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Abstract—While providing intelligent urban transportation
services for commuters is one of the key enablers for developing
smart cities, existing route planners mainly rely on static sched-
ules and hence fall short in dealing with uncertain and time-
dependent traffic situations. In this paper, by leveraging a large
set of historical travel smart card data, we propose a method
to build a stochastic time-dependent model for public transit
networks. In addition, we develop DEPART1– a dynamic route
planner that takes the stochastic models of both bus travel time
and waiting time into account and optimizes both the speediness
and reliability of routes. Experiments on real bus data set for the
entire city confirm the quality and accuracy of the routes returned
by DEPART in comparison to state-of-the-art route planners.

I. INTRODUCTION

Intelligent urban transportation systems are becoming in-
creasingly important for commuters in smart cities. Such sys-
tems enable city-dwellers to quickly identify an optimal route
in a transit network between specified origin and destination
when planning daily trips. Route planning is fundamental to
intelligent transportation systems, and in fact, the problem
of finding shortest paths in road and public transit networks
has been extensively studied. Specifically, several techniques
based on the classical Dijkstra algorithm have been proposed
in recent decades to speed up system response time [1].

The underlying assumption of traditional route planners is
that means of public transportation such as buses follow a fixed
schedule. However, such an assumption does not really hold
in a realistic transit network where buses’ arrival times are
not as accurate as scheduled since they are largely dependent
on real traffic situations. In fact, the travel time in an urban
traffic environment is highly stochastic and time-dependent.
Hence, the results returned by static route planners are often
inadequate in real world and cause user dissatisfaction.

Motivation. We take Singapore’s bus network as an exam-
ple. The bus network is the backbone of public transportation
in Singapore and accounts for sixty percent of the total
public transportation trips [17]. Existing route planners for
Singapore, such as Google Maps and Gothere.sg, have two
major drawbacks. Firstly, although users can specify their
desired departure time, the query result is the same no matter
whether the departure time falls in peak or off-peak periods.
As will be shown in our experiments using real smart card data
collected from Singapore’s bus network in a period of three
months, the same journey takes 20% longer on average during
weekdays’ peak hours than off-peak hours and weekends due
to traffic congestion. Secondly, the travel time estimated by
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these route planners is not accurate. For example, Google Maps
returns a travel time of 30 minutes for a journey consisting of
30 bus stops. In practice, the journey takes at least 50 minutes
based on the personal experience of some of the authors due
to the time for passengers boarding and alighting at each stop.

State-of-the-art stochastic time-dependent route planning
solutions are generally proposed for road networks where
travel time within a time interval is modeled as a discrete
variable with a probability mass function [18], [25], [9]. Other
researches in public transportation focus on stochastic bus
waiting time and assume that once commuters get on the bus,
the travel time is deterministic [5], [2]. Besides, various bus
running models are proposed to provide estimations for bus
waiting time and travel time [12]. Nevertheless, none of them
aims to design and develop a complete route planning system
in which both expected bus waiting time and travel time are
considered to recommend optimal routes for users.

Challenges. To provide a practical route planning system
that can effectively deal with uncertain and time-dependent
characteristics of urban traffic, several challenges need to be
addressed. Firstly, the stochastic model of bus travel time has
to be carefully devised so that transit networks ensure first-in-
first-out (FIFO) property, i.e., buses do not overtake each other.
Unlike road networks where drivers on private cars can speed
at their own discretion and departing early does not guarantee
an early arrival, in public transit networks a commuter who
gets on an earlier bus usually arrives early too. It is noteworthy
that a network without FIFO property may not have optimal
substructures, i.e., the concatenation of the shortest paths from
A to B and from B to C is not necessarily the shortest path
from A to C. In fact, it is shown that there is no optimal
substructure in a general stochastic time-dependent network
(STD network) [11].

Secondly, it is challenging to properly incorporate the
reliability of a route with its speediness, i.e., expected travel
time. Most of research works done in this area use a mean-
risk model [15], [21], [19] which combines the mean and
variance of the travel time as a single linear objective function
that needs to be optimized. Nevertheless, choosing appropriate
coefficients for such a linear objective function is quite tricky
and often heuristically done via experiments.

