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Abstract 
Multi-modal biometrics has numerous advantages over uni-

modal biometric systems. Decision level fusion is the most 

popular fusion strategy in multimodal biometric systems. Recent 

research has shown promising performance of hand based 

biometrics, i.e. palmprint and hand geometry over other 

biometric modalities. However, the improvement in 

performance is constrained by the lack of optimal sensor points 

and fusion strategy. In this paper, we have implemented a 

particle swarm based optimization technique for selecting 

optimal parameters through decision level fusion of two 

modalities: palmprint and hand geometry. The experimental 

evaluation on a database of 100 users confirms the utility of the 

decision level fusion using particle swarm optimization. 

Keywords: modalities, Biometrics, palmprint, hand 

geometry, PSO, fusion, rules. 

 

1. Introduction 
Biometric systems suffer from several problems like 

noisy sensor data, non-universality, lack of individuality, 

non-availability of invariant representations, etc, [1]. 

These problems are responsible for an increase in error 

rates and decrease in system reliability for high security 

needs. Multimodal biometric systems overcome some of 

the problems associated with unimodal biometric systems 

by combining the decisions from different biometrics 

using an effective fusion rule, thus achieving higher 

accuracy and better performance.  

The fusion in multimodal systems can be performed at 

four major levels:  sensor, feature, score and decision. The 

first two levels of fusion are preferable to conduct prior to 

matching, while the other two levels can take place during 

the fusion after matching. Fusion after matching is split up 

into four categories: dynamic classifier fusion, decision 

level fusion, rank level fusion and score level fusion. 

Dynamic classifier selection scheme works upon the idea 

of choosing certain input pattern that is likely to give the 

most correct decisions [2]. The rank level fusion is 

achieved by sorting the possible matches given by each 

biometric matcher in a decreasing order of confidence [5]. 

The score level fusion is performed by combining the 

matching scores of different matchers. It involves the 

matching of scores generated by the features of the 

biometrics by different sensors and fusion of these scores 

by sum, product, and weighed sum rules. The features of 

individual matcher can be classified into one of the two 

classes: Genuine (Accept) or imposter (Reject). These 

classifiers are then used to make decisions. The system 

error rates can be represented in terms of FAR (False 

acceptance rate) and FRR (False rejection rate). The 

decision level fusion comes into action when individual 

matcher presents its decisions based on its input patterns. 

Each classifier under the binary hypothesis gives its 

decision based on its input pattern. The classifier 

decisions are further fused under some rule like, majority 

voting rule [3] or Chair-Varshney [4] fusion rule.   

    Fusion strategies are an important aspect of any 

multimodal biometric system. These strategies help us to 

choose some optimal rule for the fusion of multimodal 

biometrics. Some of the approaches that employ an 

optimal fusion are: Deterministic methods, Probabilistic 

methods, and Evolutionary methods. The deterministic 

methods involve an application of some traditional 

heuristic approaches like, trajectory methods which 

modify trajectories for optimization, penalty methods 

which imposes penalties for optimal decisions, etc. The 

probabilistic methods rely upon probabilistic judgments to 

yield an optimal decision [10]. In comparison to different 

adaptive stochastic search algorithms, Evolutionary 

Computations (EC) techniques [11] generate a set of 

relevant solutions, called population and then find an 

optimal solution through searching and updating the past 

history of the particles (i.e. memories)  of the population. 

Some of the examples of such approaches are: Genetic 

Algorithm (GA), Swarm Intelligence (SI) [8], Ant Colony 

Optimization (ACO), Bacteria Foraging (BF), etc. 

  

2. Background Work     
There has been a lot of interest in multimodal 

biometric systems. Frischholz et al. [7] proposed a 

multimodal system called BioID based on the fusion of 

face, voice and lip movement. They chose different fusion 

strategies in order to vary the security levels. However, 

their algorithm is restricted to only a few fusion rules, 

typically the AND and OR rules. Their system has fixed 

threshold values and hence yields the fixed error rates and 

reduces one of the error rates successfully but not both.  

Jain et al. [17] proposed the integration of more than one 

matcher for the fingerprint verification system and 

developed a decision level fusion for fingerprints by 

combining four different matching algorithms. 

