
ar
X

iv
:0

80
2.

25
43

v1
 [

cs
.N

I]
 1

8
F

eb
 2

00
8

Self-* overload control for distributed web systems
Novella Bartolini, Giancarlo Bongiovanni, Simone Silvestri

Department of Computer Science
University of Rome “Sapienza”, Italy

Email: {novella,bongiovanni,simone.silvestri}@di.uniroma1.it

Abstract—Unexpected increases in demand and most of all
flash crowds are considered the bane of every web applicationas
they may cause intolerable delays or even service unavailability.

Proper quality of service policies must guarantee rapid reac-
tivity and responsiveness even in such critical situations. Previous
solutions fail to meet common performance requirements when
the system has to face sudden and unpredictable surges of
traffic. Indeed they often rely on a proper setting of key
parameters which requires laborious manual tuning, preventing
a fast adaptation of the control policies.

We contribute an original Self-* Overload Control (SOC) pol-
icy. This allows the system to self-configure a dynamic constraint
on the rate of admitted sessions in order to respect service level
agreements and maximize the resource utilization at the same
time. Our policy does not require any prior information on th e
incoming traffic or manual configuration of key parameters.

We ran extensive simulations under a wide range of operating
conditions, showing that SOC rapidly adapts to time varying
traffic and self-optimizes the resource utilization. It admits as
many new sessions as possible in observance of the agreements,
even under intense workload variations. We compared our
algorithm to previously proposed approaches highlightinga more
stable behavior and a better performance.

I. I NTRODUCTION

Quality of Service (QoS) management for web-based ap-
plications is typically considered a problem of system sizing:
enough resources are to be provisioned to meet quality of ser-
vice requirements under a wide range of operating conditions.
While this approach is beneficial in making the site perfor-
mance satisfactory in the most common working situations, it
still leaves the site incapable to face sudden and unexpected
surges of traffic. In these situations, in fact, it is impossible to
predict the intensity of the overload. The architecture in use,
although over-dimensioned, may not be sufficient to meet the
desired QoS. For this reason, unexpected increases of requests
and most of all flash crowds are considered the bane of every
internet based application, and must be addressed in terms of
performance control rather than capacity sizing.

Due to the ineffectiveness of static resource over-
provisioning, several alternative approaches have been pro-
posed for overload management in web systems, such as dy-
namic provisioning, dynamic content adaptation, performance
degradation and admission control. Most of the previously
proposed works on this topic rely on laborious parameter
tuning and manual configuration that impede fast adaptation
of the control policies. This work is motivated by the need
to formulate a fast reactive and autonomous approach to
admission control.

We contribute an original Self-* Overload Control policy
(SOC) which enables some fundamental self-* properties such
as self-configuration, self-optimization, self-protection. In par-
ticular, the proposed system is capable of self-configuringits
component level parameters according to performance require-
ments. At the same time it optimizes its own responsiveness
and self-protects from overload.

The proposed policy is to be adopted by web cluster
dispatching points (DP) and does not require any modification
of the client and/or server software. DPs intercept requests
and make decisions to block or accept incoming new sessions
to meet the service level requirements detailed in a Service
Level Agreement (SLA). Decisions whether to accept or refuse
new sessions are made on the basis of a dynamically adjusted
upper limit on the admission rate. This limit is updated and
kept consistent with the system capacity and time varying traf-
fic behavior, measured by an apposite self-learning, monitor
module. Such module performs an autonomous and continuous
measurement activity that is of primary importance if human
supervision is to be avoided.

Our proposal is oriented to the management of web based
traffic, and for this reason provides admission control at
session granularity. Nevertheless, it does not require anyprior
knowledge on the incoming traffic, and can be applied to non-
session based traffic as well.

Unlike previous works, our approach is rapidly adaptive, and
also capable to deal with flash crowds which are detected as
soon as they arise, with a simple change detection mechanism,
that permits a fast adaptation of the rate of decision updates.
The inter-decision time becomes increasingly shorter as traffic
changes become sudden and fast, as in presence of flash
crowds. This interval is set back to longer values when the
workload conditions return to normality.

Although inspired by our previous work [5], this proposal
is original as it includes the anomaly detection and decision
rate adaptation mechanisms necessary to perform flash crowd
management. It also provides a considerably improved mea-
surement validation system as detailed in section IV.

We designed a synthetic traffic generator, based on an indus-
trial standard benchmark SPECWEB2005, which we used to
run simulations under a wide range of operating conditions.
We compared SOC to other commonly adopted approaches
showing that it outperforms the others in terms of performance
and stability even in presence of flash crowds. Indeed SOC
does not show the typical oscillations of response time due to
the over-reactive behavior of other policies.

http://arxiv.org/abs/0802.2543v1

A wide range of experiments has been conducted to test the
sensitivity of the proposed solution to the configuration ofthe
few startup parameters. Experiments show that the behavior
of our policy is not dependent on the initial parameter setting,
while other policies achieve an acceptable performance only
when perfectly tuned and in very stable scenarios.

The paper is organized as follows: in section II we formulate
the problem of overload control in distributed web systems.In
section III we sketch the basic actions of the proposed overload
control policy. In section IV we introduce our algorithm in
deeper details. In section V we introduce some previous ap-
proaches that we compared to ours in section VI. Section VII
outlines the state of the art of admission control in distributed
autonomic web systems while section VIII concludes the paper
with some final remarks.

II. T HE PROBLEM

We tackle the problem of admission control for web based
services. In this context, the user interaction with the appli-
cation typically consists of a sequence of requests forming
a navigationsession. As justified by [10], [9] we make the
admission control work at session granularity.

Since the system should promptly react to traffic anomalies,
any type of solution that requires human intervention is to be
excluded. For this reason we address this problem by applying
the autonomic computing [1] design paradigm.

