
Kernel Level Energy-Efficient 3G Background
Traffic Shaper for Android Smartphones

Ekhiotz Jon Vergara, Joseba Sanjuan, Simin Nadjm-Tehrani
Department of Computer and Information Science

Linköping University, Sweden
{ekhiotz.vergara, joseba.sanjuan, simin.nadjm-tehrani}@liu.se

Abstract—Reducing the energy consumption of wireless devices
is paramount to a wide spread adoption of mobile applications.
Cellular communication imposes high energy consumption on
the mobile devices due to the radio resource allocation, which
differs from other networks such as WiFi. Most applications
are unaware of the energy consumption characteristics of third
generation cellular communication (3G). This makes the back-
ground small data transfers of undisciplined applications an
energy burden due to inefficient utilisation of resources.

While several approaches exist to reduce the energy consump-
tion of this best-effort background traffic by means of traffic
shaping, we find that they are mostly evaluated with simulations
and the actual energy overhead for the traffic shaper itself has
not been studied. In order to cover this gap, our work realises an
existing energy saving algorithm as a Kernel Level Shaper (KLS)
within the Android platform, and measures its energy footprint.
The total energy savings of our implementation range from 8%
to 58% for emulated real background traffic, that is categorised
as best-effort traffic. We further show the implications of running
the KLS during live operation of applications as an exploratory
study.

Index Terms—transmission energy; 3G; kernel; Android

I. INTRODUCTION

Mobile users have been blessed with ubiquitous connectivity
and powerful devices with the advances in wireless technolo-
gies, but they still experience short battery lifetimes which
makes energy consumption the Achille’s heel of user quality of
experience. The massive mobile data traffic explosion and its
forecasted tremendous growth further aggravates the situation.

While the device manufacturers are busy making the device
hardware more energy-efficient, the lack of energy aware-
ness on the software front is becoming all too apparent.
Those application developers that care about efficiency of
their applications are more likely to address responsiveness,
or perhaps to test the energy efficiency in a WiFi setting.
However, true mobility is best handled by the cellular mode
of communication.

Cellular networks impose high energy consumption on the
mobile devices due to the radio resource allocation performed
at the operator end, which differs from other technologies
such as WiFi. Most applications are unaware of the trans-
mission energy characteristics of cellular networks, where the
energy consumption is not proportional to the amount of data
sent: small data transfers can consume as much as a fully

utilised link using 3G. Moreover, we find that even without
user interaction, undisciplined transmissions are performed by
applications inefficiently utilising the limited energy resource.
In particular, the best-effort background traffic created by
applications (e.g., periodic transfers or updates) leads to high
energy consumption, even though it is only a small part of the
total traffic.

There exist several approaches [1]–[8] to potentially reduce
the energy consumption of these cellular data transfers that do
not have any quality of service requirements. Most of these
rely on shaping the traffic. Some approaches aggregate and
send together all transfers resulting in higher delay, or align
periodic transfers of different applications to perform the data
transfers within the same interval. However, as we describe
in the related works section, most approaches are evaluated
through simulation using pre-recorded packet traces and do not
consider applications’ live operation and application-protocol
interactions. Moreover, the energy consumption of the solution
itself is not analysed.

Our work covers that gap by developing a prototype of an
energy saving algorithm on a commodity device and evaluating
its operation in a real environment. The contributions of our
work are: (a) realization of an existing algorithm (from [1]) on
the Android platform, (b) measuring the energy footprint of
the algorithm operation, and (c) discovery of the implications
of using such a solution with real traffic generated during
applications’ operation (which cannot be steered towards the
sort of traffic that it was designed for), thereby identifying
future directions of research.

The rest of the paper is organised as follows: section II
provides the energy consumption background from 3G and
the energy reduction of background traffic. The architecture of
the traffic shaper is described in section III and evaluated in
section IV. Section V describes the related works, and section
VI concludes the paper leading to future work.