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.252

784

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.252

784

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.252

783

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.252

783

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.252

783



 Despite proven efficiency of multimodal fusion, only 

few works have been reported till date. Moreover attempts 

on decision level fusion using optimization techniques 

based on social behavior of individuals are comparatively 

new. Kalyan et al. [9] developed an adaptive multimodal 

biometric management algorithm for multisensory fusion 

by combining biometric modalities. This algorithm can 

adaptively select the optimal Bayesian fusion rule as well 

as the individual sensor operating points. The algorithm 

not only reduces both error rates but also yields a broad 

range of fusion rules to combine the biometric. However 

for the experimental evaluation, they used simulated data 

and generated the Gaussian distribution using mean and 

standard deviation of the genuine and imposter scores. 

The present work is influenced by this approach. 

 

3. The proposed modalities  
The biometric modalities considered in the paper are 

palmprint and hand geometry. One of the key objectives 

of this work is to evaluate the usage of palmprint and hand 

geometry for the decision level multimodal fusion. 

Despite the recent popularity of palmprint based systems 

[19], there have been no attempts on PSO based decision 

level fusion. We therefore investigate the possible uses of 

palmprint and hand geometry for the adaptive multimodal 

biometric management algorithm (AMBMA) described in 

[9]. Each biometric involves feature extraction, matching, 

and decision making. The PSO algorithm fuses the single 

modality decisions. 

 

3.1. Palmprint  
The palmprint features employed in this work are 

extracted using Discrete Cosine Transform (DCT). The 

palmprint image database from 100 users, with 10 samples 

per user, is used to show the performance of the fusion. 

The discrete cosine transform based 144 features from 

each of the palmprints, using 24 × 24 pixels block with an 
overlapping of 6 pixels, are extracted. The feature 

extraction from each of these 300 × 300 pixels palmprint 

images is similar to that in [18]. These features are then 

used to calculate genuine and imposter scores using 

similarity measure and by taking the first five images for 

training and the rest five for testing for each user. The 

error rates are generated using different threshold values.  

 

3.2. Hand Geometry   
Hand geometry is the geometry of the hand image with 

palm and fingers. The features of the hand geometry are 

represented by the length of fingers, distances between 

knuckle points, height and thickness of the hand and the 

fingers etc.  This is an important biometric in multimodal 

fusion as it is extremely user friendly  and requires a very 

low cost acquisition system. The hand geometry database 

consists of 100 users, with 10 images each having 23 

extracted features. The genuine and imposter scores are 

calculated using distance similarity. The error rates are 

generated by setting different thresholds values. 

         

4. Decision Making  
 A classifier can make its decision in binary mode 

according to the hypothesis testing approach. Let the 

stored biometric template be represented by T and the 

input template for authentication be represented by I. The 

null and the alternate hypothesis are:   

             H0:  T≠I the person is an imposter.                    (1) 

             H1:  T=I the person is genuine.  
   

The two associated decisions denoted by: 

 si= 0, the person is an imposter.                                                                           

 si = 1, the person is genuine.                             (2)  

The most likely decisions are genuine acceptance and 

imposter rejection.  These are difficult to realize in 

practice. Hence the accuracy in decisions is specified in 

the terms of error rates: False rejection rate (FRR) and false 

acceptance rate (FAR). These terms are defined in terms of 

conditional probabilities as:   

              FAR i
 = P(si=1/H0).                                           (3) 

               FRR i
 = P(si =0/H1).                                          (4)   

The decision concerning a person’s genuineness is made 

through the following likelihood ratio test: 

                i 1

i 0

P(s /H )

P(s /H )
≷

1

0
i

i

s

s

=
= λi.                                           (5) 

where, iλ  is an appropriate threshold that should be set 

depending upon sensor’s performance criteria.  

 

4.1. Binary Fusion 
The decisions made by the biometric sensors are binary 

based on their presence or absence and hence they need to 

be fused by some binary fusion rule. Let N be the number 

of sensors and their binary decisions be dented by si, i= 

1,2,3,….,N. The binary decisions are given by: 

     si  =0  if  i
th
 sensor decides for H0. 

