in [14]–[16]. In this we
consider the trajectory of the ego vehicle to be sufficiently
determined by its trajectory

ξ : [tnow, thzn]→ � ×�, ξ(t) =
[
ξx(t), ξy(t)

]T
, (1)

describing the ground coordinates of its rear axle center up
to the prediction horizon. With the assumption of negligi-
ble tire slip, which strictly aligns the vehicle body with
the trajectory’s tangent, most common parameters such as
heading, yaw rate or individual wheel speeds and angles can
be derived given the basic vehicle geometry [17].

As stated in Sec. II, the maneuver is executed with a
constant steering wheel angle, to allow for path-velocity
decomposition (PVD): We may consider a parametrization
of ξ by arc length, its path ξ̄(s), together with an appropriate
timing along this path σ(t), such that ξ(t) ≡ ξ̄(σ(t)). In the
context of PVD, we assign penalty costs to a timing by using
a functional of the form

P[σ( · )] =
∫ thzn

tnow

dt L(t, σ(t), d
dtσ(t), d2

(dt)2σ(t), ...), (2)

where we write σ( · ) to denote that the penalty is ac-
cumulated over the single parameter t of s. For regular
trajectory planning, L uses the local (at t) derivatives to
assign penalty costs e.g. for risks, comfort, traffic rule
compliance, efficiency and ecology. For the evaluation of
emergency stop maneuvers, we simplify the problem by
using L(t, σ(t), d

dtσ(t), ...) =: W(t, σ(t)), which is sufficiently
expressive to assign risk penalties to time–space coordinates
that the vehicle should not traverse (e.g. coordinates of other
dynamic objects) or stop on (e.g. railway tracks).

B. A Single Stopping Trajectory
The basic element of the emergency stopping problem

description is a timing σ(t, v0, tfail, a) which drives at constant
speed v0 until tfail, and then decelerates with some negative
a until it comes to a halt.1 This timing is given by

σ(t, v0, tfail, a) =


v0 t for t ⩽ tfail

s■ for t ⩾ t■
v0 tfail +

a (t−tfail)2

2 else,
(3)

1Note that we strictly use tfail as the instant when the emergency
deceleration engages. Any deterministic delay between actual failure and
deceleration onset, such as by hydraulics, brake pad motion or signal times
that can be determined a-priori, is considered included.

where the stopping time and distance are given by

t■ = tfail − v0/a and s■ = v0 tfail − v2
0/2a. (4)

With the trajectory shape completely specified by param-
eters v0, tfail, a, the Euler–Lagrange form (2) of the penalty
cost functional can be expressed as a penalty function:

P(v0, tfail, a) := P[σ( · , v0, tfail, a)] =
∫ thzn

tnow

dt W(t, σ(t, ...)). (5)

Thereby, the optimization simplifies to a∗ ∈ arg mina P(a).

C. Adaptation to the Actual Problem
The actual planning problem, however, is more complex

than optimizing P for a. At each planning instant of the
vehicle (i.e. strictly before the emergency), v0 is known,
but tfail is not: The system may fail at any time within
the planning interval Tplan = [tnow, tplan).2 With a relatively
short ∆tplan (cf. Tab. I), it is considered unlikely that there is
considerable prior knowledge about when tfail would occur
within Tplan, so we assume a uniform tfail ∼ U(Tplan).

Along with the unknown tfail, even a is unknown: Since
a is a mechanical parameter (namely the state of valve C
in Fig. 2a), it cannot be switched instantaneously. Instead,
if the optimal valve state from the previous planning cycle
was aprev, and our (yet undefined) optimization process
obtains anext as the next optimal solution, the valve will
take some non-negligible interval [tnow, tvalve] to transition,
modeled linearly as tvalve = tnow + κ (anext − aprev) using a
signed “valve speed” κ with sign κ = sign(anext − aprev).
For example, for values as in Tab. I, the probability of
failure during valve transition can be up to 32 %. We note
that a / U(Tplan): If valve motion is approximately linear
with a, but tvalve < ∆tplan, a is uniformly distributed during
[tnow, tvalve], but constant thereafter, with tvalve depending on
aprev − anext. We therefore denote the unknown value as
α(aprev, anext, tfail) and find the actual curve family to be