We consider a typical multi-tier architecture [8], [22]. Each
tier is composed by several replicated servers, while a front-
end dispatcher hosts the admission control and dispatch mod-
ule.

Each request may involve execution at different depths
in the tiered architecture. This results in a differentiation
of requests into several categories whose average processing
times may differ significantly.

The quality of service of web applications is usually regu-
lated by a SLA. Although our work may be applied to several
formulations of SLA, when clusters of heterogeneous tiers are
considered, the most appropriate formulation is the following,
as we argue in [4]:

• RT i
SLA : maximum acceptable value of the 95%-ile of

the response time for requests of typei ∈ {1, 2, . . . ,K},
whereK is the number of cluster tiers.

• λSLA: minimum guaranteed admission rate. Ifλin(t) is
the rate of incoming sessions, andλadm(t) is the rate of
admitted sessions, this agreement imposes thatλadm(t) ≥
min{λin(t), λSLA}

• TSLA: observation interval between two subsequent
checks of the satisfaction of the SLA constraints.

Meeting these quality requirements under sudden traffic
variations requires novel techniques that guarantee the neces-
sary responsiveness. In such cases the respect of the agreement
on response time is a challenging problem. Some other perfor-
mance issues arise as well, such as the presence of oscillatory
behavior, that typically affects some over-reacting policies, as
we show in the experimental section VI.

III. T HE IDEA

We designed SOC, a session based admission control policy
that self-configures a limit on the incoming rate of new
sessions. Such limit corresponds to the maximum capacity of
the system to sustain the incoming traffic without violatingthe
agreements on quality. It can not be evaluated off-line because
it depends on the particular traffic rate and profile that the
system has to face.

Since we do not want to rely on any prior assumption on the
incoming traffic, we introduce a monitor module that makes
the system capable to learn its capacity to face each particular
traffic profile as it is when it comes. For this reason we make
the system measure and learn the relationship between the
rate of admitted sessions and the corresponding measure of
response time. By accurately processing raw measures, the
system can “learn” which is the maximum session admission
rate that can be adopted in observance of the SLA require-
ments. This learning activity introduces some issues such as
how to time performance control, how to aggregate measures
and how to detect changes, that will be dealt in detail in
the following sections. We just mention that as soon as a
change is detected the proposed system varies the rate of
performance controls to guarantee at the same time accuracy
and responsiveness.

According to our proposal the admission controller operates
at the application level of the protocol stack because session
information is necessary to discriminate which requests are to
be accepted (namely requests belonging to already ongoing
sessions), and which are to be refused (requests that imply
the creation of a new session). The cluster dispatcher can
discriminate between new requests and requests belonging to
ongoing sessions because either a cookie or an http parameter
are appended to the request. This technique ensures two impor-
tant benefits: 1) the admission controller can be implemented
on DPs, and does not require any modification of client and
server software, 2) the dispatcher can immediately respond
to non admitted requests, sending an “I am busy” page to
inform the client of the overload situation. This avoids that
the expiration of protocol time-outs affects the user perceived
performance and mitigates the retrial phenomenon.

IV. SELF-* OVERLOAD CONTROL (SOC) POLICY

SOC works in two modalities, namelynormal modeand
flash crowd management mode, switching from one to the
other according to the traffic scenario being considered. During
stable load situations the timing of performance control is
regularly paced at time intervals of lengthT SOC

AC . If a sudden
change of the traffic scenario is detected, the system entersthe
flash crowd management modality during which performance
controls and policy updates are made more often in order to
avoid a system overload.

SOC provides a probabilistic admission control mechanism
which filters incoming sessions according to an adaptive rate
limit λ∗. In order to properly calculateλ∗, the monitor
module takes measures to analyze the relationship between
the observed Response Time (RT) and the rate of admitted

init;

normal_mode:

while ((t < T SOC
AC) AND !change_detection()){

n=n+1;

for each session arrival {

probabilistic_admission_control;

collect_raw_measures;

}

} /* end while

if change_detection()

goto flash_crowd_mode;

else {

update_stats;

update_curve;

update_admission_probability;

t=0;

goto normal_mode;

}

Fig. 1. Pseudo-code of SOC (normal mode)

sessions. The value ofλ∗ is then calculated as the highest rate
that the site can support without violating the constraintson RT
defined in the SLAs. The admission control policy varies the
admission probability according to a prediction of the future
workload and to the estimated value ofλ∗.

The behavior of our policy under normal mode is described
in figure 1, while figure 2 describes the flash crowd manage-
ment mode.

For sake of simplicity, we leave the description of the
parameter initialization (instructioninit) at the end of the
algorithm description, in section IV-G.

Normal Mode
At each iterative cyclen, the admission controller accepts

new sessions with an autonomously tuned probabilityp(n)
and collects related raw measures of response time and session
arrival rate (more details on these phases are given in sections
IV-A and IV-B).

If no abrupt change is detected in the demand intensity, the
while loop of the normal modality is repeated everyT SOC

AC

seconds.
At the end of each cycle execution, the system pro-

cesses the raw measures to calculate some statistical metrics
(update_stats instruction), such as the mean session ar-
rival rate λin(n), the mean session admission rateλadm(n)
and the 95%-ile of response timeRT i(n), i ∈ {1, 2, . . . ,K}.
Details on the statistics update instruction are give in section
IV-C.

