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Abstract— Tracking a fleet of buses that serve routes across
a city is an essential functionality for the successful utilization
of modern transportation networks. However, to date, little
attention has been paid to the effectiveness of the implemented
tracking algorithms, which typically rely on periodic signaling
messages sent by the buses in motion to indicate the vehicle
location. However, as we will demonstrate in this work the
latter approach entails a large number of unnecessary signaling
messages to be communicated in order to achieve a high level
of tracking accuracy.

The alternative approach we present in this work is based
on a novel event-triggering strategy that substantially improves
tracking and reduces significantly the number of messages that
need to be sent out compared to periodic signaling. Time-series
traces are used to extract and update mobility models which are
then used to estimate future vehicle locations. The estimate, and
actual arrival times at predetermined locations are assessed by
onboard units and an event is triggered whenever the deviation
exceeds the desired tracking accuracy.

I. INTRODUCTION

The uncertainty related to the information provided by
public transport services (especially public buses) is the
primary factor for the hesitation of the public to use the
public transportation system. As a result, the general public
still tends to prefer private vehicles to public transport when
given the choice. As already shown in [1], the current
state-of-the-art public transport systems implement rather
simplistic tracking strategies based on periodic triggering.
Evidently, increasing the frequency of communicating track-
ing messages will not improve the estimated arrival times but
merely provide a more updated instantaneous view of where
the vehicles are and do not account for the congestion that
vehicles may experience ahead. In addition to not-addressing
the inherent uncertainty of traversing the road network, such
strategies have higher communication costs and entail high
computation overhead that unnecessarily raises complexity
[2]. Further, periodic communication makes the system sig-
nificantly more vulnerable to communication delays.

In this work, we investigate how modeling the vehicle
behavior and using the derived models to track the vehicle
progress in time can result to better travel time estimates
at desired locations (i.e., bus stops) and can minimize the
signaling overhead associated with tracking those vehicles.
More specifically, the remote host that seeks to track the
fleet of buses will use the mobility models to estimate
arrival times while a local host onboard the bus will trigger
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resynchronization (and model-switching) events whenever
the actual bus position (and behavior, respectively) deviates
from that anticipated by the model.

This event-triggering (ET) approach has the potential to
improve the tracking accuracy and significantly reduce the
signaling overhead [3]. From a wireless communications
perspective, periodic triggering will generate a large amount
of messages for a fleet of buses. Thus, even though the
packets to be sent are typically small, the number of packets
is very large creating challenging conditions in terms of
channel contention. With ET, computation/communication
actions take place only when a particular event, or after a
certain series of events have taken place. Events represent
changes, abnormalities or faults of the process/system that al-
ter its state. As opposed to continued and periodic triggering,
ET ensures that normal operation is interrupted only after a
particular event has taken place. In doing so, ET ensures that
the available resources (including, battery capacity and pro-
cessing) are thriftily used, while communicated information
reduces from raw data to simple event descriptions [4].

The primary contribution of this work is on multimodel
data-driven ET in which the mobility models are derived
explicitly from the collected traces. Model-switching occurs
whenever a triggered event indicates a substantial deviation
from the assumed model and for which a switching to a more
representative model would result to fewer event interrupts in
the future. Within this context, a novel mathematical frame-
work is derived to capture the three phases of ET, namely
behavior modeling, event detection, and model switching.
The applicability of this framework is then examined under
realistic scenarios of bus tracking.

The rest of the paper is organized as follows. Section II
includes related work, placing extra attention on data-driven
approaches. The proposed multimodel approach is elaborated
in Section III and Section IV provides extensive numerical
evaluations. Finally Section V provides some concluding
remarks.

II. RELATED WORK

While several challenges exist in implementing vehicle
tracking systems as indicated in [5]-[7], in this work we
assume that such a system is in place and focus on the
challenges faced when trying to devise accurate and efficient
tracking algorithms. The classical approach followed by
most city operators involves surveys using samples, and
calibration of the outcomes using sensory data. However,
the approach is neither accurate (due to infrequent survey-
ing) nor efficient (due to resource-intensive responses) [8].