σ(t, v0, tfail, α(aprev, anext, tfail)). (6)

The complete planning problem thus presents itself as
minimizing the expected penalty value for a choice of anext

a∗ ∈ arg min
anext

1
∆tplan
⟨P(..., anext, ...)⟩, (7)

using ⟨ · ⟩ as the non-normalized expected value over tfail,

⟨P(..., anext, ...)⟩ :=
∫ tplan

tnow

dtfail P(v0, tfail, α(aprev, anext, tfail)). (8)

For its solution, we note that P depends on W(t, s) (the
risk predictions), which is typically not analytic but an array,
so analytic solving is not feasible. Iterative solvers have
difficulty guaranteeing time or quality constraints (cf. [18]),
and for realtime safety applications, we require both. This
points to discretization and subsequent global optimization
of the discretized set, yet a direct, exhaustive solution of (7)
over anext is prohibitive for lightweight realtime applications:
To test any a, we must evaluate all tfail, and each tfail yields

2Do note that it may (and typically should) not fail within Tplan at all;
however, since any planned action is only executed iff the system fails,
the failure within Tplan acts as a stochastic precondition in the planning.
Thereby, all modeling is independent of p(fail), which would typically be
difficult to determine.
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Fig. 3: Areas covered for different choices of anext overlap, starting with
the timing σ(t, tnow, ...). This motivates the attempt to use an antiderivative
of W(t, s) w.r.t s to determine the expected value of penalties accumulated
within the area for a particular choice of anext.

a timing σ(t) to be integrated over (as in (5)) to evaluate
its cumulative penalty costs P. Hence, we are looking for
ways to simplify the computation by reusing computations,
not between planning cycles (we consider each planning step
a new problem), but within a single cycle.

IV. PROBLEM SIMPLIFICATION
First, we note that at the beginning of each planning

cycle, the following parameters are known: The current
vehicle speed v0, the current valve state aprev, as well as the
parametric constants tnow, tplan and thzn. Optimization result
is anext, whereas tfail ∈ [tnow, tnow + ∆tplan] always remains
unknown. We introduce the three-parametric shorthand

σ(t, tfail, anext) = σ(t, v0, tfail, α(αprev, αnext, tfail)), (9)

and state the goal to establish some easily precomputed I
(an antiderivative w.r.t. s), to achieve a form

⟨P(..., anext, ...)⟩ =
∫ thzn

tnow

dt
(
I(t, σ(t, tplan︸︷︷︸

range over possible tfail

, anext))

− I(t, σ(t,
︷︸︸︷
tnow , anext))

) (10)

such that (a) time steps up to thzn can be treated indepen-
dently, and (b) to evaluate one candidate anext, we must
no longer integrate over all timings (= trajectories) for all
possible tfail, but instead look up in the precomputed I. The
first condition (a) can be readily rearranged by

⟨P(..., anext, ...)⟩ =
∫ tplan

tnow

dtfail

∫ thzn

tnow

dt W(t, σ(t, tfail, anext)) (11)

where we may apply Fubini’s theorem to obtain

=

∫ thzn

tnow

dt
∫ tplan

tnow

dtfail W(t, σ(t, tfail, anext)), (12)

since all physically possible timings are necessarily contin-
uous and all intervals are closed. For (b), we seek some
I(t, σ(t, tfail, anext)) that is easily precomputed (“pre” in the
sense of before picking any candidate anext), so we must
integrate over s instead of tfail, since evaluating σ(t, tfail, anext)
requires anext. Hence we mean to establish a substitution
function τfail s.t. for any valid arc length s

σ(t, τfail(t, s), anext) = s and thus (13)∫ tplan

tnow

dtfail W(t, σ(t, tfail, anext)) =
∫ σ(t,tplan,anext)

σ(t,tnow,anext)
ds W(t, s)

