
HAL Id: hal-01161795
https://inria.hal.science/hal-01161795v1

Submitted on 24 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a General Solution for Detecting Traffic
Differentiation At the Internet Access

Riccardo Ravaioli, Guillaume Urvoy-Keller, Chadi Barakat

To cite this version:
Riccardo Ravaioli, Guillaume Urvoy-Keller, Chadi Barakat. Towards a General Solution for Detecting
Traffic Differentiation At the Internet Access. 27th International Teletraffic Congress (ITC-27), Sep
2015, Ghent, Belgium. �10.1109/ITC.2015.8�. �hal-01161795�

https://inria.hal.science/hal-01161795v1
https://hal.archives-ouvertes.fr


Towards a general solution for detecting traffic
differentiation at the Internet access

Riccardo Ravaioli
Université Nice Sophia Antipolis

Laboratoire I3S/CNRS UMR 7271
Sophia Antipolis, France

Guillaume Urvoy-Keller
Université Nice Sophia Antipolis

Laboratoire I3S/CNRS UMR 7271
Sophia Antipolis, France

Chadi Barakat
Inria

Sophia Antipolis, France

Abstract—In recent years network neutrality has been widely
debated from both technical and economic points of view. Various
cases of traffic differentiation at the Internet access have been
reported throughout the last decade, in particular aimed at
bandwidth consuming traffic flows. In this paper we present
a novel application-agnostic method for the detection of traffic
differentiation, through which we are able to correctly identify
where a shaper is located with respect to the user and evaluate
whether it affected delays, packet losses or both. The tool we
propose, ChkDiff, replays the user’s own traffic in order to
target routers at the first few hops from the user. By comparing
the resulting flow delays and losses to the same router against
one other, and analyzing the behaviour on the immediate router
topology spawning from the user end-point, ChkDiff manages
to detect instances of traffic shaping. We provide a detailed
description of the design of the tool for the case of upstream
traffic, the technical issues it overcomes and a validation in
controlled scenarios.

I. INTRODUCTION

The neutrality of the Internet has been a hot topic ever since,
around a decade ago, bandwidth-hungry applications (e.g.
peer-to-peer, video, media streaming) started to gain success
among users and a number of ISP’s took measures to counter
possible detrimental effects on the connectivity they provided.
Arbitrary decisions, as for example blocking of BitTorrent
traffic in the upstream direction [1] by an operator in the
US, have since then been reported. More examples include:
throttling of YouTube in France [2] and Germany [3] during
evening hours, when link utilization reaches its peak; degraded
performance over a VPN using OpenVPN default port [4] in
the US; most recently, evident decrease in performance for
Netflix traffic in early 2014 by two US operators [5].

A definition for network neutrality that is generally agreed
upon is that a network is neutral when all the traffic passing
through it is treated equally, with no discrimination whatsoever
based on the user it originates from, the destination it is
intended for, its contents, the application it refers to, its
relative load and time of the day. However, as described by
Crowcroft [6], the Internet has never been a pure level-playing
field, contrary to what neutrality proponents might affirm.
Indeed, many factors can naturally contribute to a better or
worse user experience, which major companies and ISP’s have
often exploited: proximity to the end users with caches and
replicated servers, asymmetry of inter-domain routing, NAT’s
and firewalls, etc.

But since shaping is rarely revealed by official sources
and certainly does not appear in Service Level Agreements
(SLA’s), it becomes of utmost importance to be able to detect
it from within the network. A number of tools for the detection
of traffic differentiation have thus emerged in the literature in
the past few years [7]–[14] (we discuss them in Section V).
The method we propose here differs from existing work in its
attempt to be independent both from the shaping techniques
in use by ISP’s at layer 3 (IP) of the protocol stack and from
the user applications that might be targeted. The idea is that a
shaper whose goal is to degrade the performance of selected
traffic might do so according to a variety of packet scheduling
and buffer management policies, but it will typically result
on the user side in larger delays and possibly more losses.
Consequently, if we compare the set of delays of a flow to
that of the rest of the traffic, and we proceed analogously for
losses, we should be able to infer whether any shaping took
place. In order for this to be valid for whatever application the
user is running, we reuse her own traffic and replay it with
minimal changes so that it targets the routers at the first few
hops from her. If any shaper is located in proximity to one
(or more) of these routers, packets going through it will have
degraded performance at that hop and at all subsequent ones,
thus allowing us to also pinpoint their relative position. We
implemented this technique for upstream traffic in a tool we
called ChkDiff1, through which we can detect the presence and
identify the location of shapers, by using the ICMP feedback
provided by routers. We modify and extend here an early
draft [15] of ChkDiff, in which a basic version of the tool was
first described. We focus in the present work on the validation
of ChkDiff, in which we stress the tool under different shaping
scenarios and assess its resilience against sources of error such
as traffic variation and ICMP rate limitation on routers.

The paper is organized as follows: in Section II we present
the functioning of our method in details, along with a discus-
sion of all the technical adjustments needed for the tool to
work; in Sections III and IV we validate ChkDiff in respec-
tively a controlled neutral and non-neutral environment and
show that it is able to successfully detect shaping even when
a large fraction of the traffic is differentiated; we compare our

1The code is available on a dedicated web page: riccardoravaioli.wordpress.
com/chkdiff

riccardoravaioli.wordpress.com/chkdiff
riccardoravaioli.wordpress.com/chkdiff


method to existing work in Section V and give concluding
remarks in Section VI.