The execution of theupdate_curve instruction is of
primary importance to determine the autonomic behavior of
our policy. The system constructs the function between the ob-
served traffic rateλadm(·) and the corresponding response time
for theK types of requests being servedRT i(·). In paragraph
IV-D we give complete details regarding the construction of

flash_crowd_mode:

for each session arrival {

update_stats; /* calculates λin(n), ..., and S

n++;

update_admission_probability;

probabilistic_admission_control;

collect_raw_measures;

measure λist;

if λist < λ∗ goto normal_mode

else goto flash_crowd_mode;

}

Fig. 2. Pseudo-code of SOC (flash crowd management mode)

this function by means of the statistical metrics calculated in
the previousupdate_stats instruction.

Before starting a new admission control cycle, the algorithm
evaluates a new limitλ∗(n) on the admission rate, and
calculates the new session admission probability accordingly,
as detailed in section IV-E.

While in normal mode, if a flash crowd occurs and a sudden
surge in demand is detected, the system enters the flash crowd
management mode. It persists in this modality as long as the
traffic pattern keeps on varying significantly.

Flash Crowd Management Mode
The flash crowd management mode provides that statistical

metrics are updated every time a new session arrives, thus
ensuring a perfect adaptivity (update_stats instruction).
Although statistical metrics are updated at each session arrival,
no learning mechanism is activated in flash crowd management
mode, i.e. there is noupdate_curve instruction, due to the
high variability of the incoming traffic.

The policy returns to normal mode only when the admission
probability has been properly adapted to ensure that the in-
stantly measured session admission rateλist is actually below
the limit λ∗. In this case we can assume the unexpected surge
is under control and the policy can return to normal mode,
during which performance controls are paced at a slower and
regular rate.

In the following paragraphs we discuss the details of the
instructions provided in figure 1 and 2.

A. Instructionprobabilistic_admission_control

Purpose of this instruction is to limit the incoming rate to
λ∗(n) by means of a probabilistic admission control. New
sessions will be admitted with probabilityp(n), initially set
to 1 and autonomously tuned as described in section IV-E on
the basis of a forecast on the session arrival rate for the next
iteration.

B. Instructioncollect_raw_measures

This instruction enables the collection of raw measures of
the RT of all requests belonging to the currently admitted
session. We defineT n

i as the set of raw measures of response
time for requests of typei, i ∈ {1, 2, . . . ,K} during the time
interval [tn, tn+1).

C. Instructionupdate_stats

At the execution of this instruction raw measurements are
processed to calculate some statistical parameters:

• RT i(n), that is the95%-ile of the setT n
i , for i ∈

{1, 2, . . . ,K};
• λin(n), that is the average incoming rate of new sessions

observed during the time interval[tn, tn+1);
• λadm(n), that is the average rate of admitted sessions

during the time interval[tn, tn+1).

In order to ensure a proper system reactivity, all statistical
metrics are calculated over the setS composed by the last
min{⌊λin · t⌋; ⌊λ∗ · T SOC

AC ⌋} admitted sessions. In normal
mode, this allows an early adaptation of the admission control
probability to a possibly increased demand even if it has not
yet caused the trigger of the change detection mechanism. In
flash crowd mode this ensures that the rate limit is calculated
on the basis of the smallest time window that still guarantees
a sufficiently numerous set of raw measures.

D. Instructionupdate_curve

This instruction provides the self-learning activity of our
algorithm. It allows the system to discover the function that
relates the rate of admitted sessions and the RT of each tier.

The statistics collected with theupdate_stats instruc-
tion give the system the following information: during the time
interval [tn, tn+1), a rate ofλin(n) new sessions reached the
DP; only a rate ofλadm(n) of those sessions was actually
served, and the95%-ile of the response time for typei requests
wasRT i(n).

A statistical metric calculated from samples of raw mea-
sures as described in paragraph IV-C, taken during a single
iteration, is not reliable enough for two reasons: first, the
workload is subject to variations that may cause transient
effects; second, the number of samples may not be sufficient
to ensure an acceptable confidence level. The use of longer
inter-observation periods may allow the collection of more
numerous samples, but it is impossible to define a sufficiently
long inter-observation period for any possible traffic situation,
and the incoming workload may vary before a sufficiently
representative set of samples is gathered. Moreover too long
inter-observation period may lead to low responsiveness ofthe
admission policy.

The idea at the basis of our proposal is to collect these
statistics under a range of workload levels. At each algorithm
iteration the DP acquiresK pairs (λadm(n), RT i(n)) for i =
1 . . .K, whereRT i(n) is the 95%-ile of request RT measured
at the i-th tier.

Let us consider the set of pairs:
Ri ,

{
(λadm(n), RT i(n)), n ∈ {0, 1, . . .}

}
, where i ∈

{1, 2, . . . ,K}, and let us partition the Cartesian plane into
rectangular intervals of lengthlλ along theλadm axis, as shown
in figure 3.

For every interval[(k − 1)lλ; klλ), with k = 1, 2, . . . we
define P i

k = {(λadm, RT i)|λadm ∈ [(k − 1)lλ; klλ)}. Then
we calculate thebarycenterBi

k = (λB
k , RTBi

k) of the k-th

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8

95
%

-il
e

R
T

 (
se

c)

Average Session Arrival Rate (session/sec)

95%-ile RT
Barycenters

RT Curve
RTSLA

Fig. 3. Curve set construction, regular slice barycenters

interval as the point with average coordinates over the setP i
k.

An interval has no barycenter ifP i
k = ∅.

Figure 3 shows the collected statistics taken at run-time at
the database tier of an example scenario. It also points out the
calculated barycenters for each interval.

Every time a new point is added to a setP i
k, the monitor

module updates the values of the barycenter coordinates,
standard deviation and cardinality of the set being modified.
Notice that the update of such values is performed for only one
set at a time (set that have not been modified do not require
statistic updates) and is incrementally calculated with respect
to a synthetic statistical representation. Such representation
permits to avoid computational and storage costs that would
be afforded if all the pairs had to be considered.