              =1 if  i
th
  sensor decides for H1.                    (6) 

All the decisions made by sensors are treated as binary 

strings of length: L=log2(p).                                            (7) 

where, p= 
N

22 is the number of possible rules for N 

sensors. The fusion rule Ri is an integer of length L 

varying from 0 1iR p≤ ≤ −  For N input sensors the output 

is a fusion rule as shown in Fig. 1.  The final decision Ri 

can be made in p possible ways and is subject to the 

desired performance. The most frequently used fusion 

rules are AND rule and OR rule [6]. In the AND rule the 

output decision is 1 if and only if all the input decisions 

are one.  
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            R2 = 1   ∀ ∧  si =1.                   (8) 

         = 0 otherwise.                                             

In the OR rule the output decision is 1 if any one of the 

input sensor’s decision is 1: 

            R8 = 1   ∀  ∨ si =1. 

                 = 0   otherwise.                                              (9) 

The 16 fusion rules for 2 sensors are shown in Table 1. 

The rule 2R  represents the AND rule while the rule 8R  

represents the OR rule. The rule 1R  is selected when all 

the decisions are zero, i.e. all modalities rejected and the 

rule 16R  is selected when all modalities accepted. The 

rule 3R  gives the acceptance of the first sensor while the 

rule 7R  accepts the second sensor.  

 

                  Table1. Fusion rules for two sensors 

1s  2s  1R  2R  3R  4R  5R  6R  7R  

0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 1 1 

1 0 0 0 1 1 0 0 1 

1 1 0 1 0 1 0 1 0 

8R  9R  10R  11R  12R  13R  14R  15R  16R  d  

0 1 1 1 1 1 1 1 1 0d  

1 0 0 0 0 1 1 1 1 1d  

1 0 0 1 1 0 0 1 1 2d  

1 0 1 0 1 0 1 0 1 3d  

 

4.2. Multi-Modal Fusion 
If N=3, p=256 requires many rules. To circumvent this 

problem, two-modal fusion is extended to the case of 

multi-modal fusion. Let 1
iR be the fusion rule selected for 

the two sensors 1s and 2s . Consider now the availability of 

a third sensor 3s . With 1
iR and 3s we can generate the 

second- level 16 fusion rules denoted by 2
iR . Out of this 

one fusion rule is selected by optimization technique. 

Taking the selected fusion rule and the fourth sensor 4s we 

form the next level 16 combinations and then select one 

from them. Hence, this procedure which may be coined 

“hierarchical” is continued for any number of sensors.  

The burden of computation is considerably reduced each 

time dealing with only 16 rules. With this, we require only 

48 rules to be checked for 4 modalities. However this 

approach is suboptimal, but for optimality we need to try 

the combination of input error rates. 

 

4.3. Optimal Fusion Rule 
One of the tasks of decision level fusion is to select an 

optimal fusion rule that minimizes the total errors of the 

system. There are 16 possible fusion rules corresponding 

to two sensors but most of them have no significant role to 

play in the improvement of performance. Only monotonic 

rules need to be selected as they are shown to yield better 

performance experimentally [9]. The most frequently used 

rules are AND ( 2R ) rule and OR ( 8R ) rule. The worst 

performing rule is NAND rule (
9R ) which is rarely of 

interest. The individual error rates fused by AND rules are 

as follows:  FAR=FAR 1
* FAR 2

 and 

                   FRR=FRR 1
+FRR 2

-FRR 1
*FRR 2                               (10)            

This rule can improve FAR but degrades FRR and hence 

GAR. The OR rules can be opted for the reverse effect. 

Fusion by OR rule leads to: 

 FAR=FAR 1
+ FAR 2

 - FAR 1
* FAR 2

     

              FRR=FRR 1
*FRR 2

                                             (11) 

In Table 1, s1 is the decision of the first sensor while s2 is 

the decision of the second sensor. The global decisions id   

arise from the fusion rules in Table 1.  These global 

decisions result in the global error rates given by: 

               GFAR=

1

0 1
j

NL

i AR

i j

d φ
−

= =

 
× 
 

∑ ∏                            (12)                                             

where, 
jARϕ = 1-FAR j  (sj=0). & 

jARϕ =  FAR j
 (sj=1). 