II. BACKGROUND

This section provides a background on Universal Mobile
Telecommunications System (UMTS) energy consumption at
the user end. This illustrates the implications of the energy
consumption of the background traffic, and reviews the energy
saving algorithm that is used in the paper.978-1-4673-2480-9/13/$31.00 c© 2013 IEEE

A. Energy consumption of 3G

The energy consumption of the user equipment (UE) in 3G
is mostly influenced by the state machine defined by the Radio
Resource Control (RRC) protocol at the cellular operator end.
The Radio Network Controller (RNC) uses the RRC protocol
and the Radio Link Control (RLC) protocol to perform the
radio resource management of the UE.

The UE experiences different power drain and performance
in terms of throughput and response time depending on its
state. The UE states are Dedicated Channel (DCH), Forward
Access Channel (FACH), and Paging Channel (PCH), sorted
in terms of highest to lowest power drain and performance.

The transitions between states are controlled using inactivity
timers, and the traffic volume measurements reported by
the UE using the RLC protocol. The RNC employs fixed
thresholds over the RLC buffer data occupancy to trigger
state transitions to higher performance states (PCH-FACH or
PCH-DCH and FACH-DCH). Four thresholds (2 uplink and 2
downlink) control the different transitions. A transition occurs
when the data occupancy exceeds a given threshold.

Inactivity timers T1 and T2 are used to downswitch the UE
to lower performance states when there is small or no data
transmission. T1 controls the DCH-FACH transition whereas
FACH-PCH is controlled by T2. Inactivity timers force the UE
to stay in a high power state while not transmitting anything,
creating energy overheads known as energy tails [2], [9].

The upper part of Fig. 1 shows an illustrative example of
the energy consumption of an application as measured by a 3G
broadband module provided by Ericsson AB while switching
between the different states. The UE is forced to move from
FACH to DCH in the beginning. Then it switches back to
FACH after T1, and to PCH after T2 (before 20 s).

B. Energy consumption of background traffic

The Quality of Service (QoS) of the third generation UMTS
standard specifies the background traffic class. This traffic
class is usually characterised by low bandwidth requirement,
intermittent and asymmetric (uplink/downlink) data transmis-
sions and a permissible delay since the destination does not
expect the data within a certain time (c.f., RSS or e-mail).
Background traffic is categorised as elastic and best-effort [10].

Mobile applications create background traffic even when the
mobile device is not being used (e.g., screen switched off [11]).
Even though the volume of these background transmissions is
not large, this best-effort traffic is significant enough due to
the energy footprint of 3G. The upper part of Fig. 1 shows an
example of energy consumption of background transmissions
by two commonly used applications (Skype and Facebook),
which forces the UE to move even to DCH.

Earlier works have proposed the reduction the energy con-
sumption of background traffic based on the intuition that
applications can defer their best-effort data transmissions [2],
[12], [13]. These transmissions are aggregated and sent in a
single burst. In particular, the Cross-Layer Burst Buffering
(CLBB) algorithm [1] schedules background uplink traffic in
an energy-efficient manner using this general idea.

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Time (seconds)

Po
w

er
 (W

at
ts

) Background Traffic

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Time (seconds)

Po
w

er
 (W

at
ts

)

Shaped Traffic

FACH

PCH
FACH

PCH

DCH

DCH

Fig. 1: Energy consumption examples of background traffic
and energy-efficient shaped background traffic.

Given a maximum waiting time for a packet transmission
(Tw), CLBB uses the knowledge of inactivity timers and RLC
buffer thresholds to perform data aggregation: when the UE is
in PCH, CLBB does not send packets until their Tw is about
to expire, maximising the time in the lowest consuming state
(PCH) and reducing the number of energy tails. The packets
are sorted by nearest (latest) transmission time. When a group
of packets needs to be sent, CLBB schedules small data
packets in the FACH state avoiding unnecessary and energy-
costly state transitions to DCH. This is done by classifying
the packets in two categories (small and large) based on the
RLC buffer thresholds and the packet size. When buffered
packets cannot be sent in FACH due to their size, CLBB
sends the data in a single burst moving the UE to DCH as
previous works [2], [12], [13]. Fig. 1 shows an illustrative
example of the energy consumption of background traffic
and the traffic scheduled by CLBB. In this example, CLBB
reduces the energy consumption of the background traffic
(when Tw = 90 s) by 34%.