Barycenters calculated with a standard error higher than
20% are discarded while the others are considered sufficiently
reliable and are included in corresponding listsLi, where
i ∈ {1, 2, . . . ,K}. The elements of such lists are ordered on
the basis of the first coordinateλadm.

Since we know that the relation betweenλadm and RT i

is monotonically not decreasing, we can assume that if two
subsequent barycenters do not satisfy this basic monotonicity
property, the corresponding slices can be aggregated to im-
prove the measure reliability. For this reason, ifLi contains
two adjacent points which do not correspond to growing values
of RT i, the sets of statistics related to the corresponding
intervals are aggregated andLi is updated until it contains
a list of pairs in growing order in both the coordinates, as
shown in figure 4. Notice that this procedure permits a further
validation of the measures, beyond the already performed test
on the standard error value.

After few aggregations, the listLi contains an ordered set of
pairs which can be linearly interpolated to obtain an estimate
of the function that relatesλadm and RT i. Thanks to the
frequent updates, this list is a highly dynamic structure, that
continuously adapts itself to changing workload situations.

The linear interpolation of the points inLi permits to
forecast the response time corresponding to any possible
workload rate.

Notice that the use of common regression techniques as

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8

95
%

-il
e

R
T

 (
se

c)

Average Session Arrival Rate (session/sec)

95%-ile RT
Barycenters

RT Curve
RTSLA

Fig. 4. Curve set construction, aggregated slice barycenters

an alternative to linear interpolation is unadvised, because it
would require a prior assumption on the type of functions be-
ing parametrized for the regression. Experiments we conducted
on different traffic profiles (e.g. by using SPECWEB2005 [20]
and TPC-W [21] oriented traffic generators) show that, apart
from monotonicity, no other structural property is generally
valid for all the possible traffic scenarios. This would make
it difficult to choose the type of regression (polynomial,
exponential, power law) to use.

E. Instructionupdate_admission_probability

The self-constructed setLi described in paragraph IV-D is
linearly interpolated to obtain an estimate of the functionf i(·)
that relatesλadm and the 95%-ile of response time measured at
the i-th tier. Such function is then used to evaluate the highest
session admission rateλ∗ that can be adopted to remain under
the response time constraints defined in the SLA.

Thanks to this estimation, the DP can configure the session
admission probability according to a forecast of the incoming
workload.

The algorithm is based on a prediction of the session
arrival rate λ̂in(n) for the next iteration interval[tn, tn+1).
It assumes that an esteem of the current session arrival rate
λ̂in(n) can be based on the incoming session rateλin(n− 1)
observed during the previous interval[tn−1, tn), that is,λ̂in(n)
= λin(n− 1). The algorithm is sufficiently robust to possibly
false predictions, as they will be corrected at the next iteration,
making use of updated statistics.

New sessions will be admitted with probabilityp(n) =
min{1, λ∗(n)/λ̂in(n)}. This way, if the incoming rate of new
sessions in the present time interval is the same observed in
the previous, the upper limit on the total incoming rate of new
sessions is met.

The on-line self-tuning of the admission probability has
several benefits. On the one hand the highest possible rate of
incoming sessions is admitted, optimizing the system utiliza-
tion. On the other hand it prevents the system from overload,
by quickly reducing the admission probability as the traffic
grows.

The execution of this instruction starts with a test to verify
the validity of the rate limitλ∗(n−1) adopted in the previous

time interval. To this extent we define two types of error in
the evaluation ofλ∗(n− 1):

• error−: The system admitted new sessions with proba-
bility p(n − 1) but the incoming rate was unexpectedly
greater thanλ∗(n − 1). In such a situation, if the rate
limit was properly estimated, some SLA limits should
have been violated. In this erroneous situation, although
the rate limit was exceeded, the SLA limits were not
violated. The occurrence of this error depends on a
possible underestimation of the rate limitλ∗(n − 1).
More formally, if λadm(n − 1) ≥ λ∗(n − 1) AND
∀i ∈ 1, 2, . . . ,K RT i < RT i

SLA) thenerror− = true.
• error+: The system admitted new sessions with proba-

bility p(n − 1) and, as expected, the incoming rate was
lower thanλ∗(n−1). In such a situation, if the rate limit
was properly estimated, there should not be any violation
of the agreements. In this erroneous situation, although
the rate limit was not exceeded, a violation of at least one
of the SLA limits was observed. The occurrence of this
error reveals a possible overestimation of the rate limit
λ∗(n − 1). More formally, if (λadm(n − 1) ≤ λ∗(n− 1)
AND ∃i ∈ {1, 2, . . . ,K} s.t. RT i > RT i

SLA) then
error+ = true.

If none of these errors occurred, the upper limit on the rate
of admitted sessions was properly set and there is no need to
change the value of the rate limit. Therefore, in absence of
errors,λ∗(n) = λ∗(n− 1).

If otherwise one of these two types of error has occurred
the value ofλ∗(n−1) needs to be updated. To this purpose the
setLi is linearly interpoled and the resulting functionf i(·) is
inverted in correspondence to the value of the SLA limit on
the 95%-ile of the response timeRT i

SLA. The functionf i(·)
crosses the linet = RT i

SLA in a pointP ∗

i = (λ∗

i (n), RT i
SLA),

whose first coordinate,λ∗

i (n), is the estimated optimal session
admission rate for thei-th tier.

To guarantee the fulfillment of the SLA on each tier, the
optimal admission rate for the next round is set as follows:
λ∗(n) = mini=1,...,K λ∗

i (n).
Notice that at the startup,Li may contain only one point

(the benchmark point described in paragraph IV-D) or several
points located below the SLA constraint. In the first case, the
admission probabilityp(n) is set to 1. In the second case the
linear interpolation between the extreme two points inLi is
prolonged until it crosses the SLA constraint.