II. DESIGN OF THE TOOL

The strength of ChkDiff lies on its ability to not depend on
the kind of shaping technique in use by ISP’s at layer 3 of the
protocol stack and on the applications (or rather, traffic flows)
that might be targeted. We achieve this by implementing the
following design ideas in the core of our tool:
• Use of real user traffic. We conduct all experiments with
previously dumped user traffic, so that the results yielded by
our tool will refer to the exact set of applications run by the
user.
• Trace is left (almost) intact. This ensures that any shapers
traversed by our trace will have the same behaviour they would
have if the packets had been generated by their respective
applications. As we will see in the following subsections, the
only modifications applied to packets are in the TTL field,
in order to hit the router(s) at the desired hop, and in the
application payload, in which we enforce the same size on all
packets so as to avoid different transmission times.
• Baseline for comparison is the entire traffic. By the definition
of network neutrality, a flow that is not differentiated will be
treated in the same way as the rest of the (non-differentiated)
traffic, by any given router. On the other hand, a flow that
is differentiated by a shaper implemented at the IP layer will
typically display higher delays or losses, depending on the
scheduling and buffer management techniques in use2. When
compared to the delays and losses of the rest of the trace,
this flow will stand out. Our statistical analysis is based on
that. We will show in the validation section that we are able
to successfully detect shaping when over half of the traffic is
differentiated.

The execution of ChkDiff is summarized in Algorithm 1.

Algorithm 1 ChkDiff execution

1: Capture user traffic
2: for each hop h ∈ {1, 2...k} do
3: for each run r ∈ {1, 2, 3} do
4: shuffle trace
5: replay trace with TTL← h
6: collect ICMP time-exceeded replies
7: end for
8: detect shaped flows at hop h
9: end for

10: aggregate results and locate shaper(s), if any

A traffic trace is captured during a user’s regular Internet
activity; it is then processed and arranged into flows. For

2More specifically, a shaper will still be able to classify flows as if they
were coming from their respective original applications, when it does so
by inspecting IP, transport-layer header fields or application payloads. If it
implements stateful TCP flow analysis, our replayed trace would probably
bypass it. After identifying the flows to target, a shaper will apply a
differentiation technique to them. ChkDiff is able to detect IP layer techniques
resulting in higher delays and losses; techniques applied to higher layers, such
as redirections or TCP reset injection, will not be detected.

each hop h we intend to test, we shuffle the trace so as to
minimize any bias in the network conditions that our flows will
experience: we keep the ordering of packets within each flow
and modify the global packet ordering to be resilient to side
traffic. We set the TTL field of the IP header of each packet
to h and we replay the trace. Routers at hop h, if responsive,
will reply with ICMP time-exceeded error messages, through
which we compute single packet Round-Trip Times (RTT’s)
to hop h. Any shaper located between the user and hop h must
have affected packets belonging to the flows it is configured
to differentiate, before the ICMP error messages were elicited.
We repeat this operation 3 times for the same hop in order to
filter out false positives and we claim that a flow has been
shaped when it has been rejected in our statistical analysis
across all three runs. Once all the first k hops have been tested,
we compare the results and attempt to localize the shapers.

In the rest of this section, we will describe each of the above
steps in detail.

A. Traffic trace

The first action taken by ChkDiff is to dump outgoing user
traffic while the user runs her usual network applications. This
is the trace that will be replayed from the end user host
towards routers at the hops nearby in the following steps.
Since we focus in this paper in the upstream direction, we
expect the user to execute applications generating some non-
trivial outgoing traffic that is not limited to HTTP requests or
TCP ACK’s: for example media upload, VoIP, file sharing and
instant messaging.

B. Flows and trace preparation

1) Trace classification into flows. The packets in the
dumped trace are arranged into 5-tuple flows, that is to say
according to source and destination IP address, source and
destination port and transport protocol.

2) Fixed-size packets. Next, we need to prepare the trace we
have to replay. Packets of different size, if sent along the same
path to the same destination, will inevitably have different
transmission times. As we will see in Section III, this is a
non-negligible source of error if, as it is in our case, we make
the assumption that the delays of all packets going along the
same path should be comparable. This is especially true if we
measure delays to the closest hops, where the delay variability
could be low enough to be comparable to or even smaller
than the difference in transmission times between small and
large packets. In order to overcome this, we force every packet
of our trace to be of the same size S (in Bytes), either by
truncating application-level payloads larger than S Bytes, or
adding random padding at the end of shorter payloads. We
chose S to be 250 B, but in practice it could be any value,
as long as it preserves enough of the original payload to be
intercepted by shapers implementing Deep Packet Inspection
(DPI), which in general looks at only the first few bytes.

3) Shuffling packets. Before replaying our trace, an addi-
tional step is required. Since our analysis will be in terms of
flows, we have to ensure that they all see the same network



conditions while being injected into the network. It is therefore
necessary to shuffle packets so that they exhibit such property.
We assign a weight to each flow in our traffic, according to its
original size in packets and normalized by the sum of all flows
sizes, such that all weights sum to 1. For a trace with f flows,
any flow i with size si, in number of packets, will have weight
pi = si/