Hence, numerous automated solutions have been proposed
to compensate for these shortfalls. Online fleet-management
solutions are simple to implement but impose significant
overheads [9] and require considerable infrastructure set-up
[10]. The alternative approach is to build mobility models
using historical data and use those models to estimate the
arrival times by either clustering, extrapolation, regression,
Kalman filtering, and machine learning techniques. The
majority of the aforementioned works use GNSS traces for
this purpose due to the increased availability of this type of
data. Of course, other forms of road data including induction
loop measurements (as in [11]) have also been used in the
past.

However, the current literature decouples the travel-time
prediction problem from the vehicle tracking problem in
most of the cases. As a result, the efficiency aspect of
tracking is overlooked altogether. The issue has first been
identified in [1] where the tradeoff between accuracy and
efficiency has been investigated. The work presented in this
paper takes a more systematic approach to deal with this
issue and in the process of doing so develops a new and
complementary approach to vehicle tracking based on ET.

A. Mobility Characterization

The literature contains a plethora of studies for character-
izing the mobility of public transport vehicles and extensive
work has been conducted for inter-arrival models for pub-
lic transport vehicles. Studies dealing with the latter issue
have resulted in the development of four general prediction
models. Statistical approaches using historical data have been
primarily used to predict the arrival time for a specific time
period based on average values at those time periods [12].
However these approaches assume that the traffic conditions
remain stationary. Statistical models are divided into two sub-
models, those using the average travel time (e.g., [13]) and
those using the average travel speed (e.g. [14]). In addition,
Kalman filtering has also been employed to model traffic
variations as a function of the time-dependent parameters.
The main use of Kalman filtering is to offer an estimate of
the system’s state while providing forecasts of future values
or improvements for values that already exist [15].

Further, regression analysis-based models employ mathe-
matical functions to predict the expected arrival time between
bus stops, using previously collected data [16], [17]. Unlike
statistical prediction models, the latter approach is able to
capture dynamic traffic conditions. However, the derived
models are only applicable to the particular route at hand.
Finally, artificial neural networks (ANNs) have also been
employed to express the complex non-linear relationships
that exist in traffic scenarios with correlated data and make
sense of the collected data [18]. Despite the precision that
ANNs have shown to achieve in the general case, they require
extensive training and verification for finding the proper
structure of the ANN network and the proper set of input
parameters.

B. Event Triggering approaches

Due to its simplicity, periodic triggering has primarily
been used for vehicle tracking applications in the past [19].
The appealing proposition of this strategy is that there
is a definite, predetermined interaction of the local and
remote host. Hence, absence of communication results in an
indisputable indication of a fault in the system. Nevertheless,
periodic triggering can result in an unnecessarily high num-
ber of computation and communication actions (that convey
no new information or do not indicate a change in state)
simply due to the inherent periodicity of the paradigm [20].
At the same time, network scalability issues can arise due to
this periodicity.

As exemplified above, ET compensates for these shortfalls
by carrying out computation and communication actions
only when certain events have taken place and which can
potentially change the state of the system at hand [21],
[22], [23]. In this way, the resource utilization efficiency
is improved (i.e., when no events are triggered, processing
can scale down, and communication circuitry can be put to
sleep).

Interestingly, most existing ET implementations consider
spontaneous events and thus fail to take advantage of the
recurrent patterns that may exist in the system. Processing
and analyzing streams of data can reveal recurrent patterns
which can in turn be used to extract accurate behavior models
and eventually more meaningful information. In doing so,
all anticipated patterns are incorporated into behavior models
and relevant actions take place only when some unanticipated
events have occurred.

A plethora of model-based ET strategies have been de-
veloped for system monitoring and control (a review of
such triggering strategies can be found in [24], [25]). The
work described in this paper introduces a novel data-driven
multimodel ET paradigm and demonstrates its multiple gains
in terms of accuracy and efficiency compared to the existing
vehicle tracking solutions that assume periodic triggering.

III. SYSTEM MODEL

We consider a fleet of buses serving specific routes across
a city. Our objective is to track the buses along their
routes. For this purpose, each vehicle is equipped with an
onboard device that sends messages to a remote central host,
providing real-time information about the actual location of
the bus along its route. Along the route we consider a set
of predetermined measurement locations (i.e., bus stops), at
which the time-of-arrival of the bus needs to be reported to
the central host. Whereas a conventional solution relies on
sending a message to the central host when the bus reaches
each one of the measurement locations along the route, we
present an ET approach in which both the remote host and
the onboard device use a predetermined mobility model to
estimate the movement of the bus with respect to time. An
event is triggered when a bus reaches a measurement location
with a substantial time lag compared to the prediction
provided by the mobility model. The onboard device sends a
message to the central host only when an event is triggered,



that is, only when a measurement location is reached at a
different timing than expected.