 GFRR =      ( )
1

1

1
j

NL

i RR

i o j

d ϕ
−

= =

 
 − ×
  
 

∑ ∏                  (13) 

where,  
jRRϕ = FRR j

(sj=0)   &  
jRRϕ  = 1-FRR j    

(sj=1) 

These global error rates can be evaluated by any fusion 

rule like majority voting rule or Chair-Varshney fusion 

rule to arrive at an optimal decision. 

 

5. Need for Optimization 
The goal of a fusion system is to minimize the errors, 

FAR and FRR by using their weighted sum. The design of 

the system is such that it should itself choose the optimum 

decision fusion rule (Table 1) using the Bayesian 

framework. The fusion rules are used to calculate global 

error rates GFAR and GFRR, which in turn are used to 

calculate the weighted sum in Eqn. (14), where the 

weights are the associated costs with these errors. The 

optimization technique must determine the optimal sensor 

points adaptively. The objective function E required to 

optimize is defined as follows: 

      Minimize   E  = CFA *GFAR+ CFR*GFRR                 (14)                                                                                              

                CFR = 2-CFA        

CFA is the cost of falsely accepting an imposter individual. 

CFR is the cost of falsely rejecting the genuine individual.  

The error rates (FAR and FRR) for both sensors become 

input to the optimization technique. The objective 

function E should be minimized at each step by selecting 

one set of error rates. The optimal values correspond to 

the minimum E. In this work, particle swarm optimization 
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technique is used to arrive at the optimal fusion rule and 

sensor points (error rates).  

  

5.1. Particle Swarm Optimization 
Particle swarm optimization (PSO) was proposed by 

Eberhart and Kennedy in [13] for the solution of 

optimization problems using social and cognitive behavior 

of swarm. In PSO each particle has some velocity 

according to which it moves in the multi-dimensional 

solution space; and memory to keep information of its 

previous visited space. Hence, its movement is influenced 

by two factors: the local best solution due to itself and the 

global best solution due to all particles participating in the 

solution space. The algorithm is guided by two factors:  

the movement of particles in the global neighborhood and 

the movement in the local neighborhood. In the global 

neighborhood each particle searches for the best position 

(solution) and towards the best particle in the whole 

swarm while in the local neighborhood, each particle 

moves towards the best position (solution) towards the 

best particle in the restricted neighborhood (swarm). 

During an iteration of the algorithm, the local best 

position and the global best position are updated if better 

solution is found  and the process is repeated till the 

desired results are achieved or specified number of  

iterations are exhausted.   

Let us consider an N-dimensional solution space. The 

i
th
 particle of the swarm can be represented as an N-

dimensional vector, 1 2( , ,.., )i i i iNX x x x=  such 

that id idX x= , where the first subscript denotes the particle 

number and the second subscript denotes the dimension. 

The velocity of this particle is denoted by a N-

dimensional vector, 1 2( , ,.., )i i i iNV v v v= such that id idV v= . 

The memory of the previous best position of the particle is 

represented by an N-dimensional vector 

1 2( , ,..., )i i i iNPos p p p= such that id idPos p= and the global 

best position by 1 2( , ,..., )g g g gNPos p p p=  such 

that gd gdPos p= . The particle’s motion is affected by its 

own best position and global best position.   

 

The velocity of a particle at k th iteration is updated by:  

      ( ) ( )1
1 2

k k k k
id id id id gd idV V r Pos X r Pos Xω α β+ = + − + −        (15)                                                                                     

The corresponding position of the particle is updated by: 

 1 1k k k
id id idX X V+ += +                                            (16) 

where, i = 1,2,3…..M; M being the number of swarm and 

d=1,2,3,…..N is the dimension of a swarm; α  and β  are 

the positive constants, called cognitive parameter and 

social parameter respectively. These indicate the relative 

influence of the local and global positions. 
1r and 

2r are 

the random numbers distributed uniformly in [0 1]; and k 

=1,2,3…is the iteration step.  ω  is called inertia weight. 