∑f
k=1 sk. A queue is thus created for each flow,

where the per-flow packet order is maintained, since it might
reveal useful information to a shaper for flow identification.
We now pick packets randomly from each queue according
to the flow weight and put them aside, ready to be replayed.
Whenever a queue becomes empty, its weight is set to 0 and
weights of all other flows are updated accordingly, so that
they always sum to 1. By popping packets from each queue
in the above fashion, we obtain for every flow an ordered
sequence of 0’s and 1’s indicating whether a packet in the
resulting shuffled trace came from that flow or not. Given a
flow i, such sequence of 0s and 1s can be seen as a Bernoulli
process with a probability equal to the weight of flow i, let us
say pi. Now, if we consider the spacing (or inter-packet time)
Wi between any two consecutive packets from flow i, we can
see that it follows a geometric distribution with parameter pi:
P (Wi = w) = (1−pi)w−1pi. The geometric distribution being
the discrete version of an exponential distribution, packets of
flow i see the real network conditions according to the PASTA
property (Poisson Arrivals See Time Averages) [16]. As this
property applies to all flows, it enables us to reach our initial
goal: letting all flows observe the same network conditions,
provided that the network offers a stationary service.

Furthermore, shuffling is particularly useful when having to
counteract side traffic and ICMP rate limitation, as we will
see shortly.

C. Replay

1) ICMP rate limitation. In a previous work [17], we
studied the responsiveness of routers to TTL-limited probes.
Through a large measurement campaign, we examined pos-
sible bias in the Round-Trip Times of these probes and how
ICMP rate-limitation is implemented on routers. We demon-
strated that there did not appear to be any correlation between
a slow or high probing rate (in the range [1, 4000] packets per
second) and the resulting Round-Trip Times. In other words,
even at high rates, we were not hitting any capacity limits that
might have slowed down the generation of ICMP messages
and contributed to the total packet delay. This is good news,
since it tells us that the choice of probing rate does not mar the
delays we obtain. There will definitely be a delay component
due to the generation of the ICMP error message (estimated
to be in the order of the submillisecond [18]), since it takes
place in the router slow path, which is usually implemented in
software instead of hardware and does not have high priority
compared to other router operations. But this delay component
will have roughly the same weight in all RTTs toward the same
router and therefore will not constitute a source of error.

When using TTL-limited probes as in our case, we must
also make sure that we obtain a sufficient number of replies,

since it is a fairly widespread practice for manufacturers and
network administrators to limit at a fixed maximum rate the re-
sponsiveness of routers to these expiring probes. We tested 850
routers from PlanetLab hosts up to hop 5 and demonstrated
that ICMP rate limitation is implemented as an on-off process
with typical values in [20, 500] packets per second (pps). In
light of this, the shuffling technique presented above has the
undoubted advantage that unanswered probes would be spread
fairly evenly across flows, since flow packets themselves are
spread evenly across the trace. A non-shuffled trace replayed
to an ICMP rate-limiting router would instead incur more
variable losses among flows, which would inevitably impair
any loss analysis. We will discuss the robustness of our tool
to ICMP rate limitation in Section IV.

2) Testing the first k hops. In order to locate the position
of a shaper, we need to replay the shuffled trace as many
times as the number of hops we want to test, by increasing
the IP TTL of all packets at every experiment. For the choice
of k, a value of 3 or 4 should suit most cases and provide
a large enough picture of what happens at the user’s Internet
access, including ISP routers and those right after the ISP
boundaries. The user trace being made of flows with different
IP destination addresses, testing routers that are further away
is of increasing complexity due to a reduction in terms of
samples per router as we move away from the user.

D. Results analysis

We focus our analysis on the study of Round-Trip Times
and losses. In both cases, the approach is similar: we consider
large flows only, that is those with at least 20 answered packets
(a typical minimum sample size in statistical analysis), and
we analyze these flows one at a time, comparing them against
all the rest of the traffic as a whole (large and small flows
indifferently).

1) Delays. We compare the distribution of delays of a
flow to the delay distribution of the rest of the trace using
a statistical test. Our null hypothesis is that, in an envi-
ronment without differentiation, if we sample the total set
of delays obtained, they will all appear to be drawn from
the same distribution as all the other delays of the trace.
We conduct our analysis by applying two-sample one-sided
Kolmogorov-Smirnov test, which has the benefit of being
non-parametric, in that it does not make assumptions on the
underlying distribution of the data it is checking. The test
takes as statistic the maximum vertical deviation between the
Cumulative Distribution Functions (CDF’s) of two samples.
We chose the one-sided version of this test because, while the
two-sided Kolmogorov-Smirnov test looks for the maximum
vertical deviation between two curves without including in
its result whether this vertical distance was due to the first
curve being above the second one or the other way around,
the one-sided version looks for this deviation in one given
direction. Applied to our scenario, we can test whether a
flow experienced worse (i.e. larger) delays than the rest of
the trace by checking whether its CDF lies below the CDF of
its baseline, and to which extent.



Fig. 1: An example with shapers at different hops.

hop 1 hop 2 hop 3 hop 4 shapers?
flow 0 D 6 6 6 hop 2
flow 1 D D D 6 hop 4
flow 2 D D unresp D none
flow 3 D D unresp 6 hops 3,4
flow 4 D D unresp unresp not until hop 2

Fig. 2: ChkDiff expected output.

2) Losses. In order to check if the loss rate of a flow differs
significantly from that of the rest of the trace, we proceed by
using an argument inspired from the binomial distribution. If
we want to examine the losses (i.e. the number of unanswered
packets) experienced by flow i, we let p be the loss rate of the
rest of the traffic as a whole, and si be the original number
of packets of flow i. If the loss events of flow i were not
caused by a shaper, its number of losses li can be modeled
as a binomial random variable of parameters B(si, p). To test
whether this holds true, we can approximate this binomial as a
normal random variable of parameters N(sip, sip(1−p)) and
verify that the loss events li lie within α standard deviations of
the normal mean. With α being a function of the significance
level we want to achieve, we check that ps−α

√
p(1− p)si <

li < psi+α
√
p(1− p)si. The right side of this last condition

is the one we are interested in, as it indicates that the flow
experienced more losses than it should have, and it is what
we check in our analysis.