∂τfail

∂s

∣∣∣∣∣
t,s

(14)

=: I(t, σ(t, tplan, anext)) − I(t, σ(t, tnow, anext)) (15)

which allows to specify I as required in (10) as

I(t, s) =
∫ s

0
ds W(t, s)

∂τfail

∂s

∣∣∣∣∣
t,s

(16)

To compute (16), we require ∂τfail/∂s, intuitively the
density of trajectories passing through some space segment
by change in failure times. We distinguish between the
following sets of sub-trajectories, as shown in Fig. 4:

• Sub-trajectories A that have not failed yet and hence
lie on the regularly planned trajectory. All trajectories
start in this set at the instant t = tnow with the common
point σ(tnow) = 0, but branch off to a different set (B or
C) once they fail. Since the entire planning process is
conditioned upon the assumption that failure is certain
within [tnow, tplan], the longest sub-trajectory in this set
lasts until tfail, when it is the last to fail and branch off.
The set A is special in that all sub-trajectories therein
overlap perfectly, but their density decreases with t.

• Sub-trajectories B that have failed, but the valve had not
yet reached anext. These sub-trajectories decelerate with
varying decelerations [aprev, anext]. As seen in Fig. 4,
these sub-trajectories can cover a wide interval over s
for large |anext − aprev|. If anext = aprev, B is empty.

• Sub-trajectories C that have failed, and the valve did
reach anext before that. These sub-trajectories all deceler-
ate with anext, and are only spaced by the vehicle driving
along its original path for a longer time.

The sub-trajectories within these sets are given by

σA(t, tfail) = v0 t , (17)

σB(t, tfail) =

v0t + 1
2 (aprev + κtfail)(t − tfail)2 t < t■

v0tfail − v2
0/(2(aprev + κtfail)) else, and

(18)

σC(t, tfail) =

v0t + 1
2 anext(t − tfail)2 t < t■

v0tfail − v2
0/(2anext) else.

(19)

Using this distinction, we state for the expected penalty costs

⟨P(..., anext, ...)⟩ = ⟨P⟩A + ⟨P⟩B + ⟨P⟩C (20)

where ⟨P⟩A, ..., ⟨P⟩C are the expected penalty costs for sub-
trajectories within A through C, namely, by the boundaries
of integration shown in Fig. 5,

⟨P⟩A=
∫ tplan

tnow

dt
∫ tplan

t
dtfailW(t, ...) =

∫ tplan

tnow

dt (tplan−t) W(t, v0t) (21)

⟨P⟩B=
∫ tvalve

tnow

dt
∫ t

tnow

dtfail W(t, ...)︸                     ︷︷                     ︸
B1

+

∫ thzn

tvalve

dt
∫ tvalve

tnow

dtfailW(t, ...)︸                     ︷︷                     ︸
B2

(22)

⟨P⟩C=
∫ tplan

tvalve

dt
∫ t

tvalve

dtfail W(t, ...)︸                     ︷︷                     ︸
C1

+

∫ thzn

tplan

dt
∫ tplan

tvalve

dtfailW(t, ...)︸                    ︷︷                    ︸
C2

(23)

where the ellipses (“...”) denote σA(t, tfail) through σC(t, tfail)
from the previous (17)–(19) respectively, such that

⟨P(..., anext, ...)⟩ = ⟨P⟩A + ⟨P⟩B + ⟨P⟩C. (24)

We note that sub-trajectories contained in A lie on the reg-

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/ITSC45102.2020.9294578


kamo.one

F. Duerr, J. Ziehn, R. Kohlhaas, M. Roschani, M. Ruf and J. Beyerer, ”Realtime Global optimization of a Fail-Safe Emergency
Stop Maneuver for Arbitrary Electrical / Electronical Failures in Automated Driving,” 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 2020 , doi: 10.1109/ITSC45102.2020.9294578

exaggerated detail

tfail

B▶

B■
C▶

C■CB

A

[s■
t■
]