In order to apply PSO approach to the fusion problem, we 

take the first N dimensions to be sensor thresholds iλ that 

are continuous and (N+1)
th
 dimension for the fusion rule, 

( 1)i N iX R+ = . With this each particle will have (N+1) 

dimensions; so that 1 2( , ,..., , )i i i iN iX Rλ λ λ= . This is an 

integer model because iR  takes an integer value. It suffers 

from slow convergence hence the need for binary PSO 

algorithm where FAR are evolved instead of thresholds for 

each of the sensors, i.e., ( , )
ii AR iX F R= . The thresholds 

are computed using FAR. The binary PSO not only leads to 

the optimal convergence with high accuracy but is also 

capable of making binary decisions [12] unlike others.   

  

 5.2. Binary PSO 
The original PSO is for continuous population but is later 

extended by Kennedy and Eberhart [13] to the discrete 

valued population. In the binary PSO thus emerged, the 

particles are represented by binary values (0 or 1). The 

velocity and particle updating for binary PSO are the same 

as in the case of continuous one. However, the final 

decisions are made in terms of 0 or 1. Sigmoid function in 

[15] is used to restrict the decision in the range [0,1] : 

  1

1 1
  
1

k

k

ri v
v

e
+

+

−
=

+
                                       (17) 

The particles change positions called states from 0 to 1 or 

vice versa satisfying the condition: 

            1 1k
iX + =  if 1k

rir v +<  

         = 0   otherwise.                              (18) 

where, r is the random number generated in the range [0, 

1]. Now the binary fusion rule comes handy to fuse the 

decisions given by the individual matchers. The optimal 

fusion rule is selected with the use of binary PSO that sets 

the appropriate parameters. We will now discuss the effect 

of parameters on the algorithm.   

  

5.3. Parameters of PSO 
The convergence and performance of PSO are largely 

dependent upon parameters chosen. ω is termed as inertia 

weight [15] and is incorporated in the algorithm to control 

the effect of the previous velocity vector of the swarm on 

the new one. It facilitates the trade-off between the local 

and the global exploration abilities of the swarm and may 

result in less number of iterations of the algorithm while 

searching for an optimal solution. It is experimentally 

found that inertia weight ω  in the range [0.8, 1.2] yields 

a better performance [14]. It is initially set to 1.2 and then 

decreased to zero during the subsequent iterations. This 

scheme of decreasing inertia weight is found to be better 

than the fixed one [18]. It controls the rapid motion of the 

particle while searching for optimum from region to 

region.  The velocity lies in the range [-Vmax , Vmax ] where  
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- Vmax  denotes the lower range and Vmax  is the upper 

range of the motion of the particle.  

 The roles of  α  and β are not so critical in the 

convergence of PSO, however, a suitably chosen and fine 

tuned value can lead to a faster convergence of the 

algorithm. A default value of α = β = 2 is suggested for 

general purpose, but somewhat better results are found 

with α = β  = 0.5 [19]. However, the values of cognitive 

parameter, α  larger than the social parameter β  are 

preferred from the performance point of view with the 

constraint α  + β  ≤  4 [16]. In the present work, we fix 

α = 0.9 and β  = 1. The parameters 1r and 2r  used to 

maintain the diversity of the population in (15). 

 The implementation of the binary PSO is a bit 

different from the continuous one. So switching over to 

binary PSO requires re-setting of the parameters. This is 

because the higher value of Vmax   works well for better 

exploration in the case of continuous PSO whereas the 

lower value of Vmax will do the same in the case of binary 

PSO [15]. To overcome this situation we take Vmax  = 1 

thus specifying the range [-1, 1] for the motion of the 

particle in the search space.                                                               

 

5.4. Hybrid PSO 
For biometric fusion we need optimized decisions from 

different sensors and a fusion rule to combine them. As 

the fusion rules are binary we need binary PSO for better 

convergence. However we use a hybrid type of PSO 

algorithm to reap benefits from both types. The 

continuous PSO is used for calculating the updates of the 

position and velocity of a particle and the binary PSO for 

the purpose of arriving at a fusion rule. Next the global 

error rates are calculated using the fusion rule. These error 

rates are further used to calculate the weighted sum 

serving as the objective function. The error rates and the 

fusion rule corresponding to the minimum weighted sum 

of all the sensors constitute the output of the algorithm.          