3) Repetition of experiments. Statistical tests are operated
at a certain confidence level, which in our tool we set to 99%.
Due to the high number of flows in a user trace, we are bound
to have a number of false positives, whatever action we take.
To work around this issue, we adopt a simple strategy. We
repeat an experiment three times (at the same constant probing
rate) to router(s) at the same hop-distance and claim that a flow
has been shaped only when it was rejected in all three runs.

E. Results Aggregation

After collecting traces and analyzing delays and losses for
the first k hops, we need aggregate results in order to attempt
to localize the shaper, if ever a flow was rejected in any of
those hops. A shaper positioned right before hop h, with h ∈
{1, 2, ... k}, will cause targeted flows to fail the delay or loss
analysis (or both) on all hops ≥ h. When ChkDiff detects
this, it declares the flow as being shaped on the hop-segment
between h and the previous responsive router. We show an
example with routers up to hop 4 in Figure 1. We assume
that there is a number of non-differentiated flows from the
user trace passing through each router besides the four shown
in the figure, and that they contribute to the baseline for the
statistical analysis. In Figure 2 we provide the expected output
from ChkDiff based on this scenario. A shaper for flow 0 is
deployed right before the router at hop 2: this means that flow

0 will pass the analysis at hop 1, but will not at all successive
hops. Flow 1 is a similar case, but at the edge of the tested
hops. At hop 3 an unresponsive router, that is to say a router
that was configured not to reply to expiring packets, generates
a gap in our assessment, which might be compensated by the
results at the next hop. If at the next hop a flow (flow 2)
continues to pass the test, we can safely claim that it was not
shaped along the whole path under consideration. If instead
the flow fails the test, as we showed for flow 3 in our example,
we can only say that at hop 3 and 4 it encountered a shaper,
without being more specific. Finally, if the next hop is also
unresponsive, for a flow like flow 4, our conclusion is simply
that no shapers were detected up to the last hop where the
flow passed the analysis.

III. VALIDATION IN A NEUTRAL SCENARIO

Before validating ChkDiff in the presence of traffic differen-
tiation, it is important to justify some measures we take when
replaying a user trace: forcing the same size in all packets and
aggregating results across 3 experiments. The packet trace we
used here and in Section IV was captured in a time-window of
3 minutes of a typical Internet session, in which we performed
picture uploading on a social network, browsing on a news
site, and sent a few chat messages. The trace is made of 6733
packets, arranged into 275 flows, of which 61 are large (i.e.
they have more than 20 packets) and comprise 76.8% of the
total amount of packets. The exact distribution of flow sizes
is shown in Figure 3.

We claimed in Section II-B2 that, by fixing the packet size

100 101 102 103

flow size (packets)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fig. 3: Distribution of flow sizes, in number of packets, for
the packet trace used for validation.



0 1 2 3 4 5
no. of false positives

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

KS

original
fixed size

Fig. 4: Incidence of false positives when the replayed trace
contains unaltered original packets, and when it contains
packets of the same size. Results are over 1 run.

to a constant value for all packets in a trace, we were able to
remove a considerable fraction of errors in the delay analysis.
We now show the incidence of false positives when packets
are the original size and when they are padded or truncated to
a constant value. For each of the two options, we ran ChkDiff
100 times in a controlled setup with no differentiation towards
a router under our control at hop 2. In Figure 4 we compare the
CDFs of the number of false positives for each experiment.
The improvement is evident: we remove all errors in 70%
of experiments and are left with 30% of experiments showing
mostly 1 false positive. The next step is to aggregate the results
of multiple runs, as described in Section II-D3 and see if
these errors disappear. We ran ChkDiff 100 times and observed
indeed that no false positives emerged when considering just
two runs. In order to have a safe margin of error, we use by
default three runs in ChkDiff.

IV. VALIDATION IN A NON-NEUTRAL SCENARIO

We tested how the tool copes with different shaping and
network settings in a controlled experimental setup. We fo-
cused on two scenarios: Scenario 1, in which we throttle
the bandwidth of selected flows, and Scenario 2, where we
apply uniform packet drops. In our setup, a user machine
is connected through cable to a middle box, which operates
both as a gateway and a shaper, and which is, in turn,
connected to a Cisco router under our control, where our
probes expire. In the middle box, we deployed a shaper with
Dummynet [19], a popular and versatile network emulation
tool. The configuration we used is depicted in Figure 5:
incoming packets are directed to either the upper or lower pipe
on the left side, depending on whether they belong respectively
to the flows to shape or not. The upper pipe is traversed by
all flows that we intend to shape; in Scenario 1 it has its own
bandwidth bw and queue size, and in Scenario 2 it induces
uniform losses at rate lr. The lower pipe compensates for the
transmission delay produced by the upper pipe in Scenario 1:
it adds this constant delay component to the packets of all
non-differentiated flows, so that only the queueing delay in
the upper pipe constitutes the discriminating factor between
shaped and non-shaped packets. In scenario 2, it produces no
effect. Finally, all packets meet at the pipe on the right-hand

shaping pipe

compensating pipe

100 Mbit/s
pipe

Fig. 5: Middle-box configuration.

side, which emulates a 100 Mbit/s link. In Scenario 2 this
pipe induces a uniform loss rate lrall to all flows. All pipes
are configured with a buffer size of 100 packets and a droptail
buffer management policy.