Thirdly, the routing algorithm needs to take into account
that the travel time between two bus stops is not equal to the
sum of travel times of each pair of consecutive stops between
them. More specifically, given a bus line passing stops S1,
S2 and S3 consecutively, the sum of the travel times from
S1 to S2 and from S2 to S3 is smaller than the travel time
of S1 to S3 due to the time taken for passengers boarding



and alighting at the middle stop S2. When the bus travels
a long journey, the aggregate error in travel time estimation
grows even bigger. In other words, the bus travel time lacks
of component aggregation property.

Contributions. In order to address the aforementioned chal-
lenges, we build a stochastic time-dependent model with FIFO
property for a bus network based on the collected travel smart
card data, and propose an algorithm that can deal with the
aggregated error of travel time and incorporate the reliability
of a route as part of the output. The main contributions of this
paper are as follows:

• To the best of our knowledge, this is the first work to
provide a practical solution to route planing problem
in a stochastic time-dependent public transit network,
and take both travel time and waiting time into ac-
count.

• We propose a method to build a stochastic time-
dependent transit network that enforces FIFO property
where the travel time is modeled as a time-dependent
continuous distribution function.

• We introduce a new algorithm that solves the lack
of component aggregation property of bus travel time
and optimize both the speediness and reliability of the
returned routes.

• We develop DEPART – a dynamic route planner and
evaluate the system with the real bus network of
the entire city. The results confirm the quality and
accuracy of its returned routes in comparison to other
state-of-the-art route planners.

The remainder of the paper is organized as follows. In
Section II, we present an overview of our proposed dynamic
route planner. We introduce a model for FIFO stochastic time-
dependent public transit networks in Section III. In Section IV,
we describe our algorithm which is specially designed to
work with stochastic time-dependent networks. We evaluate
the system in Section V and provide a literature review in
Section VI. Finally, we conclude the paper in Section VII.

II. SYSTEM OVERVIEW

In this section, we present an overview of DEPART –
our proposed solution for dynamic route planning in time-
dependent transit networks which leverages historical travel
smart card data to recommend routes that are more adapted to
traffic situations. Figure 1 depicts the overall architecture of
the system.

The system incorporates both dynamic and static data
sources. The former includes historical travel smart card data
from which information is extracted to build stochastic models
for the bus travel time and waiting time in the form of
probability distributions (see Section III). The latter includes
information of bus stops and static schedule of bus lines.
These public transportation information are used to create a
time-dependent graph representing the entire bus network (see
Section IV-A). The stochastic models of bus travel time and
waiting time are associated as costs of the edges in the time-
dependent transportation graph.

Fig. 1. Architecture of DEPART – a dynamic route planning system.

The created stochastic time-dependent graph constitutes the
core data structure in our routing engine. Given a query sub-
mitted by a user which basically consists of origin, destination,
and departure time, the system runs an optimization algorithm
to find routes with the least expected travel time and the highest
reliability (see Section IV-B).

III. MODELING A FIFO STOCHASTIC TIME-DEPENDENT
PUBLIC TRANSIT NETWORK

In this section, we first describe the collected travel smart
card data. Then, we present our method to extract information
from those data and build basic stochastic time-dependent
models for bus travel times and waiting times. Finally, we
propose modifications to the basic models in order to enforce
FIFO property in a transit network.

A. Travel Smart Card Data

The public transportation system in Singapore is fully
integrated with travel smart card. The collected data comprise
of the recorded usage of all bus lines in Singapore for three
months in 2011. Every row in the data set consists of a
recorded trip of a commuter. The trip starts when the smart
card is used to tap in the vehicle and ends when the passenger
taps out. The format of a trip record is the following: [ Bus
Line, Start Station, End Station, Boarding
Time, Alighting Time, Trip Distance, Trip
Date ].

B. Information Extraction From Travel Smart Card Data

The key information that we need to extract from the data
is the estimated travel time and its variance between any two
stops of a bus line during each time interval of a day. Another
piece of information that we would need is the estimated
waiting time for the passengers at the bus stop until the desired
bus arrives. The information from the smart card records only
points out when the passenger boarded the bus at a bus stop



and not when the passenger actually was at that bus stop, it
is therefore impossible to extract the waiting time information
directly from the data. Instead, we estimate these two sets of
information as follows.