F. Functionchange_detection()

This mechanism consists of two joint controls and triggers
only if both of them give a positive result: 1) the number
of sessions admitted during the current execution cycle (we
call it N) exceeds the expectations for a single cycle, that is
(N > λ∗ · T SOC

AC); 2) the current admission rate exceeds the
limit λ∗ by k times the measured standard deviation of the
admitted rate, that is((N/t) > (λ∗ + k · σλ)), where t is
the time elapsed from the start of the current iteration. Notice
that the value ofσλ is calculated at run-time by measuring
the standard deviation of the admitted rateλadm in situations

Boolean change_detection() {

if ((N > λ∗

· T SOC
AC) AND ((N/t) > (λ∗ + k · σλ)))

return TRUE;

else return FALSE;

}

Fig. 5. Pseudo-code of the change detection mechanism

whereλin greater thanλ∗. It measures the intensity of the
inherent variability of the admitted rateλadm, that cannot be
filtered by a probabilistic admission control.

The pseudo-code of the change detection mechanism is
described in figure 5.

G. InstructionInit

The autonomic behavior of our algorithm makes the system
capable of adapting itself to changing traffic conditions when
prior knowledge of the traffic parameters is useless or even
misleading. For this reason the initial setting of the system
parameters is not of primary importance. As initial settingof
our algorithm we usen = 0, λ∗(0) = λSLA and p(n) = 1.
As initial setting of the curve construction phase, we insert
the pointP i

bench = (0, RT i
bench) in Li, representing the lower

bound on the95%-ile of the response times of typei requests.
This point is the95%-ile of response time measured at thei-
th tier, when the system is in a completely idle state, that is
whenλadm=̃0.

In order to calculate the average response time in such
situation we use an offline benchmark, obtaining the points
P i
bench = (0, RT i

bench), i ∈ {1, 2, . . . ,K}.
The proper setting of the pointsP i

bench with valueP i
bench =

(0, RT i
bench) as detailed in section IV-D, is not a key point

in the algorithm, since it can be substituted with the origin
O = (0, 0), with no impact but a little difference in the
time to converge to a stable choice ofλ∗(n). The use of this
point in the interpolation of the curve obtained from the set
Li is in fact limited to the first executions of the instruction
update_curve, when too few reliable points are available.

V. OTHER ADMISSION CONTROL STRATEGIES

In this section we describe other previously proposed QoS
policies to make performance comparisons. These policies can
be formulated in many variants depending on the considered
performance objective. We limit our analysis to the optimiza-
tion of response time which is strictly related to the user
perceived quality.

A. Threshold Based Admission Control

Fixed threshold policies have been proposed in many fields
of computer science, and in particular for web applications
with several variants [10], [11], [6].

According to the Threshold Based Admission Control
(TBAC) policy, the DP makes periodic evaluations of the95%-
ile of response time of each tier, everyT TBAC

AC seconds. If there
is at least one tier for which the95%-ile of response time
exceeds a thresholdRT TBAC, the DP rejects new sessions and
only accepts requests that belong to ongoing sessions. On the

contrary, if the value of the95%-ile of response time at each
tier is lower thanRT TBAC, all new sessions are accepted for
the nextT TBAC

AC seconds.
This policy, like all threshold based policies, implies a

typical on/off behavior of the admission controller. This causes
unacceptable oscillations of response time. Furthermore,its
performance depends on a proper parameter setting (i.e. the
choice of the thresholdRT TBAC and of the period between
two succeeding decisionsT TBAC

AC), and for this reason it cannot
be used in traffic scenarios characterized by highly variable
workloads.

B. Probabilistic Admission Control

Probabilistic Admission Control (PAC) is a well known
technique in control theory, commonly used when oscillations
are to be avoided. This policy was proposed for Internet
services in [24], while a similar version was also proposed for
web systems in [3]. According to this policy, a new session is
admitted with a certain probability, whose value depends on
the measured response time.

The DP evaluates, everyT PAC
AC seconds, the response time of

each tier. It compares the measured response times with two
thresholds,RT PAC

low and RT PAC
high. The acceptance probability

for the i-th tier is a piece-wise linear function of the mea-
sured95%-ile of the response timeri, and has the following
formulation:

p(ri) ,






1 if ri ≤ RT PAC
low

RT PAC
high−ri

RT PAC
high

−RT PAC
low

if RT PAC
low < ri ≤ RT PAC

high

0 if ri > RT PAC
high

(1)

Then the session admission probability for the next round is
given by:p = mini=1,...,K p(ri)

Notice that the two threshold values,RT PAC
high andRT PAC

low ,
that characterize this policy, are arbitrarily set offline indepen-
dently of the observed incoming session rate and of the inter-
observation periodT PAC

AC . Therefore, the performance of this
policy is dependent on a proper tuning of these parameters, as
we show in section VI.

VI. SIMULATION RESULTS

In order to make performance comparisons among the dif-
ferent policies and to investigate the flash crowd management
capabilities of SOC, we developed a simulator on the basis of
the OPNET modeler software [18].

In our experimental setting, we assume that the interarrival
time of new sessions follows a negative exponential distri-
bution. The interarrival time of requests belonging to the
same session is more complex. In order to have a realistic
traffic generator, we used the phase model of an industrial
standard benchmark: SPECWEB2005 [20]. We refer to [20]
for a detailed description of the state model and of the
functionalities of each phase.