A. One shaped flow

We start by examining a scenario in which only one flow is
being differentiated by the shaper. We proceeded by taking the
trace previously described and adding an extra flow of which
we varied the number of packets in order for it to be a fraction
fr of the total amount of packets of the trace. This is the flow
that will be targeted by the shaper. Our results are in terms
of precision and recall, which show respectively the fraction
of detected flows that we know are indeed shaped, and the
fraction of shaped flows that are correctly detected3. Perfect
performance translates into a precision and recall of 100%.

1) Shaping pipe (Scenario 1). In this configuration the
bandwidth bw of the upper pipe on the left side is set as a
function of the average sending rate r (in bits per second)
of the shaped flow, computed before the experiment begins.
We chose bw = kbwr, so that a fraction kbw ∈ (0, 1]
of packets of the shaped flow would use all the available
pipe bandwidth bw and the rest would queue up. We ran
ChkDiff 3 times for each combination of kbw and fr, with
kbw ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and fr ∈ {0.2, 0.4, 0.6, 0.8}.
The results are shown in Figure 6, where the colour of each
circle reflects the percentage of precision or recall obtained.
In this basic scenario, we see that the delay test manages to
always identify the shaped flow. At kbw = 1 we observe that
the flow still experienced some queueing, as a result of the
pipe bandwidth being a function of the average sending rate
of the flow and not of its instantaneous rate.

2) Uniform drops (Scenario 2). Our goal in Scenario 2
is to verify to which extent ChkDiff manages to identify
a shaped flow, when losses affect a selected flow and the
entire traffic at different rates. We configured the shaper so
that the upper pipe in Figure 5 drops a fraction lr of the
packets of the flow to shape, and the pipe on the right-hand
side, where all traffic goes, has a drop rate of lrall. We
varied again the size of the targeted flow and ran experiments
with fr ∈ {0.2, 0.4, 0.6, 0.8}. For reasons of space, we do
not include the graphs on precision, since all results show

3We define precision as being the number of true positives (TP) over the
number of positives (P), and recall as the number of true positives over the
sum of true positives and false negatives (FN), that is to say over the number of
flows that we know were shaped. For more details, refer to http://en.wikipedia.
org/wiki/Precision and recall

http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Precision_and_recall


0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS

0
10
20
30
40
50
60
70
80
90
100

pr
ec

is
io

n
T
P
/
P

(a) Precision of delay analysis

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(b) Recall of delay analysis

Fig. 6: Precision and recall of the delay analysis, for the case of one
shaped flow in Scenario 1.

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

Loss test (fr=20%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(a) Recall when fr = 20%

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

Loss test (fr=40%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(b) Recall when fr = 40%

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

Loss test (fr=60%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(c) Recall when fr = 60%

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

Loss test (fr=80%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(d) Recall when fr = 80%

Fig. 7: Recall of loss analysis as we vary fr, for the case of uniform
drops on the whole traffic and on one selected flow (Scenario 2).

a precision of 100%, that is to say we never encountered
any false positives or, in other words, all the flows detected
by ChkDiff as being shaped were indeed shaped. On the
other hand, some false negatives (i.e. shaped flows that go
undetected) did occur, so our analysis will focus on recall.
In Figure 7 we present the results for this scenario. On the
X-axis we plot the loss rate lrall for all packets of the trace,
whereas on the Y-axis we show the overall loss-rate lrshaped
experienced by the shaped flow: 1 − (1 − lr)(1 − lrshaped).
The tool achieves 100% recall in all cases except those in
which, with a low fr and a fairly high (≥ 40%) overall
loss rate, the loss rate of the shaped flow is close to the
global one. The added loss rates on the lower diagonal of the
graphs correspond to lr = 0.05, which could be too low to
be noticeable on samples of relatively small size. In all other
cases, the tool correctly identified the shaped flow.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS

0
10
20
30
40
50
60
70
80
90
100

pr
ec

is
io

n
T
P
/
P

(a) Precision of delay analysis

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(b) Recall of delay analysis

Fig. 8: Precision and recall of the delay analysis, for the case of
multiple shaped flows, in Scenario 1.

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

Loss test (fr=20%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(a) Recall when fr = 20%

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

Loss test (fr=40%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(b) Recall when fr = 40%

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

Loss test (fr=60%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(c) Recall when fr = 60%

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

lr
sh
a
p
ed

Loss test (fr=80%)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(d) Recall when fr = 80%

Fig. 9: Recall of loss analysis as we vary fr, for the case of uniform
drops on the whole traffic and on multiple selected flows (Scenario
2).

B. Multiple shaped flows

We now move to a more complex scenario, in which
multiple flows are being targeted by the shaper. In order to
select which flows to shape, given a fraction fr of the trace
size to differentiate, we iteratively picked the flow whose size
(in Bytes) was the closest to the target fr, until the total
amount was reached.