In order to get the first set of information (i.e., travel time
between any two stops including boarding and alighting of
passengers in the middle), we treat every record of the data
as a sample point. It reveals what are the boarding/alighting
stops and what is the boarding time and total travel time for
that trip. We group all records according to the start stops,
alighting stops, start time interval and bus line number. From
all entries within a single group, we are then able to extract
the mean and standard deviation of the corresponding travel
time. Finally, we estimate the waiting time by figuring out the
frequency of bus arrivals of the same bus line at a given stop
during a given time interval.

TABLE I. NOTATIONS FOR MODELING BUS TRAVEL AND WAITING
TIME

µj
i,k mean of travel time between stop i and k in time interval j
σj
i,k standard deviation of travel time between stop i and k in time interval j
T j
i,k time for a bus to travel from the i-st stop to k-th stop in time interval j
M number of buses for the whole day
R number of time intervals the day is split into
Rl length of a time interval
fj frequency of buses starting during time interval j
wj

i expected waiting time at the i-th stop during the j-th time interval
Bm

i the time when bus m is at stop i

C. Basic Models for Bus Travel Time and Waiting Time

Here, we briefly describe our basic models [12] that will
be leveraged in the next section. Notations are listed in Table I.

1) Estimation of transit times from station to station: For
each of the time intervals in a day, the distribution for the
transit times is extracted from the data. This aims at modelling
rush hour situations slowing down the buses and thus achieving
a realistic congestion temporal profile. The travel time of a bus
from the i-th stop to the k-th stop during time interval j can
be represented as a sample from a log normal distribution as
in Equation 1, which has the best Anderson-Darling goodness
of fit tests on the data [12].

T ji,k ∼ logN (µji,k, σ
j
i,k) (1)

The parameters needed for the distribution, namely the mean
and the deviation, are then extracted from the data by finding
all samples that have the same starting stop, ending stop,
bus number and are within the respective time interval. The
result of this process is a lookup table containing information
about the distribution parameters of all possible stop to stop
combinations for all time intervals of the day.

2) Estimating Bus Waiting Time: We first extract the times
Bm1 , which is the time when bus m is at the first stop in its
scheduled route. Then, in order to get the estimated arrival
time of the bus at other stops we add the mean travel time:

Bmk = Bm1 + µji,k (2)
In order to estimate the frequency of buses arriving at a stop
during a specific time interval j we define the function f that
tells us if the estimated arrival time of a bus is within the
chosen time interval:

f(Bmi , j) = 1 if Bmi ∈ j (3)
f(Bmi , j) = 0 if Bmi /∈ j (4)

Then, the frequency of bus arrivals at a station can be defined
as the number of buses that are expected to arrive during this
period divided by the length of the time interval:

f ji =

M∑
k=1

f(Bki , j)

Rl
(5)

The expected waiting time at a bus stop for a specific time
interval can be calculated as:

wji =
1

2f ji
(6)

D. Building a FIFO Stochastic Time-Dependent Network

As discussed above, time-dependent travel time is a step
function. For both weekday and weekend, a number of time
intervals are predefined and data are aggregated based on
which time interval they fall into. Then, for each time interval,
continuous distributions of bus travel time and waiting time are
calculated. For example, as shown in Figure 2, the mean travel
time between time interval [9:00, 9:30] is 35 minutes, while
traveling between [8:30, 9:00], which is in peak hours, takes
up to 45 minutes. Hence, if two users U1 and U2 start their
journeys at 8:59 and 9:01 respectively, their expected travel
times would be 45 and 35 minutes.

In fact, there are two issues with step functions of time-
dependent travel time. Firstly, the travel time estimation is not
logical as discussed in the above example: with only two-
minute difference in departure time, the expected travel time
difference is as much as 10 minutes. Secondly, in this scenario,
the FIFO property of a transit network is violated, i.e., user
U1 starts earlier but ends up arriving later than user U2.

Fig. 2. Linearizing step-functions of time-dependent travel times.