tvalve

tplan

0 m 20 m 40 m 60 m 80 m s
0 s

1 s

2 s

3 s

4 s

5 s

6 s

Fig. 4: The set of all possible sub-trajectories for a given transition is
composed as follows: The set A of sub-trajectories that have not failed yet
(thin light blue line); the set B of sub-trajectories that ensue for failures
at some tfail ∈ [tnow, tvalve) which brake with intermediate accelerations
[aprev, anow); and the set C of sub-trajectories for failures tfail ∈ [tvalve, tplan]
that brake with the target deceleration of anext (hatched green). The latter
two we further distinguish into B▶, B■ and C▶, C■ by whether the vehicle
already has stopped (indicated by the dashed [s■, t■]T line).

ularly planned trajectory and range up to tfail—thus, neither
their shape nor their density is affected by the choice of anext.
Therefore, ⟨P⟩A is a constant term in the optimization that
does not affect the solution a∗. We thus need not specify a
substitution function for ⟨P⟩A to obtain a∗ in (7).3 For ⟨P⟩B

and ⟨P⟩C, we define the substituted integrals via limits, to
avoid integrating over discontinuous boundaries. We define

⟨P⟩Bε =
∫ tvalve

ε1

dt
∫ σB(t,t−ε2)

σB(t,tnow)
ds W(t, s)

∂τB

∂s

∣∣∣∣∣∣
t,s︸                                        ︷︷                                        ︸

B1

+

∫ thzn

tvalve+ε5

dt
∫ σB(t,tvalve)

σB(t,tnow)
ds W(t, s)

∂τB

∂s

∣∣∣∣∣∣
t,s︸                                        ︷︷                                        ︸

B2

(25)

and ⟨P⟩Cε =
∫ tplan

tvalve+ε3

dt
∫ σB(t,t−ε4)

σC(t,tvalve)
ds W(t, s)

∂τC

∂s

∣∣∣∣∣∣
t,s︸                                        ︷︷                                        ︸

C1

+

∫ thzn

tplan+ε6

dt
∫ σB(t,tplan)

σC(t,tvalve)
ds W(t, s)

∂τC

∂s

∣∣∣∣∣∣
t,s︸                                        ︷︷                                        ︸

C2

(26)

such that ⟨P⟩ − ⟨P⟩A = lim
ε→0
⟨P⟩Bε + ⟨P⟩

C
ε (27)

under ε1 ⩾ ε2 and ε3 ⩾ ε4. The existence of this limit is
shown in [19]. To derive the substitution functions τB and
τC, we distinguish the sets B and C further into regions while
the vehicle still moves, and regions where it already stopped,
namely B = B▶ ∪̇ B■ and C = C▶ ∪̇ C■, cf. Fig. 4.

1) B▶—Vehicle decelerating, valve stopped in transition:
In this case, we find for the trajectories

σB(t, v0, tfail, aprev) = v0 t + 1
2 (aprev + κ tfail)(t − tfail)2 (28)

=
κt3

fail

2
+

(aprev

2
− κt

)
t2
fail+

(
κt2

2
− aprevt

)
tfail+v0t+

aprevt2

2
, (29)

3Also note that, since we aimed to pose the emergency planning problem
as consistent with the regular maneuver planning, which minimizes the
penalty costs of the regular trajectory, ⟨P⟩A should typically be very low.

B1
B2

C1

C2

t ⩽ tfail

A

tnow tvalve thznt
tnow

tplan

tfail

tplan

tvalve

Fig. 5: We distinguish between trajectories which have not failed/decelerated
yet (A, solid light blue), trajectories where the valve was activated in an
intermediate state (B, solid dark blue), and trajectories where the valve was
activated in its constant state anext (C, hatched green). The subsets B1, B2
and C1, C2 defined to obtain simple boundaries for integration in (21)–(23).

where the absolute value of the third-order term is,
in the exemplary quantities of Tab. I, bounded by∣∣∣(κ/2) t3

valve

∣∣∣ < 2.6 cm.4 As this will typically be considerably
lower than positional uncertainty of the predictions, we
approximate s by omitting this term to proceed with