1) Shaping pipe (Scenario 1). We set the bandwidth bw
of the shaping pipe as a function of the average sending rate
of all packets belonging to the flows to shape. All shaped
flows pass through the same shaping pipe so as to be able to
compensate for one transmission time only in the lower pipe.
We present the results for this scenario in Figure 8. While
the precision reached appears to be optimal, the recall plots
show that, quite expectedly, when the shaped flows amount
to a large fraction of the trace, the baseline for comparison



becomes too weakened for the test to work.
2) Uniform drops (Scenario 2). In the scenario with uni-

form drops, we used a different shaping pipe for each flow
to differentiate, in order to have the same loss rate lr for
all shaped flows. Results are provided in Figure 9, where we
omitted the plots on precision for the same reason mentioned
before. In the four subplots, we are mostly interested in the
area with lrall ∈ [0.0, 0.2], as it best represents a realistic
setting: in a network with no (0%) or relatively high (20%)
packet drops, a shaper causes losses of various degrees to
part of the traffic passing through it. For completeness, we
also show cases with higher losses and a large fraction of
affected traffic. When 20% of the traffic is targeted, we
are able to detect all differentiated flows, except when the
shaped flows experience just 5% more of losses, on top of
the 20% overall loss rate of the trace. We observe that, as
we shape an increasing fraction of the trace, the loss analysis
significantly degrades. The reason is that, with several flows
being differentiated, the baseline will necessarily include more
and more shaped flows and the statistical analysis will be
impacted. However, this constitutes an extreme case for our
tool and it is unlikely to be encountered in practice.

C. ICMP rate limitation

Lastly, we wanted to verify how resilient our analysis
is when we encounter a router that implements ICMP rate
limitation. We tested ChkDiff in the same experimental setups
as before and configured the router to respond at most at
20 pps (with a burst size of 20 packets and a period of 1
second), a common setting we found for Cisco routers [17].
We repeated the experiments of Scenarios 1 and 2 at different
sending rates (30, 50, 80 and 100 pps) higher than the ICMP
rate limitation threshold. Our aim is to stress our tool when
an additional source of losses is present and see how high
our sending rate r can be, with respect to the rate limitation
implemented on the router side, while still minimizing errors.

In Figure 10 we show the recall plots of the delay analysis
in the case of Scenario 1, where a shaping pipe throttles
the bandwidth of multiple selected flows. Since ICMP rate
limitation only causes packet drops, it is no surprise that the
delays are no more affected than they were in the previous
case when the router was fully responsive (Figure 8b). We
omit here and in the next scenario the results for one shaped
flow, since they always showed maximum precision and recall.

We conducted again the experiments of Scenario 2, where
uniform drops are applied to selected flows and to the whole
traffic with different probabilities, and we provide the results
in Figure 11. For constraints of space, we only show cases
with fr ∈ {0.2, 0.8} and r ∈ {30, 100} pps, i.e. the extreme
values considered in the previous scenario. We observe that
the loss test experiences considerable degradation only in the
extreme case of multiple shaped flows corresponding to 80%
of the trace. Varying the probing rate from 1.5 (30 pps, with
a router-induced loss rate of 33%) to 5 times (100 pps, with
a router-induced loss rate of 80%) the ICMP rate limitation

threshold of the router does not appear to alter significantly
the results.

D. A more complex scenario

In a realistic setting, if a user dumps her own traffic while
some TCP flows are being targeted by a shaper that throttles
their bandwidth, the sending rate of these flows inside the
captured trace will already have been reduced by the shaper.
If ChkDiff replays this trace at its original sending rate, the
TCP flows that were previously throttled will now comply
with the shaper’s policies and will not of course experience
any further degradation. It is therefore important to scale up
our probing rate with respect to the original one, in order to
be able to trigger and detect the presence of a shaper.

We set up a scenario with a shaper, ICMP rate limitation
and side traffic. In the same way as in Section IV-A, we
created a flow constituting 20% of the total trace size and
injected it in our trace so that it would be evenly spread out
and have consequently a constant sending rate rflow. The
shaper was configured as in the previous case of a shaping
pipe affecting one flow only, and its bandwidth was set to
rflow. The router activated ICMP rate limitation at 50 pps,
a common value for Juniper routers [17]. Finally, we added
some cross traffic flowing on average at 20% of our sending
rate and implemented it as a series of bursts of ping packets
following a Poisson process. We configured the bandwidth of
the pipe on the right-hand side in Figure 5 to be equal to the
sum of the rate of the trace and of the cross traffic. This way,
the whole trace also experiences queueing.

In this setup, we assess whether a shuffled trace replayed at
a constant rate is indeed more robust to transient network con-
ditions than the original trace replayed as it is. We increased
the probing rate r by a factor of 1.5, 2, 4, 8 and 16 times the
original probing rate rorig of the trace (with rorig = 64 pps)
and counted in Table I the number of false positives of the
delay analysis across 3 runs. We see that, even though in both
cases we correctly identify the shaped flow already at 1.5x, we
never encounter any false positives when replaying a shuffled
trace. With the original trace, on the other hand, we always
obtained some false positives; their number seems to decrease
with high probing rates only because the amount of flows with
sufficient samples also decreases.

V. RELATED WORK

A number of tools for the detection of traffic differentiation
have been proposed in the literature in the past few years.

Rate
1x 1.5x 2x 4x 8x 16x

Original
trace

True Positives 0 1 1 1 1 1
False Positives 11 3 3 1 2 1

Shuffled
trace

True Positives 0 1 1 1 1 1
False Positives 0 0 0 0 0 0

TABLE I: Number of true and false positives when replaying
the original and a shuffled trace at different sending rates.