To solve the above issues, we propose a method to linearize
the step functions of time-dependent travel time. Specifically,
instead of choosing the best matching time interval that the
given departure time falls into, we take the best matching and
the second best matching intervals, then use their weighted av-
erage as the expected travel time. The detailed implementation
is shown in Algorithm 1.

With the above technique, a linear function is created
between any two neighboring time intervals. In this way,
the travel time across time intervals during a day follows a
continuous piece-wise linear function instead of step functions.
Applying this to the above example, user U1 departing at 8:59



and user U2 departing at 9:01 are now expected to travel 40.3
minutes and 39.7 minutes respectively, which follows the FIFO
property.

After linearizing the step functions of travel time, the
FIFO property is guaranteed as long as the slope of the
linear function is greater than −1, which intuitively means
that by departing t units of time later, the expected travel time
shortened should not be larger than t. Thus, departing later
results in arriving at the destination at a later time too. We did
Monte Carlo experiments [3] and the results confirm that when
the FIFO property is guaranteed, the optimal substructures of
shortest paths also hold for linearized log normal continuous
distribution functions.

TABLE II. NOTATIONS FOR LINEARIZATION OF BUS TRAVEL TIME
MODEL

t0 the starting time of the first interval of a day
Ij time interval, Ij = {t|t ∈ (t0 + j ∗ Rl, t0 + (j + 1) ∗ Rl}
pj the middle point of time interval Ij , pj = t0 + (j + 0.5) ∗ Rl

T j the travel time for a bus in time interval j

Algorithm 1: Compute linearized travel time
Input: Departure time t
Output: Expected bus travel time T
/* check if the departure time is within
bus operating time */

1 if t < t0 or t > t0 +R ∗Rl then
2 return T =∞
3 end

/* first get the index of the best
matching interval is */

4 is = (t− t0) mod Rl
/* next find the index of the upper and
lower bounding intervals iu and il */

5 if t < p0 or t > pR−1 then
// t falls in the first/last interval

6 iu = il = is
7 else if t < pis then

// 2nd best matching is on the left
8 iu = is
9 il = is − 1

10 else
// 2nd best matching is on the right

11 iu = is + 1
12 il = is
13 end
14 return T = T il + (t− pil)/Rl ∗ (T iu − T il)

IV. STOCHASTIC ROUTE PLANNING IN TIME-DEPENDENT
NETWORKS

In this section, we first describe how to construct a time-
dependent transportation graph [24], given the static informa-
tion including bus stops and schedules of bus lines. Then,
we introduce an algorithm that can deal with the lack of
component aggregation property of travel time, and optimize
both speediness and reliability of routes.

A. Time-dependent bus network model

Since there can be multiple bus lines serving the same
bus stop, we create nodes of two types in a transportation
graph, namely transfer nodes and route nodes. Specifically,
a physical bus stop S corresponds to a single transfer node
tS and multiple route nodes, e.g., rl1S , ..., rlkS if there are k
different bus lines serving that bus stop. A route returned to
users always starts from an origin transfer node and ends at a
destination transfer node.

There are three categories of edges in this transportation
graph. The edge from a transfer node ti to a route node rli
represents a bus boarding process, and its associated cost is
the expected waiting time wli at bus stop i of bus line l. The
edge from a route node rli to a transfer node ti represents the
alighting of a commuter and we assume its associated time
cost is 0. The edge from a route node rli to another route node
rlj of the same bus represents the bus traveling process, and
its associated cost is the stochastic time-dependent bus travel
time T li,j between stops i and j of bus line l as we modeled
in section III.

Fig. 3. Time-dependent transportation graph.

Figure 3 illustrates a simple time-dependent transportation
graph, where two bus lines l1 and l2 run between bus stops
A and B. In this case, a stop (say, A) is modeled as a single
transfer node (i.e., tA) plus two route nodes (i.e., rl1A and rl2A ).
The edge from tA to rl1A represents a boarding process, and
the cost of the edge is the expected waiting time for bus line
l1. The reversed edge rl1A to tA means alighting and the cost is
0. The edge from rl1A to rl1B shows the traveling of bus line l1
from bus stop A to B, and its associated cost is the expected
travel time between the two stops.