 

5.5. Decision Rule 
Once the optimal sensor points (error rates) are 

selected by the optimization techniques, the next step is to 

make use of decision making using these points as inputs. 

Here we use Chair-Varshney fusion rule for decision 

making, which is defined as: 

1

1
log (1 ) log log

1 2

i i

i i

N
RR RR FA

i i
AR AR FAi

F F C
s s

F F C
=

    −  
    + −      − −       

∑ ¤  (19)  

The weighted sum given by (19) is then compared with a 

threshold on the r.h.s. The output decision is 1 if the 

weighted sum is greater than the threshold and 0 

otherwise. A user is authenticated if the output is 1 

otherwise rejected. For 3 modalities Eqn. (19) has to be 

repeated with 1
iR and 3s by taking the values of 

1 1 1, ,
i iAR RR FAF F C .Similar is the case with 4 modalities. 

The following algorithm adaptively selects the weights 

such that the cost function is minimized.  

Adaptive Multimodal Biometric Management (AMBM) 

algorithm 

1. Calculate the error rates (FAR & FRR) by fixing 1000 

thresholds for each modality. 

2. Initialize the error rates and costs (CFA and CFR) to 

feed into the PSO algorithm for optimal values. 

3. Run the PSO algorithm till the optimal decisions and 

the corresponding fusion rules are obtained. 

4. Fuse the decisions using Chair-Varshney fusion rule 

for each of the cost. 

5. Repeat the process till the desired performance is 

achieved.   

6. Results of Implementation  
The proposed fusion approach is implemented on real data 

consisting of palmprint and hand geometry images. The 

database is made up of 100 users, each providing 10 

images. For the experimental evaluation the first five 

images from each user are taken as a training set and the 

rest five as a testing set. We have generated the genuine 

and imposter scores using distance similarity. The error 

rates are generated by setting some thresholds. These error 

rates along with the random numbers are treated as 

particles in PSO optimization technique and optimized 

using the algorithm. We have considered 10 particles for 

optimization.  

 
Fig. 1. The Combined ROC of Palm and Hand Geometry 

 

Figure 1 shows the performance of both the modalities 

on the same curve.  The objective function for the PSO 

algorithm is given in (14). We vary the cost of CFA from 

0.1 to 1.9 and run the PSO algorithm 100 times for the 

same cost with 1000 iterations per run.  It is observed that 

if CFA is less than 1, the OR rules is selected by the 

algorithm most of the times. On the other hand for CFA 
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more than 1.5 AND rule is selected most of the times. For 

the costs between 1 and 1.5 both AND and OR rules are 

selected equally, indicating that for this cost both rules 

perform equally well. Figure 2 shows ROC due to both 

AND and OR rules. 

 
Fig.2 The combined ROC of AND and OR rule 

 

The ROC shown above has very less improvement in 

terms of error rates. We recalculate the optimal sensor 

points using PSO and fusion strategy by varying CFA. This 

is done in each case by combing them using AND and OR 

rules. Fig.3 shows the combined ROC for all the 12 points 

(0.1 to 1.9). It can be seen that in OR case the least GAR 

(i.e. 1-FRR) is 96% while for AND case the least FAR is 10
-

6 %. Note that AND fusion rule improves GAR but 

deteriorates FAR whereas OR rule improves FAR but 

deteriorates GAR as can be seen from Fig. 3. For the given 

cost Chair-Varshney rule is verified thus demonstrating 

the applicability of decision level fusion approach using 

PSO. The calculated global FAR and FRR of both the 

sensors are used as input to the Chair-Varshney decision 

rule. The final decision is subject to satisfaction of fusion 

rules. 

 
Fig.3 ROC for AND and OR rule with different CFA. 

                                                                                                   

7. Conclusions 
A particle swarm optimization based decision level 

fusion of palmprint and hand geometry biometrics is 

presented. The sensor points and fusion rules serve as the 

given input to the PSO algorithm. The algorithm 

automatically selects the optimal sensor points and one of 

the 16 described fusion rules to fuse the decisions made 

by individual matchers. Further the global decisions are 

computed using Chair –Varshney rule. Extending the 

fusion to more than two modalities is the future work. 
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