III. ARCHITECTURE DESIGN

The CLBB algorithm schedules background traffic to reduce
the 3G energy consumption of the UE. The operation of
the CLBB implementation should be as energy-efficient as
possible so that the energy savings achieved by the algorithm
are not diminished. In this section we describe the design of
the Kernel Level Shaper (KLS) architecture implementing the
CLBB algorithm in the Android platform.

Intercepting and modifying the traffic transmissions gen-
erated by applications can be performed in different layers
of the Android architecture and the Linux networking stack.
The architecture of the KLS resides in kernel space. A user
space application would require to interact with the kernel
space through system calls, which would create a higher
CPU footprint due to data transfer (read/write). A single data
transfer can result in a CPU usage up to 33% [14]. Moreover,
the throughput in kernel space is higher [15].

In the Linux kernel, a networking packet is represented
using the socket buffer structure (sk buff), which is sent
through the layers of the networking stack until it is sent by

the networking card. Netfilter is a Linux kernel framework that
enables packet interception and modification at different hooks
(decision points in the networking stack). Kernel tampering is
another alternative for packet interception, which consists of
modifying the code of the native kernel functions that control
the packet traversal flow. Kernel tampering provides higher
TCP/IP throughput than Netfilter, but the background traffic
of applications does not have high throughput requirements.
Netfilter provides modularity and scalability by using a Kernel
Loadable Module (LKM) that can be inserted at runtime,
instead of changing the native code at kernel compiling time.
Therefore, KLS implements CLBB as a LKM registering the
Netfilter NF IP POST ROUTING hook in the IP layer. This
allows us to intercept the outgoing packets without interacting
with applications, leading to low CPU footprint.

UE	
 state	

control	

Outgoing traffic

Wait	
 Queue	

KERNEL SPACE

IP layer Main

Scheduled
traffic

UE	
 state	

Reinject	
 QS
QL

Packet queues

Packet flow
Thread interaction

Ne4ilter	

hook	

Queue	

handler	

USER SPACE

DATA LINK LAYER

Fig. 2: Overview of the Kernel Level Shaper architecture.

The architecture of the KLS shown in Fig. 2 consists of three
threads (Main, Reinject and UE state control). The Main thread
registers the hook, starts the other threads and categorises the
outgoing packets in the queues based on size (QS for small
packets and QL for large ones) and sorted by nearest Tw. The
Wait queue is a Linux mechanism used to sleep or wake up the
Reinject thread when there are no packets. The Reinject thread
transmits the queued packets following the logic of the CLBB
algorithm and updates the UE state based on the volume of
data transmitted. The UE state control thread keeps track of
the UE state using inactivity timers and the data transmissions.
Thread concurrency is achieved by means of the kernel lock
mechanism.

IV. EVALUATION

This section evaluates kernel level shaper, implementing the
CLBB algorithm embedded in an Android device. It focuses
on two main aspects: (1) the validation of the 3G energy-
savings of CLBB in the mobile device, and (2) analysing the
energy footprint of the implemented energy saving algorithm.
The KLS architecture is evaluated for traffic with different
characteristics. We describe our methodology in the next
section.

A. Methodology and experimental setup

The architecture is deployed in a rooted Android device
(HTC Sensation Z2710e). We cross-compile the Linux kernel
with the needed options (e.g., enable module loading support
and Netfilter), boot the new kernel in the device, cross-compile
our KLS and load it at runtime.