Since traffic changes dynamically over the course of
a day and also between different days, multiple mobility
models need to be defined as the trip of a vehicle along the
route is expected to exhibit multiple expected behaviors. For
example, the traveling times between measurement locations
along the route are likely to differ significantly on weekdays
and on weekends at particular time instances. Therefore, we
need to define a set of models and a switching algorithm to
determine which model to use.

A. Problem Formulation

Without loss of generality we focus on a particular bus
route. We specify a set of K measurement locations along
the route and a required tracking accuracy « in units of time.
The parameter « is the time lag above which an event is
triggered. The density of the measurement locations as well
as the value of « are set accordingly to meet the desired
tracking accuracy of the system.

We define a sequence of K random variables,
{51,852, , Sk, -, Sk}, where the random variable Sy
corresponds to the time needed to travel from measurement
location £ — 1 to k£ and S; to the time needed to travel
from the beginning of the route to the first measurement
location. A trace, {s1,82, " , 8k, " ,SK}, is a realization
of the sequence of random variables {Si,k = 1,--- , K}.
Because the trip of a vehicle along the route is expected to
exhibit multiple expected behaviors, we define a set of M
models. At each time instant, the system uses one of the
models. A model, m; for the particular problem is defined
as a K-dimensional vector, {v; 1,vi 2, ,Vik, " ,Vi K}
that includes the times needed to travel between consecutive
measurement locations.

When reaching measurement location k, the onboard
device generates an event if there is substantial time lag
between the prediction and the actual vehicle movement, that
is, if:

k
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where n is the last measurement location where a triggering
event occurred and m; is the model currently in use since
measurement location n. When an event trigger occurs, the
value of the accumulated time lag has exceeded «, therefore
the onboard device sends a message to the remote host for
changing the currently used model.

The objective is to minimize the number of control mes-
sages that need to be sent by the onboard device to the
remote host during a trip, i.e., the event triggers that occur.
This is equivalent to maximizing the probability that the next
expected measurement will not create an event (and thus
implicitly build models of increased tracking accuracy).

max P (s, —vik| < (=€) | 5pySpg1, -, 86—1)  (2)

where 1
€= Zsl va (3)

B. Behavior Modeling

Given a set of collected measured traces, we apply a
clustering algorithm in order to arrange the training traces
into M clusters. Each cluster corresponds to a model and
each model is defined by averaging the values of the traces
that have been classified in the corresponding cluster.

We need to determine the number of models, M, so as
to minimize the number of event triggers, i.e., maximize
the optimization objective of Eq. 2. The optimal number of
models increases with the dependencies between the random
variables {S;, k = ,K}, ie., between the values
measured at consecutive measurement locations.

The benefit of defining multiple models stems from the
fact that if consecutive measurements are not independent,
a measured value will provide information about the next
expected measurement, thus will provide information about
which one out of several available models will more likely
provide a sufficiently accurate prediction. On the other hand,
if the values are independent, there is no prior information
about which model shall be better than others for the
measurement that will follow. Therefore, the selection of
the model cannot be any better than random and the use
of several models cannot increase the probability of making
an accurate prediction. In fact, under some highly realistic
assumptions, it can be proven that the optimal number of
models is 1 if consecutive measurements are independent
(please see the proof in Appendix I).

Considering that there is a certain level of dependency be-
tween consecutive measurements, measurement sy _ 1 already
provides some information about the following measurement.
In mathematical terms, the optimal value that should be used
for the prediction of sj is not simply the value that coin-
cides with the maximum of the probability density function
fx(x), but with the maximum of the conditional probability
function fg, (|Sk—1 = sk—1). When measurements are
independent this conditional probability function is equal
to the probability density function of Sy for all possible
realizations of Sy_1. Therefore, a single value should be used
for the prediction at measurement location Sy, independently
of previous measurements. As the dependencies between
measurements increase, the conditional probability function
starts becoming different for different realizations of Si_1
and shows a peak for different values, thus providing an
indication of the need to use alternative prediction values
based on the value of Sj_;. Therefore, the use of several
models increases the probability that a value is predicted
accurately enough. Nevertheless, defining too many models
will again worsen the performance, as we practically try to
be more precise than what we are allowed by the information
provided by the dependencies. Therefore, depending on the
degree of dependencies between the measurements there
is an optimal number of models, M, which provides the
maximum probability that a value is predicted accurately