σ̃B(...) =
(aprev

2
− κt

)
t2
fail+

(
κt2

2
− aprevt

)
tfail+v0t+

aprevt2

2
(30)

τB
fail(t, s) = −

β▶ ± sign(κ)
2α▶

√
β2
▶ − 4α▶ γ▶ + 4α▶ s (31)

with α▶ = 1
2 aprev−κt, β▶ = 1

2κt
2−aprevt and γ▶ = v0t+ 1

2 aprevt2.
It can be seen that τB

fail(t, s) is not uniquely determined at s.
Particularly we find that

∂σ̃B

∂tfail

∣∣∣∣∣
tfail,t
= 0⇔ tfail = t +

3 κ t2

2 aprev − 4 κ t
(32)

where arc length s reaches an extremum over tfail and several
arc lengths may occur twice along tfail (details in [19]).

2) B■—Vehicle at rest, valve stopped in transition: In this
case we have the trajectories

σB(t, tfail) = v0 tfail − v2
0/(2 aprev + 2 κ tfail) (33)

which gives

τB,±
fail (t, s) =

−β■ ± sign(κ)
2α■

√
β2
■ − 4α■ γ■ (34)

with α■ = 2v0κ, β■ = 2v0aprev − 2κs and γ■ = −v2
0 − 2α0s.

Again looking for singular points gives the solutions

∂σB

∂tfail

∣∣∣∣∣
tfail,t
= 0⇔ t±fail =

−aprev ±

√
− 1

2 κ v0

κ
, (35)

for κ < 0, of which only t+fail = (−aprev +
√
...)/κ can lie within

[tnow, tvalve], and only for specific parameters:

t+fail ∈ [tnow, tvalve]⇔ v0 < −2 a2
next/κ (36)

By Tab. I, this condition is satisfied only for v0 ⩽ 1.62 m/s;
under relevant conditions, σB is non-singular w.r.t. tfail.

3) C▶—Vehicle decelerating, valve reached anext: In this
case we have the trajectories

σC(t, tfail) = v0 t + 1
2 anext (t − tfail)2, (37)

and τC,±
fail (t, s) =

anext t ±
√
−2 anext v0 t + 2 anext s

anext
(38)

4Since in the case of the valve stopping in transition we have tfail ⩽ tvalve.
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which is strictly τC
fail = τ

C,+
fail for t > tfail.

4) C■—Vehicle at rest, valve reached anext: This final case
contains the trajectories

σC(t, tfail) = v0 tfail − v2
0/(2 anext) (39)

with τC
fail(t, s) = s/v0 + v0/(2 anext). (40)

5) Partial Derivatives of τfail(t, s) over B ∪̇C: The results
of the previous sections give the partial derivatives of τfail (as
required in (25) and (26)) as

∂τB
fail

∂s

∣∣∣∣∣∣
t,s
=



sign(κ)√
β▶ − 4α▶γ▶ + 4α▶s

s > s■

1
2 v0
−

sign(κ)(β■ + 4 κ s)

2v0
√
β2
■ − 4α■γ■

else, and

(41)

∂τC
fail

∂s

∣∣∣∣∣∣∣
t,s

=


1

√
−anext

√
2v0t + 2s

s > s■

v−1
0 else.

(42)

V. PROBLEM SOLUTION
Having established ∂τ/∂s now allows us to compute I(t, s)

by (16), to approximately optimize ⟨P(..., anext, ...)⟩ in (7).