Our traffic generation approach is divided in two parts:
emulated and live traffic. The choice of the emulated traffic is
motivated by the need to create the same application traffic in
various experiments. In order to provide experiment repeata-
bility and control over the traffic generation of applications,
real background packet traces were captured and replayed
with and without the KLS in the Android device. We call
this emulated traffic since we replay previously captured real
packet traces. These traces contain best-effort traffic that have
no specific QoS requirements. Next, as an exploratory phase,
we evaluate the algorithm implementation employing the KLS
with applications that create live traffic.

For the emulated traffic, tcpdump and an iptables based
firewall were used to capture only the traffic from the chosen
applications. Facebook, Skype and WhatsApp were used as
test applications and all the traces were recorded with the
screen switched off and without any user interaction. These
applications created different traffic load over time based on
their operation. Since the energy saving of the algorithm
depends on the amount of traffic, out of the used traces we
selected what we believe are representative traces for different
traffic volumes and characteristics. The packet trace is replayed
from an Android application sending uplink UPD packets to
a server that replies with the downlink traffic. The traces
are around 10 minutes long. Fig. 3 shows packet size, inter-
packet interval (IPI) and the traffic volume characteristics of
the traces. The name of the traces correspond to their traffic
volume (low, medium and high). The traces have a majority of
small packets and the transmissions range from regular (high)
to sporadic (low) as the IPI shows.

0 50 100 150
0.9

0.92

0.94

0.96

0.98

1

IPI (seconds)

Em
pi

ric
al

 C
D

F
of

 IP
I

0 250 500 750
0.5

0.6

0.7

0.8

0.9

1

Packet size (bytes)

Em
pi

ric
al

 C
D

F
of

 p
ac

ke
t s

iz
e

HighMedium Low
0

2

4

6
x 104

Tr
af

fic
 v

ol
um

e
(b

yt
es

)

High
Medium
Low

Fig. 3: Characteristics of the emulated traces.

The traces described in Fig. 3 are used varying the max-
imum waiting time for a packet transmission (Tw) of the
algorithm (30, 90 and 180 s). For every trace, we replay the
trace without KLS as baseline. Then, the KLS is loaded and
the traces are replayed for the different Tw. We measure the
energy savings and CPU usage of the KLS as described below.

Networking energy consumption: the transmission energy
consumption is calculated using EnergyBox. Given the 3G

network parameters specified at operator level, EnergyBox
derives the 3G states of the UE employing trace-based iterative
packet-driven simulation. The total energy consumption is
calculated by associating the UE specific power levels with
the emulated intervals in each state, and integrating them over
time. EnergyBox has been evaluated against physical energy
consumption measurements showing an average accuracy of
98% [16]. The 3G network settings we use correspond to
the operator TeliaSonera in Sweden measured in our local
area, which are: T1 = 4.1 s, T2 = 5.6 s, the RLC buffer
uplink (PCH-DCH = 1000 and FACH-DCH = 294 bytes) and
downlink thresholds (PCH-DCH = 515 and FACH-DCH = 515
bytes) [1]. We set the following power values for the dif-
ferent 3G states based on measurements [9]: DCH = 600 mW,
FACH = 400 mW and PCH = 0 W. By setting PCH = 0 W, we
aim to quantify only the energy spent in data transmission
and energy tails.

CPU energy consumption: the CPU usage of the KLS
itself is retrieved using the top utility. We perform physical
measurements in the HTC Sensation to characterise the power
usage for different CPU loads in a simplistic manner. The
measurements are performed by replacing the battery of the
smartphone by a low-side sensing circuit [17]. The frequency
of the CPU is set to the maximum (1.2 GHz) in order to
measure the highest power level, i.e., worst case. A CPU stress
application is developed to increase the CPU load step by step
up to 100%. The CPU power is isolated from other factors
such as screen, network interfaces or other applications by
switching the components off and killing all the processes that
can interfere in the measurement. By interpolating the (CPU
load, power) points we obtain a function that is employed to
obtain the power consumption out of the CPU load data.