Note that the cost can be multi-dimensional. More specifi-
cally, in our stochastic model, both bus waiting time and travel
time have two dimensions, namely a mean (speediness) and a
variance (reliability). In general, we define a k-dimension cost
c as an array of k cost elements [c[0], c[1], ..., c[k − 1]].

• The plus operation, c = c1 + c2, is defined as c[i] =
c1[i] + c2[i] ∀i ∈ [0, k − 1].

• The compare operation, c1 < c2, is defined to be
c1[i] ≤ c2[i] ∀i ∈ [0, k − 1] and ∃m, s.t. c1[m] <
c2[m].



When combining two log normal distributions of travel
times, the aggregate mean can be calculated by the sum of
individual means. However, the aggregate variance requires
solving a convolutional integral [7], which is highly computa-
tionally expensive. Thus, we use the sum of variances as an
approximate indication for the reliability of routes.

B. Modified Multi-criteria Shortest Path Algorithm

As we consider two criteria (speediness and reliability) in
our route planning, we mainly use multi-criteria shortest path
algorithm [6] but adapt it to handle the lack of component
aggregation property of bus travel time. The main algorithm
is shown in Algorithm 2. We define a node label li as a pair
structure (ni, ci) consisting of a node ni and a multi-dimension
cost ci, which is the cost to reach node ni from the source
node. A priority queue pq is maintained to determine which
node and label to explore next. It is sorted based on the mean
travel time of the multi-dimensional cost. A predecessor map
pm is used to keep track of the predecessors of the labels.
For every node, there is a node cost list cl storing all non-
dominated costs since a cost may not be strictly comparable
to another. Lines 1 to 5 of the algorithm initialize all data
structures and insert the source node into the priority queue
with a cost 0. Line 6 is the main loop, which keeps running
until there is no more unsettled labels in the priority queue.

In each iteration, the label with the lowest cost is retrieved
and all of its outgoing edges are examined. Here, instead
of simply adding the current cost and the edge cost as in
the original algorithm, which causes the bus travel time’s
increasing error problem as discussed in Section I, we invoke
a subroutine getAccurateCost to find the correct cost
without any aggregation error in line 10. The details of this
subroutine (Algorithm 3) is explained in the next section. Once
we get the cost, it is compared with existing costs of the same
node in line 12. If it is better than any, a new label is created
and inserted into the priority queue, and dominated costs are
removed from the node. The algorithm stops when all labels
are processed and the queue becomes empty.

Recall that in Section II, the bus simulation model shows
that passengers boarding and alighting time for the departure
and arrival stops are not included in the total travel time.
Hence, we face the lack of component aggregation property
problem which is for any two bus stops that are k stops
away (k >1), the expected travel time is longer than the
sum of travel times of each pair of its consecutive stops, i.e.,∑k
s=1 T

j
i+(s−1),i+s < T ji,i+k. In order to get the accurate travel

time, we directly query the model to get T ji,i+k as discussed
in the following subsection.

C. Solution to Travel Time’s Lack of Component Aggregation

Algorithm 3 shows the steps to get the accurate travel time
cost between two nodes. The intuition is that aggregation error
happens only when the query is between two route nodes, not
for transfer nodes. Line 3 and 6 test if the query is made from
a transfer node to a route node or the other way round. In both
cases, taking the corresponding bus waiting time or cost 0 will
do. However, if the query is made between two route nodes, as
shown in line 8, a special handling is needed. To solve the lack
of component aggregation property problem, we keep tracing

Algorithm 2: Modified multi-criteria shortest path
Input: graph g, source node ns, destination node nd,

departure time t
Output: shortest paths and their expected costs
/* initialization */

1 priorityQueue pq = ∅
2 predecessorMap pm = ∅
3 nodeCostsList cl = ∅
4 label ls = createLabel(ns, cs = 0)
5 pq.insert(ls)
6 while !pq = ∅ do
7 label lu = pq.pop()
8 node nu = lu.getNode()
9 foreach outgoing edge eu,v do