A. Discretization
We use the discretizations ∆̂t for prediction time and ∆̂s

for stopping distance to define the following sets:

T̂ =
{

t̂
∣∣∣ t̂ = tnow + m ∆̂t, t̂ ⩽ thzn, m ∈ {0, 1, 2, ...}

}
(43)

Ŝ =
{

ŝ
∣∣∣ ŝ = 0 m + n ∆̂s, n ∈ {0, 1, 2, ...}

}
(44)

Ŝ (t) =
{

s
∣∣∣ s ∈ Ŝ , σmin(t) ⩽ s ⩽ σmax(t)

}
(45)

Â = { amin, amin + ∆a, ..., amax − ∆a, amax } (46)

where σmin(t) and σmax(t) are the shortest and longest
possible stopping trajectories respectively,

σmin(t) = σ(t, tfail = (amax − aprev)/κ, amax) (47)
and σmax(t) = σ(t, tfail = (amin − aprev)/κ, amin). (48)

We introduce the additional simplification that variations
in penalty costs at different anext for sub-trajectories within
t ∈ [tnow, tnow + ∆̂t] are negligible. Their positional difference
is (based on the values in Tab. I) bounded by

v0 t −
(
v0 t + 1

2 amax ∆̂t
)
⩽ 1

2 amax ∆̂t2 = 4.5 cm, (49)

which, again, is likely far lower than accuracies in environ-
ment modeling. In turn, if ∆̂t > tvalve (as applies here), we
may simplify the statements in (25) and (26) to

⟨P(..., anext, ...)⟩B
′
=

∫ thzn

tnow+∆̂t
dt

∫ σB(t,tvalve)

σB(t,tnow)
ds W(t, s)

∂τB
fail

∂s

∣∣∣∣∣∣
t,s︸                                  ︷︷                                  ︸

B2

(50)

⟨P⟩Cε
′
=

∫ tplan

tnow+∆̂t
dt

∫ σB(t,t−ε4)

σC(t,tvalve)
ds W(t, s)

∂τC

∂s

∣∣∣∣∣∣
t,s︸                                       ︷︷                                       ︸

C1

+

∫ thzn

tplan+ε6

dt
∫ σB(t,tplan)

σC(t,tvalve)
ds W(t, s)

∂τC

∂s

∣∣∣∣∣∣
t,s︸                                       ︷︷                                       ︸

C2

(51)

which eliminates the term over B1, as well as the limits for
ε1, ε2, ε3 and ε5.

B. Area under B
We precompute the antiderivative relative to the initial

trajectory σ(t, tfail = tnow) (which decelerates with aprev and
is hence invariant to anext), by using

WB(t̂, ŝ) = W(t̂, ŝ)
∂τB

fail

∂s

∣∣∣∣∣∣
t̂,ŝ

(52)

as IB(t̂, ŝ) = −WB(t̂, σ(t̂, tnow)) +
∑

{ s∈Ŝ (t) | s⩽ŝ }

WB(t̂, s). (53)

Due to this, we then can evaluate a given anext via

PB(t̂, anext) = | IB(t̂, σ(t̂, t̂valve, anext)) |. (54)

C. Area under C
For ∂τC

fail/∂s as in (42) we distinguish between its domain
C▶ (where it depends on anext) and C■ (where it does
not). We hence define the following arrays which are both
invariant with anext:

WC▶ (t̂, ŝ) =
√
−anext W(t̂, ŝ)

∂τC
fail

∂s

∣∣∣∣∣∣∣
t̂,ŝ

=
W(t̂, ŝ)√

2 v0 t̂ − 2 ŝ
(55)

and WC■ (t̂, ŝ) = W(t̂, ŝ), (56)

which can be accumulated to give the antiderivatives

IC▶ (t̂, ŝ) =
∑

{ s∈Ŝ (t) | s⩽ŝ }

WC▶ (t̂, s) and IC■ (t̂, ŝ) =
∑

{ s∈Ŝ (t) | s⩽ŝ }

WC■ (t̂, s). (57)

These can then be used to evaluate a given anext: For the
case of σ(t, tfail, anext) lying entirely within C▶ for all tfail ∈

[tvalve, tplan], we have

PC▶ (t̂, anext) =
1

√
−anext

(
IC▶ (t̂, σ(t̂, t̂plan, anext))

−IC▶ (t̂, σ(t̂, t̂valve, anext))
)
.

(58)

For the case of σ(t, tfail, anext) lying entirely within C■ for all
tfail ∈ [tvalve, tplan], we have

PC■ (t̂, anext) =
1
v0

(
IC■ (t̂, σ(t̂, t̂plan, anext))

−IC■ (t̂, σ(t̂, t̂valve, anext))
)
.