Upon reception of a response, the next request is sent after
a think time intervalTthink spent by the user analyzing the
received web page. Our model ofTthink is based on TPC-
W [21], [15] and on other works in the area of web traffic

analysis such as [23]. As in the TPC-W model, we assume
an exponential distribution of think times with a lower bound
of 1 sec. ThereforeTthink = max{− log(r)µ, 1} wherer is
uniformly distributed in the interval [0,1] andµ = 10 sec. To
model a realistic user behavior, we also introduce a timeoutto
represent the maximum response time tolerable by the users.
After that a request has been sent, if the timeout expires before
the reception of the response, the client abandons the system.

We assume each phase of the session state model can be
mapped onto a specific tier of a3-tier cluster. We use an
approximate estimate of the average processing times of the
different tiers on the basis of the experiments detailed in
[11]. We assume each session phase requires an exponentially
distributed execution time set as follows: average execution
time of pure http requests is 0.001 sec, while for servlet request
is 0.01 sec and for database requests is 1 sec.

For sake of brevity, we conduct our analysis on the database
tier which is the bottleneck of the architecture considered
in these simulations. Thus, for simplicity, we indicate the
limit on the database response time, defined in the SLA,
asRTSLA. All the experiments of this section are conducted
with 20 application servers, a client timeout of 8 sec. and
RTSLA = 5sec.

The fixed thresholdT TBAC
AC of the TBAC policy is always

set in agreement with the SLA constraints on the95%-ile
of database response time, thereforeT TBAC

AC = RTSLA. The
thresholds of the PAC policy are defined as follows:T PAC

low

= 3 sec andT PAC
high = RTSLA, in agreement with the SLA

constraints.
A first set of experiments (figures 6 and 7) shows how SOC

outperforms the TBAC and PAC policies, in terms of both
performance and stability.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14

95
%

-il
e

R
T

 (
se

c)

Average Session Arrival Rate (session/sec)

SOC
TBAC

PAC
RTSLA

Fig. 6. 95%-ile of database RT

Figure 6 highligths the adaptive behavior of SOC. On the
one hand, when the traffic load is high, SOC finds the suitable
session arrival rate and admits as many sessions as possible
to remain under the SLA limits. On the other hand, when the
traffic is low, it accepts almost all incoming sessions.

Unlike SOC, other non adaptive policies, such as TBAC
and PAC, typically under-utilize the system resources in low
workload conditions, and violate the QoS agreements when
the workload is high.

SOC ouperforms TBAC and PAC also in terms of stability.

 3

 4

 5

 6

 7

 8

 9

 10

 11

 45000 46000 47000 48000 49000

95
%

-il
e

R
T

time (sec)

SOC
TBAC

PAC
RTSLA

 3

 4

 5

 6

 7

 8

 9

 10

 11

 45000 46000 47000 48000 49000

95
%

-il
e

R
T

time (sec)

SOC
TBAC

PAC
RTSLA

Fig. 7. Oscillations of 95%-ile of database RT

As figure 7 points out, TBAC shows an evident oscillatory
behavior due to its on/off nature while PAC has an over-
reacting behavior in many situations. SOC, instead, shows a
more stable response time. The self-learning activity allows to
build a reliable knowledge of the system capacity with respect
to the incoming traffic that is used to derive a good and stable
estimation of the optimal admission rate.

With the following experiments we want to show that
although SOC is based on the off-line configuration of some
parameters, (in particularTAC and lλ), this does not harm
its autonomy. In fact the experiments detailed in figures 8,
9 and 10 show that the policy behavior is insensitive to
the particular setting of those parameters. These experiments
were conducted with slow varying traffic scenarios. In this
experimental setting, the particular choice ofTAC does not
influence the policy performance. Furthermore although small
values of TAC may cause frequent triggers of the change
detection mechanism (due to false positive results of the tests
described in section IV-F), these triggers only cause more
mode switches, without significant impact on performance
(figure 8).

Similarly the choice of the interval sizelλ that defines
the curve construction and determines the occurrence of ag-
gregation of measurement sample sets, does not affect SOC
performance. Both response time and admission probability
are stable (figures 9 and 10) even whenlλ varies significantly.

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500

95
%

-il
e

R
T

 (
se

c)

TAC (sec)

SOC
TBAC

PAC
RTSLA

Fig. 8. 95%-ile of database RT

Given the slow varying traffic scenario that characterizes the
experimental setting of the previous experiments, we did not
show any performance comparison with the AACA policy that

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

95
%

-il
e

R
T

 (
se

c)

lλ

10 Server
20 Server
30 Server

RTSLA

Fig. 9. 95%-ile of database RT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

lλ

10 Server
20 Server
30 Server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

lλ

10 Server
20 Server
30 Server

Fig. 10. Session admission probability

we introduced in [5]. In fact in this scenario the performance
of SOC is only marginally better than AACA, and the lines in
the figures would have overlapped each other in many cases.

In the following experiments we studied the performance
of SOC with and without activating the change detection and
flash crowd management capability described in section IV.

In figures 13, 12, 14 and 15 the former version is called
Flash Crowd Managementwhile the latter is calledBase. The
Base version is the same policy we introduced in [5] with the
addition of the new monitor module detailed in paragraphs
IV-C and IV-D.

Figure 11 characterizes the traffic scenario of the last set of
experiments. It shows a session arrival rate that is subjectto
several sudden surges of growing intensity.

 0

 20

 40

 60

 80

 100

 120

 40000 60000 80000 100000 120000 140000

In
co

m
in

g
se

ss
io

n
ra

te
 (

se
ss

/s
ec

)

time (sec)

Fig. 11. Session arrival rate

Figures 13 and 12 show how the flash crowd management
support is capable of extremely mitigating the spikes of

response time caused by the occurrence of flash crowds. These
spikes are instead present in figure 13 showing that without
proper flash crowd management, a violation of the service
level agreements is inevitable.