0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS (r=30 pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)
(a) Recall of delay analysis, r =
30 pps

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS (r=50 pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(b) Recall of delay analysis, r =
50 pps

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS (r=80 pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(c) Recall of delay analysis, r =
80 pps

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

KS (r=100 pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)
(d) Recall of delay analysis, r =
100 pps

Fig. 10: Scenario 1 with multiple shaped flows and ICMP rate
limitation at 20 pps.

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

losses2 (fr=20%, rate=30pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(a) Recall of loss analysis, fr =
20%, r = 30 pps

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

losses2 (fr=20%, rate=100pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(b) Recall of loss analysis, fr =
20%, r = 100 pps

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

losses2 (fr=80%, rate=30pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(c) Recall of loss analysis, fr =
80%, r = 30 pps

0.0 0.2 0.4 0.6 0.8
lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

losses2 (fr=80%, rate=100pps)

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(d) Recall of loss analysis, fr =
80%, r = 100 pps

Fig. 11: Scenario 2 with multiple shaped flows and ICMP rate
limitation at 20 pps.

A work that has some aspects in common with ChkDiff is
NetPolice [7], where the authors were able to detect differ-
entiation in backbone networks with the use of TTL-limited
probes. Using synthetic traces made of HTTP, peer-to-peer,
BitTorrent and other application flows, they probed ingress and
egress routers of backbone ISP’s from a large set of PlanetLab
nodes in order to notice any difference in loss rates along
the same path segment: if any difference was observed, they
tried to attribute it to content-based differentiation (with the
HTTP flow as baseline) or, when the discrepancy was between
different IP sources or destinations, to routing-based differen-
tiation. Our approach does leverage TTL-limited probes, but
it is client-oriented (in a traceroute-like manner), it focuses
on a user’s access ISP, and does not make assumptions on
which flows should be considered as non-differentiated in its
analysis.

One of the first tools presented to the scientific community
was BT-test [8], which checks for TCP reset packets injected
by ISP’s during the replaying of a typical BitTorrent packet
exchange between a user and controlled server. Its aim was to
disclose a practice that had been recently reported by some
US-based users. The same authors later proposed a more
comprehensive tool, Glasnost [9], that compares the maximum
throughput of an application flow (e.g. BitTorrent, YouTube,
etc) to that of a control flow whose packets are the same
as in the application flow except for their payload, which is
randomized. The packets of the two flows are interleaved so as
to experience the same network conditions and are replayed
to a server. This technique expects traffic differentiation to

happen at the application layer, by means of deep packet
inspection, and to result in lower throughput for the affected
application. ChkDiff is also able to detect such cases, since
a lower throughput is the result of higher packet delays,
but we don’t make the assumption that a shaper targets a
specific application and that it discriminates according to
packet payloads.

A tool that also focuses on a specific application and control
flow is DiffProbe [10], which attentively analyses the delay
and loss distributions of the two flows during a replaying phase
at the normal application sending rate and a replaying phase at
a higher rate, which attempts to create congestion at possible
shapers along the path. The control flow is crafted much in
the same way as previously described, with the addition of
transport layer fields such as port number being modified
in order to bypass shapers. This tool was soon followed by
ShaperProbe [11], which assumes that differentiation happens
through a token bucket and tries to infer its parameters (buffer
size and processing rate). It sends trains of packets back-to-
back to a server and, if they traverse a shaper, it expects to
observe a level shift in the received rate at the destination.
While both methods undoubtedly provide more insight than
ChkDiff on the characteristics of shapers, they analyze the
behaviour of one application at a time and, even if in principle
they can adapt to any application, they are in practice limited
to the packet traces provided with the executables (i.e. Skype,
in this case). Packsen [13] has a similar approach to DiffProbe,
but it improves on it by using a less computationally expensive
statistical analysis in order to infer the shaper type and



parameters.
The only work so far described in literature to use passive

measurements is Nano [12]. It passively monitors various per-
formance metrics on the existing traffic of a user and compares
them to those of other users whose results were collected
at roughly the same time of the day, with similar machine
setup and geographical position, but who were connected to a
different ISP. With all confounding factors being equal, causal
inference between degraded performance and (alleged) ISP
shaping can be established. This tool has two great advantages:
it is truly application and shaping technique agnostic. Its main
drawback is that, in order for it work, it requires a substantial
number of users for all values of the different confounding
factors mentioned above.

More recently, a theoretical framework for the inference
and localization of neutrality violating links has been pro-
posed [14]. After conducting measurements from different
vantage points traversing the same links, it builds a linear
system of equations in the same fashion as in network perfor-
mance tomography. When the network is neutral, such system
is supposed to be solvable and it infers properties of the
links. When instead a link is not neutral, the measurements
are inconsistent and the system unsolvable. The deployment
of such method would require a large and diverse user base,
where several vantage points perform measurements on the
same set of paths and send the results to a central server, which
would process the data and infer differentiation. Our approach
is instead confined to the network performance experienced
by the end user who runs the tool: no aggregation of results
across users is necessary.

VI. CONCLUSION

In this paper we presented ChkDiff, a novel tool for the
detection of traffic differentiation at the Internet access. After
replaying the user outgoing traffic to the routers at the first
few hops, it applies a statistical test to delays and losses in
order to infer whether any of the replayed flows experienced
degraded performance. We validated ChkDiff in a controlled
environment with different setups and showed its robustness
to ICMP rate limitation.

In the future, we intend to extend ChkDiff so that it includes
a test for downstream traffic, which will be shuffled, spoofed
and replayed to the user from a server. We also need to
encompass in our method those cases of neutrality violations
that do not result in larger delays or losses, such as TCP reset
injection. Finally, we plan to test ChkDiff in the wild and run
it from different vantage points, in order to map the behaviour
of different ISP’s.