10 cost cv = getAccurateCost(lu, eu,v, t)
11 List<cost> costs = cl.getCosts(nv)
12 if cv is dominated by costs then

/* drop cv since it is not
smaller than any of existing costs

*/
13 continue
14 end

/* cv is not dominated */
15 cl.put(nv , cv)
16 cl.removeDominated()
17 label lv = createLabel(nv, cv)
18 pm.put(lv , lu)
19 pq.insert(lv)
20 end
21 end

backwards for predecessors and find the first non-transfer node
nw. The path from this node to the current node includes all
boarding and alighting information for the intermediate bus
stops. Thus the accurate cost is calculated by cost of node nw
plus the travel time between nw and current node.

A simple example that illustrates how to get accurate cost
is shown in Figure 4. A bus serves three subsequent stops
A,B and C. Starting from the transfer node tA, the cost for
route node rA is simply a 7-minute waiting time. From rA to
rB , a 2-minute travel time is added normally. However, when
the algorithm reaches node rC , instead of adding another 2-
minute to existing cost (cB + TB,C) and getting 11 minutes,
the algorithm finds the first non-transfer node rA, and the cost
is calculated by cA + TA,C , which ends up to be 12 minutes.

Fig. 4. Dealing with travel time’s lack of component aggregation.



Algorithm 3: getAccurateCost
Input: label lu, edge eu,v , departure time t at source
Output: cost cv

1 cost cu = lu.getCost()
2 node nu = lu.getNode()
3 if nu is a transfer node and nv is not then

/* a boarding process */
4 cost cw = eu,v .getWaitingTime(t+ cu.mean)
5 cv = cu + cw
6 else if nv is a transfer node and nu is not then

/* an alighting process */
7 cv = cu
8 else
9 label lw

/* trace back to find the last
non-transfer node nw */

10 label li = lu
11 while ni = li.getNode() is not a transfer node do
12 lw = li
13 label li = pm.getPredecessor(li)
14 end
15 cost cw = lw.getCost()
16 cv = cw + ew,v.getTravelT ime(t+ cw.mean)
17 end
18 return cv

V. EXPERIMENTAL STUDY

In this section, we evaluate the quality and accuracy of
the routes returned by our proposed dynamic route planning
system in comparison with other popular route planners.

A. Experimental Setup

The data used for building stochastic models of bus travel
time and waiting time are collected from real smart card
integrated bus network in Singapore and comprise of the
recorded usage of all bus lines in a period of three months. A
trip by a commuter recorded in the data set starts when the
smart card is used to tap in the vehicle and ends when the
passenger taps out.

Data analysis. We do a simple statistics analysis on the
data to confirm the time-dependent characteristic of bus travel
time. More specifically, we measure the impact on travel time
when a journey by a commuter is performed during peak hours
in weekdays compared to other times. Origin-destination (O-
D) pairs are randomly selected and the travel times of the same
pair during different times are compared: (1) during peak and
off-peak hours in the same weekday, and (2) during the same
peak hours of weekdays and weekends.

Table III shows the distribution of the ratio between the
travel time during peak hours vs. off-peak hours in a weekday.
O-D pairs are put into different bins based on the ratio, ranging
from less than 1 (i.e., traveling during peak hours takes less
time than non-peak hours, which are exception points in the
data set) to greater than 1.4 (i.e., traveling during peak hours
takes 1.4 times longer than non-peak hours). It can be seen
that for more than 90% cases, the ratio is greater than 1 which
means the travel time is typically longer during peak hours as
expected. On average, 20% more time is spent due to traffic

congestions during peak hours. In addition, Table IV shows
that peak hours have greater impact on weekdays rather than
weekends. The same journey takes 20% more time to complete
during peak hours on weekdays as compared to weekends.