The next section describes the results of the evaluation by
employing the previously described methodology and setup.

B. Energy-savings of network transmission

In this section we validate the energy savings of the KLS
in the HTC Sensation for the 3 representative background
traffic traces (High, Medium and Low) described in section
IV-A. We present the energy savings of the UE with the
embedded implementation of the CLBB algorithm. The replay
of the captured trace without employing KLS is referred to as
original traffic and used as the baseline.

30 60 90 120 150 180
0

10

20

30

40

50

60

70

Maximum waiting time (Tw) (seconds)

N
et

w
or

ki
ng

 e
ne

rg
y

sa
vi

ng
s

(%
)

High
Medium
Low

Fig. 4: Energy savings of networking transmissions.

Fig. 4 shows that the energy savings depend on the traffic
volume: when the traffic volume is higher, the energy savings
tend to be higher. The original traces consume 225, 161 and
105 Joules for the high, medium and low traffic volume traces
respectively. Moreover, as expected, increasing Tw leads to
higher energy savings. For the low traffic volume trace, the
energy savings range from 8% (Tw = 30 s) to 23% (Tw =
180 s). However, the energy savings are much greater (35%
when Tw = 30 s) with more frequent background traffic. The
maximum registered is 60%.

Orig. 30 90 180
0

20

40

60

80

100

U
E

st
at

e
(%

)

Low

Orig. 30 90 180
0

20

40

60

80

100
Medium

Orig. 30 90 180
0

20

40

60

80

100
High

DCH
FACH
PCH

Fig. 5: Percentage of time spent by the UE in the different
3G states over the total time of the original traces (y axis)
scheduled with different Tw (seconds) by the KLS (x axis).

Fig. 5 shows the percentage of time spent by the UE in
the different 3G states over the duration of the original traces
compared to the case where the traffic is scheduled by the
KLS. The KLS extends the time spent in PCH state which
leads to energy savings. Intuitively, a greater Tw makes the
UE to be in PCH for longer period. In general, the amount
of time in FACH is reduced in all the cases. For the original
traces, it can be noticed that the UE spends more time in
FACH with higher amount of traffic. Regarding DCH, the UE
performs occasional burst transmissions with the High and
Medium traffic profile, leading the UE to DCH for a short
time period. However, with Low traffic profile, the UE rarely
transitions to DCH.

To summarise, we validate that the KLS implementation of
the CLBB algorithm provides high energy savings to the UE.

C. Energy footprint of the KLS

In this section we show the energy cost of running the
algorithm implementation. The KLS performs two main op-
erations, intercepting and queueing the packets, and sending
them (dequeueing and re-injecting them in the network stack).
The rest of the time the threads of the KLS are sleeping and
therefore do not waste CPU time and energy.

In order to quantify the energy footprint when queueing
packets, we queue several UDP packets from an application
and observe the CPU load created by the KLS. The CPU usage
of the KLS is logged and the energy footprint is obtained
from the CPU load employing our CPU power characterisation
explained in section IV-A. Our measured CPU load is below
0.01% which shows that the footprint due to the queuing
operation is negligible in terms of CPU and therefore energy
consumption.

50 100 150 200 250 300
0

0.1

0.2

0.3

Time (seconds)

Po
w

er
 (W

at
ts

)
High, Tw= 30 s

30 60 90 120 150 180
0

2

4

6

Maximum waiting time (Tw) (seconds)

En
er

gy
 o

ve
rh

ea
d

(J
ou

le
s)

High
Medium
Low

Fig. 6: Example of CPU energy consumption by running the
KLS (left) and CPU energy footprint for the different traces
(right).

Next, the CPU energy footprint due to sending the packets is
measured for the high, medium and low traffic volume traces.
Fig. 6(left) shows an example of the energy consumption when
running the KLS for Tw= 30 s for the high traffic volume
trace. The KLS only creates CPU load spikes that are lower
than 5%, which consume less than 0.25 W as it is shown in
Fig. 6. These power spikes do not consume much energy.