(59)

For cases which transition between C▶ and C■ by crossing
[s■, t■] (cf. Fig. 4), we evaluate each side separately.

VI. PRACTICAL RESULTS

The algorithm was evaluated on different platforms using
different parameters. For the risk predictions in W(t, s), both
purely synthetic noise fields were used, as well as data from
simulated traffic scenarios.

To verify the results and to relate computation speeds, the
proposed implementation described here was compared to a
direct solution of (7): To achieve comparable result quality,
tfail was discretized into T̂fail such that, during a transition,
any intermediate arc length ŝ ∈ Ŝ is evaluated at least once,
as is the case with the proposed algorithm. For each anext ∈ Â,
the direct solver computes and minimizes ⟨P⟩ by (8), and
therein computes P(..., tfail, ...) by (5); the proposed solver
precomputes IB, IC▶ , IC■ , and then for each anext ∈ Â,
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proposed direct

4.8 ms

41.2 ms

10.9 ms

87.7 ms
30.6 ms

272.1 ms

i7-2600 i5-470UM Raspberry Pi 3
0 ms

10 ms

100 ms

1000 ms

(a) Worst-case execution times on different systems on a logarithmic scale. The
proposed algorithm reduces the computation time consistently to about 11 % of that
of the direct computation.

proposed direct

2 m/s 10 m/s 20 m/s 30 m/s 40 m/s
0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

(b) Execution times on an i7-2600 over different v0, for a maximum allowed braking
distance of 100 m (dashed) and 200 m (solid). A shorter maximum distance reduces
computation times at high v0 because gentler decelerations (causing longer braking
distances) can be ruled out a-priori.

Fig. 6: Comparison of execution times between the proposed algorithm
(green) and the direct computation by various relevant factors.

computes and minimizes PB + PC▶ + PC■ , accumulated over
t̂, via (54), (58), (59).

Experimental results using random Brownian noise fields
for W(t, s) (cf. Fig. 7) and simulated traffic scenarios (in
[11]), show that the numerical results of both approaches
agree within the numerical tolerance, such that both can,
in particular, be used equivalently to obtain the optimization
result a∗. The key goal of the proposed optimization method,
however, is to achieve a significant decrease in computational
effort with respect to the direct solution.

Formally we note that the algorithms have fundamentally
different worst-case complexities: If memory for W(t, s) is
not considered, the direct algorithm can work with negligible
space, opposed to the proposed algorithm that stores several
intermediate results of size O(|Ŝ | |T̂ |). However, the compu-
tation time is considerably higher to achieve accurate results:
The effort of O(|Â| |T̂ | |T̂fail|) corresponds to O(|Â| |T̂ | |Ŝ |), if
|Tfail| is chosen to provide accurate results as described above;
in contrast, the proposed algorithm provides the accurate
global solution at O(|Ŝ | |T̂ | + |Â| |T̂ |).

In practical scenarios, this corresponds to an approximate
average factor of 8 in computation time between the pro-
posed and the direct solver (or a reduction of about 89 %,
Fig. 6a) when tested on an Intel i7-2600 processor (at 3.4
GHz base clock speed and 3.8 GHz turbo clock speed), an
Intel i5-470UM processor (1.33 GHz base, 1.86 GHz turbo)
and an ARM Cortex A53 (1.2 GHz in a Raspberry Pi 3).
Besides the stated complexity parameters, effort also depends
on vehicle speed v0: At a given maximum braking distance
smax, gentler decelerations can be ruled out at higher speeds,
since their trajectories would exceed smax. Either solver can
considerably reduce effort by truncating the search space this
way, as shown in Fig. 6b.

C

0 m 10 m 20 m 30 m 40 m 50 m
s

60 m 70 m 80 m 90 m 100 m
0 s

2 s

4 s
t
6 s

8 s

10 s

0.0

0.5

1.0 W(t, s)

(a) Result at v0 = 30 m
s : To avoid high values of W(t, s), the optimal choice is to

maintain the valve setting at aprev = anext = −5.5 m/s2. Since the valve does not
transition, B is empty; the width of the enclosed area only results from the vehicle
motion within [tnow, tplan], corresponding to set C.