TABLE III. WEEKDAYS AM (08:15 VS. 09:45), PM (18:15 VS. 16:15)

Peak/Offpeak <1 1∼1.1 1.1∼1.2 1.2∼1.3 1.3∼1.4 >1.4
AM 9.7% 13.7% 20.3% 26.3% 16.6% 13.5%
PM 11.7% 13.3% 22.9% 20.5% 15.0% 16.7%

TABLE IV. WEEKDAYS VS. WEEKENDS (AM 08:15, PM 18:15)

Weekdays/
Weekends

<1 1∼1.1 1.1∼1.2 1.2∼1.3 1.3∼1.4 >1.4

AM 14.6% 19.7% 13.1% 16.4% 16.4% 19.7%
PM 8.9% 10.1% 16.6% 25.5% 19.4% 19.4%

Baselines and metrics. We compare our proposed dynamic
route planning system with Google Maps2 and Gothere.sg3,
which are among the favorite route planners in Singapore.
We are interested in the accuracy as well as the quality of
the routes returned by these systems. More specifically, the
following metrics are used to evaluate: (1) the accuracy of the
expected total travel time of trips departing at various times
including weekdays’ peak and off-peak hours and weekends,
(2) the ability to dynamically rank candidate routes dependent
on the departure times, and last but not least (3) the ability to
consider both the speediness and the reliability of routes.

B. Experimental Results

1) The accuracy of expected total travel time: We first
randomly select trip instances from the historical smart card
data. Each selected trip includes the information of depar-
ture time, arrival time and an origin-destination (O-D) pair.
Historical travel time Th can be calculated from the arrival
and departure times. Then, we query the route planners for
the same O-D pair given the same departure time to get the
travel time Tc of the optimal route returned by the comparing
systems. Finally, we use root-mean-square error (RMSE) to
measure the accuracy of the returned travel times. However,
instead of using the absolute travel time difference (Tc − Th)
which is hard to interpret, we use percentage values calculated

as (
Tc − Th
Th

).

TABLE V. ACCURACY OF EXPECTED TOTAL TRAVEL TIME

AM peak PM peak AM off-peak PM off-peak Weekend
DEPART 13.8% 10.8% 9.7% 9.3% 4.8%
Google
Maps

22.2% 23.2% 13.7% 10.5% 14.2%

Gothere.sg 45.5% 46.7% 40.4% 29.0% 40.6%

The experiment results are shown in Table V. As can be
seen, Gothere.sg suffers from the largest error. On average,
its returned travel time is 40% different from the real value.
Google Maps does relatively well for weekday off-peak hours
and weekends when the error is just around 15%. However,
its travel time estimation for peak hours drops sharply and
the error is as high as 22%. In comparison, the accuracy
of DEPART is the best of the three in all cases. The error
is constantly below 14% and usually below 10%. Further,

2https://maps.google.com
3http://gothere.sg/maps



the travel time estimation for peak hours achieves similar
accuracy as off-peak hours. The results confirm that DEPART
can effectively deal with the uncertain and time-dependent
characteristics of urban traffic.

2) The ability to dynamically rank candidate routes de-
pendent on departure times: Existing route planners such as
Google Maps and Gothere.sg are static in the sense that they
return the same routes in spite of different departure times.
In contrast, DEPART recommends routes with better quality
due to its ability to calculate routes that are more adapted to
traffic conditions, e.g., peak and off-peak hours. For example,
there are two paths shown in Figure 5. Bus 700 goes by the
right path which is the main road. Bus 167 goes by a side
track path on the left. When traveling from bus stop 03223 to
stop 08031 at 14:30 pm on a weekday, both routes take less
than 15 minutes and bus 700 is slightly faster. Thus, DEPART
recommends bus 700 traveling by the main road. Nevertheless,
when the departure time is 18:30 pm, the expected travel
times of bus 700 and bus 167 increase to 22 and 18 minutes
respectively. This means that the previously faster route 700 on
the main road turns out more likely to be congested and takes
20% longer travel time. In this case, DEPART dynamically
recommends bus 167 to the user.

Fig. 5. Dynamic route recommendation.

3) The ability to consider the reliability of paths: Since
the traffic network is stochastic in nature, the expected travel
time is not always reliable. To optimize both the speediness
and reliability of routes, our route planning system utilizes
multi-criteria algorithm and finds both least expected travel
time and most reliable routes.