Fig. 6(right) shows the additional energy consumption of
the CPU for the traces varying Tw. The maximum energy
cost is 5 Joules, which is only 2% of the energy consumed
for sending the original high traffic volume trace (225 Joules
as shown in section IV-B). The energy footprint is higher for
traces with higher traffic volume since the KLS has to process
more packets. Except for the case of low traffic volume, a
greater Tw leads to lower energy consumption.

To summarise, we see that the maximum energy footprint
depends on the amount of traffic and Tw, but it is low
compared to the energy used to send the original traffic due
to energy-efficient kernel implementation of the algorithm.

D. Total energy savings

This section presents the total energy savings, i.e., the
network transmissions savings minus the energy cost of the
KLS, i.e., the overhead. Since the energy cost of the KLS is
small, the energy savings still remain high.

30 90 180
0

10

20

30

40

50

60

High

30 90 180
0

10

20

30

40

50

60

Maximum waiting time (Tw) (seconds)

Medium

30 90 180
0

10

20

30

40

50

60

En
er

gy
 c

on
su

m
pt

io
n

(%
)

Low

Net. savings
Overhead
Total savings

Fig. 7: Network transmissions energy savings, KLS energy
overhead and total energy savings as a percentage of no-KLS
base energy consumption.

Fig. 7 shows the networking savings of the KLS, the
energy cost of the KLS and the total energy savings as a

percentage of the total energy consumption of the original
traces (255, 161 and 105 Joules for High, Medium and Low
traces respectively). When the traffic is low or moderate, the
overhead is low and the total energy savings remain close
to the networking energy savings. A somewhat higher energy
overhead is observed for the High data profile, but still the total
energy saving is significant. In this case, the highest saving is
achieved with the highest Tw, leading to a 58% net saving.

E. Live traffic

Applications do not distinguish their background traffic
from the rest of the traffic, neither do they specify which traffic
could potentially be shaped or delayed. This results in the KLS
(or a similar approach) scheduling all outgoing traffic. As an
exploratory phase, we test the KLS in the current settings to
study the implications of performing traffic shaping during live
operation of the same applications.

Facebook and Skype are used as test applications with and
without the KLS (Tw=30 s). We capture traces with and with-
out the KLS to compare the standard traffic behaviour against
the behaviour with the KLS. The screen of the smartphone is
switched off and we do not actively use the device.

Skype: the UE experiences a significant increase in traffic
when running Skype with the KLS (51 packets without the
KLS against 1145 packets with the KLS). We identify several
factors that explain the increase of the traffic, which are
dependent on the application’s live operation or behaviour.

The Skype client periodically builds a host cache (IP address
and port) of Skype servers (supernodes) using the DNS proto-
col. The Skype client sends a UDP packet of 18 bytes to the
port 33033 of a supernode on its host cache. When there is no
response for 5 seconds, the client attempts to establish a TCP
connection. In case of failure, this is repeated every 6 seconds.
When the KLS is running, this operation increases greatly the
amount of traffic. Moreover, the delay introduced by the KLS
also affects the Skype’s TCP operation. In particular, the TCP
retransmissions, out of order packets and duplicate ACKs are
8 fold higher when using the KLS.

Facebook: we observe a favourable behaviour of the KLS
when running Facebook. The packets are scheduled according
to the algorithm in an energy efficient manner. Even though
Facebook also uses TCP, no extra retransmissions, out of order
packets or duplicated ACKs are observed and the amount of
traffic is similar with and without the KLS.

To sum up, our observations reveal that shaping ap-
plications’ outgoing traffic independently from their inten-
tion/behaviour can result in a counterproductive operation of
some applications (e.g., Skype), whereas for others it can work
out of the box (e.g., Facebook). In any case, if we do not
make traffic distinction we cannot exploit the energy saving
potential for all applications. Background traffic differentiation
becomes an important piece of the energy puzzle in order to
fully achieve energy savings.