 0

 2

 4

 6

 8

 10

 12

 40000 60000 80000 100000 120000 140000

95
%

-il
e

R
T

time (sec)

Flashcrowd Management
RTSLA

Fig. 12. 95%-ile RT (FCM)

Figures 14 and 15 focus on the management of the flash
crowd that occurs at 100000 seconds of simulations.

These figures highligth the increased reactivity of SOC
when using the flash crowd management support. The Base
version takes almost 40 seconds to discover the occurrence of
the flash crowd and consequently adapt the admission proba-
bility, while the enhanced version reacts almost immediately.

Notice the time scale difference between the two figures 14
and 15, and the fact that a 40 seconds delay in discovering
the flash crowd, implies the system being in overload for
almost 500 seconds. This is mostly due to the fact that the
admission controller works at session granularity. Noticethat
premature session interruption would not solve this problem,
because on the one hand, sessions are terminating anyway due
to client timeout, and on the other hand, the increased session
interruption rate should obviously be considered as another
aspect of degraded performance.

In particular, figure 14 shows how the Base version of SOC
is incapable to face such flash crowd, as can be seen by the
high values to the 95%-ile of response time, which exceed
the user time-out. This means that users are abandoning the
site due to poor performance or system unavailability. On the
contrary, the flash crowd management enhanced version of
SOC is capable of maintaning the response time at acceptable

 0

 2

 4

 6

 8

 10

 12

 40000 60000 80000 100000 120000 140000

95
%

-il
e

R
T

time (sec)

Base
RTSLA

Fig. 13. 95%-ile (Base)

levels by rapidly reducing the session admission probability
as soon as the surge in demand is detected.

 0

 2

 4

 6

 8

 10

 12

 99500 100000 100500 101000

95
%

-il
e

R
T

time (sec)

Flashcrowd Management
Base

RTSLA 0

 2

 4

 6

 8

 10

 12

 99500 100000 100500 101000

95
%

-il
e

R
T

time (sec)

Flashcrowd Management
Base

RTSLA

Fig. 14. 95%-ile RT

VII. R ELATED WORK

There is an impressively growing interest in autonomic
computing and self-managing systems, starting from several
industrial initiatives from IBM [1], Hewlett Packard [2] and
Microsoft [16]. Although self-adaptation capabilities could
dramatically improve web system reactivity and overload
control during flash crowds, little effort has been spent on
the problem of autonomous tuning of QoS policies for web
systems.

The application of the autonomic computing paradigm to
the problem of overload control in web systems poses some
key problems concerning the design of the monitoring module.
The authors of [19] propose a technique for learning dynamic
patterns of web user behavior. A finite state machine represent-
ing the typical user behavior is constructed on the basis of past
history and used for prediction and prefetching techniques. In
paper [12] the problem of delay prediction is analyzed on the
basis of a learning activity exploiting passive measurements
of query executions. Such predictive capability is exploited to
enhance traditional query optimizers.

The cited proposals [12], [19] can partially contribute to
improve the QoS of web systems, but differently from our
work, none of them directly formulate a complete autonomic
solution that at the same time gives directions on how to
take measures, and make corresponding admission control
decisions for web cluster architectures.

 0

 0.2

 0.4

 0.6

 0.8

 1

 99920 99960 100000 100040 100080

S
es

si
on

 a
m

is
si

on
 p

ro
ba

bi
lit

y

time (sec)

Flashcrowd Management
Base

Fig. 15. Session admission probability

The authors of [14] also address a very important deci-
sion problem in the design of the monitoring module: the
timing of performance control. They propose to adapt the
time interval between successive decisions to the size of
workload dependent system parameters, such as the processor
queue length. The dynamic adjustment of this interval is of
primary importance for threshold based policies for which
a constant time interval between decisions may lead to an
oscillatory behavior in high load scenarios as we show in
Section VI. Simulations reveal that our algorithm is not subject
to oscillations and shows a very little dependence on the time
interval between decisions.

The problem of designing adaptive component-level thresh-
olds is analyzed in [7] for a general context of autonomic
computing. The mechanism proposed in the paper consists
in monitoring the threshold values in use by keeping track
of false alarms with respect to possible violations of service
level agreements. A regression model is used to to fit the
observed history. When a sufficiently confident fit is attained
the thresholds are calculated accordingly. On the contraryif
the required confidence is not attained, the thresholds are set to
random values as if there was no history. A critical problem of
this proposal is the fact that the most common threshold poli-
cies cause on/off behaviors that often result in unacceptable
performance. Our proposal is instead based on a probabilistic
approach and on a learning technique, that dynamically creates
a knowledge basis for the online evaluation of the best decision
to make even for traffic situations that never occurred in the
past history.

The problem of autonomously configuring a computing
cluster to satisfy SLA requirements is addressed in [13].
This paper is similar to ours in the design of a strategy for
autonomic computing that divides the problem into different
phases, calledmonitor, analyze, plan and execute(MAPE,
according to the terminology in use by IBM [17]) in order
to meet SLA requirements in terms of response time and
server utilization. Unlike our work, the authors of this paper
designed a policy whose decisions concern the reconfiguration
of resource allocation to services.

The design of SOC is inspired by the policy AACA we
introduced in a previous work [5] to which we added the
anomaly detection and decision rate adaptation mechanism
that is necessary to manage flash crowd situations. With
respect to [5], we also largely improved the design of the
monitor module as we detail in section IV.

VIII. C ONCLUSION

In this paper we address the problem of overload control for
web based systems. We introduce an original policy, that we
name SOC, that permits the self-configuration and rapid adap-
tivity. SOC exploits a change detection mechanim to switch
between two modalities according to the time variability of
the incoming traffic.