enough. A smaller number of models will worsen the perfor-
mance due to the fact that we have information that remains
unused, and a larger number of models will also worsen the
performance because we are trying to become more precise
than what can be extracted from the information provided
by the dependencies between measurements. To the other
extreme, if consecutive measurements exhibit a correlation
coefficient equal to 1, then the value of the next expected
measurement S is known given the measurement Sj_1.

Since the objective is to minimize the probability that
an event is triggered, the optimal number of models, M,
can be estimated by determining the maximum value of the
conditional probability that the value s; is predicted with
certain accuracy by model m;, given that this particular
model was the most accurate for the previous measurement,
Sp—1. That is, let us use the notation Cj_; to denote the
model closest to s;_1, defined as follows:

Sk—1 — Uck_l,k71| < |sk—1 — Vi 1]

Then, we are looking for the value of M that maximizes the
following conditional probability:

mN&}XP (|sk — vk < o |Ck_1 = j) . (5)

The value of « is not critical, since it does not affect the
shape of the conditional probability with respect to M.

C. Model Selection

Let p; ; denote the correlation coefficient between the ran-
dom variables S; and S;. Let us consider that an event trigger
occurred upon receiving measurement sy, thus a new model
needs to be chosen. Under the assumption that the correlation
coefficient between consecutive measurement locations is
the highest, i.e., pi r+1 > pjr+1,V7 = 1,2,--- k=1, it
is optimal to choose the new model based solely on the
measurement s; and not on previous measurements. Under
this assumption, considering the previous measurements will
only negatively affect the prediction for the following mea-
surement. Therefore, the model m; closest to the last received
measurement s; should be chosen, that is:

m.in{|8k_vi,k‘:i:1a2a"'7M} (6)

IV. NUMERICAL INVESTIGATION

In order to illustrate the proposed ET approach we perform
in this section, an extensive numerical investigation using
artificial, randomly generated data. In particular, we gener-
ated random traces to represent the collected measured traces
(training set), and the proposed classification algorithm was
used in order to generate the desired mobility-tracking mod-
els. Then, a second set of random traces were generated (test

data) to evaluate the proposed ET signaling performance.
A trace consists of K time intervals between consecutive
measurement locations. Vectors of K elements were drawn
from a multivariate normal distribution with an arbitrarily
selected vector of mean values. The following covariance

matrix is used in order to represent realistic dependencies
between the measurements in a trace,
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Consecutive measurements are correlated; two consecutive
measurements exhibit the highest correlation represented by
the correlation coefficient p. Then, the dependency, i.e., the
correlation coefficient drops from measurement to measure-
ment at a rate controlled by parameter f.

In addition, in a realistic situation it is expected to have
single outlier measurements or a sequence of outliers due
to unexpected incidents such as accidents on the road, road
works, local traffic congestion due to an organized event, etc.
Therefore, to a percentage of the traces we create transitions
from one randomly drawn vector to another following the
Markov model of Figure 1. State I in the state-transition

Pio
P, Poo

pO/

Fig. 1. The Markov model used to simulate sequence of outliers in a trace.
diagram represents the initial randomly generated trace be-
fore adding any outlier bursts. With probability p;o the
next measurement will jump to another randomly generated
vector and afterwards will return to the initial vector with
probability po;.

For the clustering of the traces, and in order to extract
the mobility models, we used an agglomerative clustering
algorithm. For each set of parameters the illustrated results
are an average obtained by running 20 random realizations.
The Markov model to create outlier bursts was applied to
half of the traces with pro = 0.1 and por = 0.8.

Our objective is to minimize the number of messages sent
from the onboard device to the central host. The benefit
of reducing the number of messages sent from the onboard
device to the central host is not only related to the reduction
of the communication overhead. It is furthermore linked to
the capability of estimating future arrival times along the
route as fewer messages indicate the the proposed tracking
scheme is generally efficient at predicting times-of-arrival.
Figure 2 shows the number of messages sent for routes
of different sizes. Using a conventional approach (periodic
triggering), the number of messages would be equal to the
number of measurement locations along the route. An ET
approach with a single mobility model would cut the number
of messages approximately in half and the utilization of
multiple models achieves a further reduction.



o
=)

40 loc.
60 loc.
80 loc.
100 loc.