V. RELATED WORKS

We categorise studies aiming to reduce energy consumption
of 3G periodic transfers and background traffic based on
their approach. Several works [3], [4] employ Fast Dormancy
(FD) of the 3GPP Release 8 standard to control the radio
resource from the UE. FD allows the UE to move to PCH
before the expiration of the inactivity timers. The concept
of traffic backfilling [18] is proposed to opportunistically
transmit background data during unused gaps of energy tails
between interactive traffic. Bartendr [8] schedules bulk data
transmissions in periods of good signal strength. These works
are complementary to our work since an implementation
combining them would lead to higher energy savings.

Könönen et al. [13] propose the alignment of timers of
different applications to perform synchronised bursty trans-
missions with a determined periodicity (traffic batching). In-
tentional Networking [5] forces developers to provide semantic
labels to differentiate the data transmissions. Both approaches
require the modification of applications and count on the good
practices of developers, whereas our work attempts at reducing
energy consumption at kernel level interacting only with the
traffic. Our experiments confirm that distinction of application
packets is a prerequisite for using kernel level shaping, even
though in some cases (e.g. Facebook or instant messaging) it
might work out of the box.

TailEnder [2] defers applications’ data transmissions based
on user-specified deadlines, leading to traffic aggregation and
bursty transmissions while reducing the number of state transi-
tions and energy. Traffic aggregation in their case defers within
a maximum period the data transmissions until one of them
needs to be sent (user-specified ”deadline”), sending together
all the transfers that were postponed until that moment. Calder
et al. [12] schedule data transmissions of applications with
different transmission intervals in multiples of the shortest
interval. TailTheft [7] combines data aggregation and FD.
CLBB [1] refines the above works by scheduling data transfers
considering both the inactivity timers that lead to the energy
tails and the RLC data buffers in combination. Qian et al. [19]
perform a simulation comparison of different approaches (FD,
traffic aggregation and batching) showing that a combination
of approaches can lead to higher savings. A recent work by
Huang et. al [11] show the impact of the traffic generated when
the screen of the device is off on the energy consumption
of 3G and 4G, and propose to employ FD and batching to
reduce its energy consumption. Nguyen et al. [6] employ also
user context information. In comparison, our work is the first
implementation of such an energy saving approach at kernel
level in a commodity device allowing us to quantify both its
actual energy savings and its cost in terms of own energy
footprint. Furthermore, we show the complexity of shaping
the live traffic of real applications and the consequences for
these approaches.

Based on the energy-delay trade-off, the same concepts can
be also applied to other technologies. For example, Palit et
al. [20] employ packet aggregation applied to WiFi, where

packets are aggregated at the medium access control layer in
order to fill a full frame and allow the device to extend its
doze time. However, they do not evaluate the energy cost of
their mechanism nor study the implications for real traffic.

VI. CONCLUSION AND FUTURE WORK

Achieving energy proportionality in systems that were de-
signed for peak performance is a complex task. The focus of
our work is on extending the battery lifetime of mobile devices
by reducing the high energy overhead of the background traffic
in 3G, which is mostly created in low utilisation periods.

In this work, we show that applying a mechanism that
employs a small amount of energy to save energy pays off. We
implement an energy-efficient algorithm to reduce the energy
consumption of background traffic with no QoS requirements
on the Android platform, and measure its overhead using con-
trolled real traffic. The results show the low energy overhead
introduced by our implementation at kernel level leads to net
energy savings between 7% and 58% on emulated traces,
depending on the amount of traffic and the maximum allowed
delay.

We extend our evaluation using real live traffic as an
exploration, and discover that the mix of data and background
traffic destroys the energy saving operation of our kernel
module (intended only for background traffic). However, there
is evidence that for some low-intensity applications this would
work out of the box.