0 m 10 m 20 m 30 m 40 m 50 m
s

tfail

60 m 70 m 80 m 90 m 100 m
0 s

2 s

4 s
t
6 s

8 s

10 s

0.0

0.5

1.0 W(t, s)

(b) Result at v0 = 15 m
s : The algorithm decides to transition from aprev = −2.2 m/s2

to anext = −3.0,m/s2 to avoid the high penalties in areas (dashed ellipses). The largest
area of W(t, s) is swept by the transition; in contrast to (a), later tfail produce shorter
stopping distances as the stronger deceleration outweighs the vehicle’s motion at v0.

C

B

0.00 s

0.05 s

0.10 s
tfail

0.15 s

0.20 s

0.25 s

0 m 10 m 20 m 30 m
s

40 m 50 m 60 m
0 s

2 s

4 s
t

6 s

8 s

10 s

(c) Result of (a), with tfail on a separate axis: The transition area B is wide, but swept
only for 0.008 s or 3.2 % of the time, due to the relatively minor change in valve state.
It overlaps with the area C of constant motion with v0, such that along tfail, several
stopping distances s are attained twice, once if the valve fails in transition, and once
after it has reached anext.

Fig. 7: Examples of optimization results on Brownian noise fields, as used
in [19], illustrating the effects of constant vehicle motion (a) if the valve
state is not changed; and of valve transition (b, c) leading to reoccurring
stopping distances at increasing tfail. Results of realistic traffic scenarios can
be found in [11].
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VII. CONCLUSION AND OUTLOOK
We have presented the problem of planning an optimal

decision for a fail-safe emergency stop system, which can
adjust a single hydraulic parameter anext that governs the
braking deceleration in the event of a failure. This predictive
approach allows to adapt the deceleration to the environment
of the automated vehicle, and yet does not require any E/E
components after failure. Optimization of anext has to take
into account that the exact time of failure is unknown, leading
to uncertainty even about the resulting deceleration due to
transition times of hydraulic valve, and thereby to a complex
planning task; at the same time, planning must be lightweight
since it only serves a system of last resort. Based on these
considerations, we have posed a suitable problem model, and
restated it to enable efficient precomputation. The implemen-
tation provides accurate, globally optimal solutions, yet at
only about 1/8 of the computational effort of a direct solver.

Outlook
So far, the algorithm’s performance was evaluated only

on a limited set of scenarios; a more exhaustive evaluation
with different vehicle models, traffic scenarios and regular
planning / prediction systems is required.

The algorithm yields a globally optimal a∗ conditioned
on the failure within [tnow, tnext] the current situation; this
can, however, still lead to non-optimal results outside of
the given model: Accelerations applied upon tfail in the
present model only are included as added longitudinal un-
certainties, like sensor and road friction uncertainties. An
explicit acceleration model is left for future work. Also, a
vehicle approaching a railway crossing or intersection would,
initially, pick increasing decelerations a∗, until a safe stop
before the crossing cannot be assured; then it would switch to
gentler a∗, to clear the crossing before stopping. This leads to
a systematic, artifactual selection of marginal decelerations,
in between which possible failure trajectories necessarily lie
on the crossing; it can be resolved by extending the proposed
solver to anticipate future planning intervals.

The present algorithm handles the unknown interval of
tfail by precomputing antiderivatives; a different approach to
reduce the computational effort is to modify the underlying
system such that the braking pressure can only be released
at several discrete (instead of continuous) tfail; thereby, no
contiguous areas must be evaluated but discrete trajectories.

With the increasing use of GPUs for perception, prediction
and planning tasks, it may be desirable to locate the emer-
gency maneuver planner there as well. The highly parallel
structure of the proposed solution suggests that an even more
lightweight (with respect to other tasks) GPU implementation
is possible, and should be evaluated.
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