IS
@
T

No. of messages
W (&) N
o o o
. . .

N

o
T
I

0 20 40 60 80 100 120
No. of models

Fig. 2. The number of messages sent along routes of different sizes (p =
0.9, f=2).

Figure 3 illustrates the effect of the dependency between
consecutive measurement locations and verifies the discus-
sion in Section III-B. The higher the correlation coefficient
of Eq. 7, the higher the potential benefits from employing
the proposed multimodel ET approach.
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Fig. 4. The number of messages sent for a route with 60 measurement loca-
tions and model selection based on different number of past measurements
(p=09, f=2

serve that the maximum value of the conditional probability
indeed coincides with the number of models that achieve the
minimum number of messages.
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Fig. 3. The number of messages sent for a route with 60 measurement
locations for different values of the correlation coefficient p of Eq. 7 (f = 2)

Figure 4 shows the number of messages when the last
one, two, or three measurements are taken into account for
selecting the next mobility model when an event is triggered.
As discussed in Section III-C, given that the correlation
is stronger between consecutive measurement locations and
drops as we move further, the optimal choice is to use only
the last measurement in order to determine the next model
to be used.

Finally, the simulation results show that, as explained
in Section III-B, there is an optimal number of models
for which the number of messages obtains a minimum
value. Figure 5 illustrates the conditional probability of a
measurement being predicted accurately enough by a certain
model, given that the particular model was the closest to
the previous measurement. The conditional probabilities in
Figure 5 correspond to the scenarios of Figure 3. We can ob-

Fig. 5. The conditional probability for the scenarios depicted in Figure 3.

V. CONCLUSIONS

In this paper we have presented a data-driven ET approach
for public transport tracking systems. The proposed tech-
nique uses vehicle traces to create a set of mobility models
that are used to predict the time-of-arrival at certain locations
along the route.

The aim of this work is to introduce a method that is
more efficient in terms of signaling traffic while improving
the tracking accuracy compared to the conventional periodic
triggering approaches. By means of numerical analysis, we
verified that our technique decreases significantly the number
of messages that need to be sent by the onboard device to
the central host compared to periodic signaling.

Finally, we would like to note that the data-driven ET
technique illustrated in this paper is a highly promising
architecture for IoT applications in general. Therefore, the
analysis and methodology presented here can be useful in



the context of a plethora of other applications as well which
experience recurrent patterns in their behavior.
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APPENDIX

Lemma 1: If the measurements in a trace are independent
from each other then the optimal number of models to use
is 1.

Proof: Consider an arbitrarily selected trace. The next
expected measurement is s and the last event was triggered
at measurement location n. Without loss of generality, let
us assume that the model m; was a sufficiently good choice
for the measured values from location n to k£ — 1 (i.e., with
€ < «) and the one that was actually used from measurement
location n onwards. In order to minimize the number of event
triggers, we want to define the value v; ;. so as to maximize
the probability that an event will not be triggered upon
reception of value s;. Thus, we consider the optimization
objective of Eq. 2 with respect to the value v; g,

Igﬁff)OSk——v@kIS (=€) [ sn,snt1, " ,86-1) (8)

If measurements at consecutive measurement locations are
independent, then the random variables {S;,k =1,--- , K}
are independent. In particular, the following holds:

P(Sk:sk\Sn,n-,Sk,l):P(Sk:sk) (9)
Then, Eq. 8 becomes equivalent to:
max P (|sg — vir| < (@ —¢€)) (10)

Let fi(x) be the probability density function of the
random variable Sj. Then, the following is to be maximized

v+ (a—e)
max/ Ji(z)dx

Vik r—(a—e€)

Y

The optimal value of v; ;, depends on the value of av—e which
ranges from 0 to . However, in reality the value of o needs
to be very small compared to the range of possible values
that random variable S}, takes, otherwise the usefulness of
using a tracking application is questioned. However, under
this assumption the range of values that will maximize Eq. 11
is v, +dv, where dv is very small and can be neglected. The
optimal value v, is the maximum of the probability density
function fy(z), which concludes that since a single optimal
value maximizes the above expression, a single model is to
be defined. ]