ACKNOWLEDGMENTS

This work was funded by the French Government (National
Research Agency, ANR) through the ”Investments for the
Future” Program reference #ANR-11-LABX-0031-01.

REFERENCES

[1] “Dslreports: comcast is using sandvine to manage p2p connections.”
[Online]. Available: http://www.dslreports.com/forum/r18323368-
Com%20cast-is-using-Sandvine-to-manage-P2P-Connections.

[2] “Respect my net.” [Online]. Available: http://respectmynet.eu/view/205
[3] “Respect my net.” [Online]. Available: http://respectmynet.eu/view/196
[4] “I just doubled my pia vpn throughput that i am getting

on my router by switching from udp:1194 to tcp:443,” 2014.
[Online]. Available: http://www.reddit.com/r/VPN/comments/1xkbca/i
just doubled my pia vpn throughput that i am

[5] “Netflix performance on verizon and comcast has
been dropping for months,” 2013. [Online]. Avail-
able: http://arstechnica.com/information-technology/2014/02/netflix-
performance-on-verizon-and-comcast-has-been-dropping-for-months

[6] J. Crowcroft, “Net neutrality: the technical side of the debate: a white
paper,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 49–56, January
2007. [Online]. Available: http://doi.acm.org/10.1145/1198255.1198263

[7] Y. Zhang, Z. M. Mao, and M. Zhang, “Detecting traffic differentiation
in backbone isps with netpolice,” in In Proceedings of the Internet
Measurement Conference (IMC, 2009.

[8] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi, “De-
tecting bittorrent blocking,” in Proceedings of the 8th ACM SIGCOMM
Conference on Internet Measurement (IMC’08), Vouliagmeni, Greece,
October 2008.

[9] M. Dischinger, M. Marcon, S. Guha, K. Gummadi, R. Mahajan, and
S. Saroiu, “Glasnost: Enabling end users to detect traffic differentiation,”
in Proceedings of the 7th Symposium on Networked Systems Design and
Implementation (NSDI), San Jose, CA, Apr 2010.

[10] P. Kanuparthy and C. Dovrolis, “Diffprobe: detecting isp service dis-
crimination,” in Proceedings of the 29th conference on Information
communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press,
2010, pp. 1649–1657.

[11] ——, “Shaperprobe: end-to-end detection of isp traffic shaping using
active methods,” in Proceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, ser. IMC ’11. New York, NY,
USA: ACM, 2011, pp. 473–482.

[12] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar, “Detecting
network neutrality violations with causal inference,” ACM SIGCOMM
CoNext, p. 289, 2009.

[13] U. Weinsberg, A. Soule, and L. Massoulié, “Inferring traffic shaping and
policy parameters using end host measurements,” in INFOCOM, 2011,
pp. 151–155.

[14] Z. Zhang, O. Mara, and K. Argyraki, “Network neutrality inference,”
in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 63–74.

[15] R. Ravaioli, C. Barakat, and G. Urvoy-Keller, “Chkdiff: checking traffic
differentiation at internet access,” in Proceedings of the 2012 ACM
conference on CoNEXT student workshop. ACM, 2012, pp. 57–58.

[16] R. W. Wolff, “Poisson arrivals see time averages,” Operations Research,
vol. 30, no. 2, pp. 223–231, 1982.

[17] R. Ravaioli, G. Urvoy-Keller, and C. Barakat, “Characterizing icmp rate
limitation on routers,” in IEEE International Conference on Communi-
cations (ICC), 2015.

[18] R. Govindan and V. Paxson, “Estimating router icmp generation delays,”
in Passive & Active Measurement (PAM), 2002.

[19] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Comput.
Commun. Rev., vol. 40, no. 2, pp. 12–20, Apr. 2010.

http://www.dslreports.com/forum/r18323368-Com%20cast-is-using-Sandvine-to-manage-P2P-Connections.
http://www.dslreports.com/forum/r18323368-Com%20cast-is-using-Sandvine-to-manage-P2P-Connections.
http://respectmynet.eu/view/205
http://respectmynet.eu/view/196
http://www.reddit.com/r/VPN/comments/1xkbca/i_just_doubled_my_pia_vpn_throughput_that_i_am
http://www.reddit.com/r/VPN/comments/1xkbca/i_just_doubled_my_pia_vpn_throughput_that_i_am
http://arstechnica.com/information-technology/2014/02/netflix-performance-on-verizon-and-comcast-has-been-dropping-for-months
http://arstechnica.com/information-technology/2014/02/netflix-performance-on-verizon-and-comcast-has-been-dropping-for-months
http://doi.acm.org/10.1145/1198255.1198263

	Introduction
	Design of the tool
	Traffic trace
	Flows and trace preparation
	Trace classification into flows.
	Fixed-size packets.
	Shuffling packets.

	Replay
	ICMP rate limitation.
	Testing the first k hops.

	Results analysis
	Delays.
	Losses.
	Repetition of experiments.

	Results Aggregation

	Validation in a neutral scenario
	Validation in a non-neutral scenario
	One shaped flow
	Shaping pipe (Scenario 1).
	Uniform drops (Scenario 2).

	Multiple shaped flows
	Shaping pipe (Scenario 1).
	Uniform drops (Scenario 2).

	ICMP rate limitation
	A more complex scenario

	Related Work
	Conclusion
	References