When the incoming traffic is stable, the policy works in
normal mode in which performance controls are paced at a
regular rate. The policy switches to flash crowd management

mode as soon as a rapid surge of demand is detected. It then
increases the rate of performance controls until the incoming
traffic becomes more stable. This permits a fast reaction
to sudden changes in traffic intensity, and a high system
responsiveness.

Our policy does not require any prior knowledge of the
incoming traffic, nor any assumption on the probability distri-
bution of request inter-arrival and service time. Unlike other
proposals in the area, our policy works under a wide range
of operating conditions without the need of laborious manual
parameter tuning. It is entirely implemented on dispatching
points, without the need of any modification of client and
server software.

We compared our policy to previously proposed approaches.
Extensive simulations show that it permits an excellent utiliza-
tion of system resources while always respecting the limits
on response time imposed by service level agreements. We
show that our policy reduces the oscillations of response time
common to other policies that work at session granularity.
Simulation results also highlight the flash crowd management
capabilities of SOC, showing how it rapidly adapts the admis-
sion probability to keep the overload under control.

REFERENCES

[1] Ibm: the vision of autonomic computing.
http://www.research.ibm.com/autonomic/manifesto.

[2] Hewlett packard: Adaptive enterprise design principles.
http://h71028.www7.hp.com/enterprise/cache/80425-0-0-0-121.html.

[3] J. Aweya, M. Ouelette, D. Y. Montuno, B. Doray, and K. Felske. An
adaptive load balancing scheme for web servers.International Journal
of Network Management, 12:3–39, 2002.

[4] N. Bartolini, G. Bongiovanni, and S. Silvestri. An adaptive admission
control policy for geographically distributed web system.The ACM
Proceedings of the International Conference on Scalable Information
Systems (INFOSCALE), 2007.

[5] N. Bartolini, G. Bongiovanni, and S. Silvestri. An autonomic admission
control policy for distrbuted web systems.The IEEE Proceedings of
the International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunicaion Systems (MASCOTS), 2007.

[6] N. Bartolini, G. Bongiovanni, and S. Silvestri. Distributed server
selection and admission control in replicated web systems.The IEEE
Proceedings of the 6th International Symposium on Paralleland Dis-
tributed Computing (ISPDC), 2007.

[7] D. Breitgand, E. Henis, and O. Shehory. Automated and adaptive thresh-
old setting: enabling technology for autonomy and self-management.
Proceedings of the International Conference on Autonomic Computing
(ICAC), 2005.

[8] V. Cardellini, E. Casalicchio, and M. Colajanni. The state of the art
in locally distributed web server systems.ACM Computing Surveys,
34(2):263–311, 2002.

[9] J. Carlstrom and R. Rom. Application aware admission control and
scheduling in web servers.Proceedings of the IEEE Conference on
Computer Communications (INFOCOM), 2002.

[10] L. Cherkasova and P. Phaal. Session based admission control: a
mechanism for peak load management of commercial web sites.IEEE
Transactions on Computers, 2002, 51(6).

[11] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A method for
transparent admission control and request scheduling in e-commerce
web sites.Proceedings of the ACM World Wide Web Conference(WWW),
May 2004.

[12] J.-R. Gruser, L. Raschid, V. Zadorozhny, and T. Zhan. Learning response
time for websources using query feedback and application inquery
optimization. The International Journal on Very Large Data Bases,
9(1), March 2000.

[13] Y. Li, K. Sun, J. Qiu, and Y. Chen. Self-reconfiguration of service-
based systems: a case study for service level agreements andresource
optimization.Proceedings of the IEEE International Conference on Web
Services (ICWS), 2005.

[14] X. Liu, R. Zheng, J. Heo, Q. Wang, and L. Sha. Timing performance
control in web server systems utilizing server internal state information.
Proceedings of the IEEE Joint International Conference on Autonomic
and Autonomous Systems and International Conference on Networking
and Services (ICAS/ICNS), 2005.

[15] D. Menasce. Tpc-w: A benchmark for e-commerce.IEEE Internet
Computing, May/June 2002.

[16] Microsoft: The drive to self-managing dynamic systems.
http://www.microsoft.com/windowsserversystem/dsi/default.mspx.

[17] B. Miller. The autonomic computing edge: The role
of knowledge in autonomic systems. http://www-
128.ibm.com/developerworks/autonomic/library/ac-edge6/.

[18] Opnet technologies inc.http://www.opnet.com.
[19] S-Pradeep, C. Ramachandran, and S. Srinivasa. Towardsautonomic

web-sites based on learning automata.Proceedings of the ACM World
Wide Web Conference (WWW), 2005.

[20] Specweb2005 design document.
http://www.spec.org/web2005/docs/designdocument.html.

[21] The transaction processing council (tpc). tpc-w.
http://www.tpc.org/tpcw.

[22] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi.
An analytical model for multi-tier internet services and its applications.
IEEE Transactions on the Web, 1(1), 2007.

[23] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer. Off the beaten
tracks: Exploring three aspects of web navigation.Proceedings of the
ACM World Wide Web Conference (WWW), 2006.

[24] Z. Xu and G. v. Bochmann. A probabilistic approach for admission
control to web servers.Proceedings of the International Symposium on
Performance Evaluation of Computer and TelecommunicationSystems
(SPECTS), July 2004.

	Introduction
	The problem
	The idea
	Self-* Overload Control (SOC) Policy
	Instruction probabilistic_admission_control
	Instruction collect_raw_measures
	Instruction update_stats
	Instruction update_curve
	Instruction update_admission_probability
	Function change_detection()
	Instruction Init

	Other admission control strategies
	Threshold Based Admission Control
	Probabilistic Admission Control

	Simulation Results
	Related Work
	Conclusion
	References