For instance, there are two routes from downtown to a
fencing club as shown in Figure 6. Historical data shows that
during evening peak hours the upper route going through the
main road takes 15% longer travel time than the lower route,
but its variance is only 20% of the faster one. Both routes are
returned by DEPART since they are better in either expected
travel time or reliability. If a user has a fencing class to attend
and does not want to miss it by any chance, he should take
the slightly longer but more reliable route. Other users without
strict deadlines may prefer the expected faster route.

Fig. 6. Speediness vs. reliability of routes.

VI. RELATED WORK

In this section, we review relevant works related to traffic
modeling and stochastic route planning in time-dependent
networks, and highlight our research contributions.

Traffic modeling. Research in modeling of bus movement
originated with a analytic model [22] which allows for con-
venient mathematical analysis. This model and its variants
assume a fairly simple transit network with a couple of vehicles
which makes the models inapplicable in real world situations.
With the increasingly popularity of smart card integrated public
transportation, there exist efforts in utilizing travel smart card
data for traffic modelling. In [13], linear interpolation of the
bus positions is used in order to gain information about spatio-
temporal movement of the buses. The work described in [23]
uses smart card analysis to extract useful data about the traffic
in the city. In [12], information from smart card data is used
to model bus travel time and waiting time as stochastic time-
dependent distributions. In this paper, we propose to linearize
those stochastic step functions to ensure the FIFO property
in a public transit network and incorporate that model in our
dynamic route planning system.

Stochastic route planning. Loui [16] is the first to present
the problem of finding optimal paths (specifically, minimizing
a utility function) in generic stochastic networks. It is shown
that the utility function has to be either affine linear or
exponential; otherwise, optimal substructure of the problem is
not guaranteed. Nikolova et al. [20] and Lim et al. [14], [15]
further extend the work and focus on stochastic road networks.
In [27], Wu et al. propose an approach to model risk-taking
behavior based on the theory of stochastic dominance(SD),
and use it to find optimal paths for different utility functions.
Chen et al. [4] find reliable shortest paths by pre-specifying
an on-time arrival probability. Overall, the above works are
specially proposed for stochastic road networks while we target
at stochastic time-dependent public transit networks.

Route planning in time-dependent networks. In stochastic
time-dependent networks, the cost of an edge in the network is
typically modeled as a discrete random variable and also has
different values depending on time intervals in a day. While



the works in [11], [18] study the least expected time paths in
STD networks, Sun et al. [25] focus on finding the most robust
paths instead. Overall, these works assume that the stochastic
travel time in a generic network follows a discrete random
distribution where only a limited number of values can be
chosen. In our work, the travel time is modeled after practical
smart card data set collected from a real bus network and
follows a continuous distribution. Further, we optimize both
the travel time and reliability of the returned paths.

Another research direction in STD networks is to find an
optimal routing policy, which is a hierarchical decision that
specifies which bus to take at the next transfer depending
on the actual arrival times of buses [11]. Gao [8], [10] and
Chabini [9] further consider link wise and time wise stochastic
dependencies of travel times. Wu et al. [26] incorporate real-
time information into routing policies in STD networks. Note
that the above works only consider bus travel time in their route
planning process. Nevertheless, in public transit networks,
waiting time is an important contributing factor to the total
journey time as well. Datar and Ranade [5] study bus networks
with stochastic waiting time, where bus arrivals are assumed to
follow a Poisson process. Boyan and Mitzenmacher [2] further
improves the work by generalizing bus arrival distribution to
any distribution as long as the bus waiting time has increasing
failure rate. Our proposed dynamic route planning system
advances these works by considering both waiting time and
travel time in public transit networks.

VII. CONCLUSION

In this paper, we have proposed DEPART – a practical
route planning system that can effectively deal with uncertain
and time-dependent characteristics of urban traffic. We extract
the distributions of bus travel time and waiting time from real
smart card data and build a FIFO stochastic model for the bus
network of the entire city. We introduce a new algorithm that
solves the lack of component aggregation property of bus travel
time. Experimental results on real bus network confirm that
by leveraging historical data and optimizing both the expected
travel time and reliability of the routes, DEPART is able to
recommend routes that are more adapted to traffic situations as
compared to other popular route planners. Our future research
in this direction includes devising an online route planning
algorithm that leverages the real-time feed of bus arrival times.
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