Our future work involves traffic type differentiation at dif-
ferent layers to maximally exploit the energy saving potential.
Traffic differentiation without application cooperation is an
interesting approach to investigate.

ACKNOWLEDGMENT

This work was supported by the Swedish national graduate
school in computer science (CUGS). The authors wish to thank
the support of Ericsson AB, and in particular B-O Hertz,
Pär Emanuelsson and Claes Alströmer for providing the 3G
developer kit and facilitating the measurement gathering phase.
We would also like to thank Urko Zurutuza for his useful
advice.

REFERENCES

[1] E. J. Vergara and S. Nadjm-Tehrani, “Energy-aware Cross-layer Burst
Buffering for Wireless Communication,” in Proceedings of the 3rd
International Conference on Future Energy Systems: Where Energy,
Computing and Communication Meet, ser. e-Energy ’12. ACM, 2012.

[2] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy Consumption in Mobile Phones: A Measurement Study and Im-
plications for Network Applications,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’09. ACM, 2009, pp. 280–293.

[3] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck,
“Top: Tail optimization protocol for cellular radio resource allocation,”
in Procceedings of the 18th IEEE International Conference on Network
Protocols (ICNP), 2010 , October 2010, pp. 285 –294.

[4] P. Athivarapu, R. Bhagwan, S. Guha, V. Navda, R. Ramjee, D. Arora,
V. Padmanabhan, and G. Varghese, “RadioJockey: Mining Program
Execution to Optimize Cellular Radio Usage,” in Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking
(MobiCom), August 2012.

[5] B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble,
and D. Watson, “Intentional Networking: Opportunistic Exploitation
of Mobile Network Diversity,” in Proceedings of the 16th Annual
International Conference on Mobile Computing and Networking, ser.
MobiCom ’10. ACM, 2010, pp. 73–84.

[6] N. Nguyen, Y. Wang, X. Liu, R. Zheng, and Z. Han, “A Nonparametric
Bayesian Approach for Opportunistic Data Transfer in Cellular Net-
works,” in Proceedings of the 7th International Conference of Wireless
Algorithms, Systems, and Applications (WASA), ser. Lecture Notes in
Computer Science, Springer, 2012, vol. 7405, pp. 88–99.

[7] H. Liu, Y. Zhang, and Y. Zhou, “TailTheft: Leveraging the Wasted
Time for Saving Energy in Cellular Communications,” in Proceedings
of the 6th International Workshop on MobiArch, ser. MobiArch ’11,
ACM, 2011, pp. 31–36.

[8] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan, “Bartendr: A Practical
Approach to Energy-aware Cellular Data Scheduling,” in Proceedings
of the 16th Annual International Conference on Mobile Computing and
Networking (Mobicom), ACM, 2010, pp. 85–96.

[9] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck,
“Profiling Resource Usage for Mobile Applications: A Cross-layer
Approach,” in Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’11. ACM,
2011, pp. 321–334.

[10] M. El-Gendy, A. Bose, and K. Shin, “Evolution of the Internet QoS
and Support for Soft Real-time Applications,” Proceedings of the IEEE,
vol. 91, no. 7, pp. 1086 – 1104, July 2003.

[11] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck, “Screen-off
Traffic Characterization and Optimization in 3G/4G Networks,” in
Proceedings of the 2012 ACM Conference on Internet Measurement
Conference, ser. IMC ’12. ACM, 2012, pp. 357–364.

[12] M. Calder and M. Marina, “Batch Scheduling of Recurrent Applications
for Energy Savings on Mobile Phones,” in 7th Annual IEEE Communica-
tions Society Conference on Sensor Mesh and Ad Hoc Communications
and Networks (SECON), June 2010, pp. 1–3.

[13] V. Könönen and P. Paakkonen, “Optimizing Power Consumption of
Always-on Applications Based on Timer Alignment,” in Proceedings
of the 3rd International Conference on Communication Systems and
Networks (COMSNETS), 2011 , 2011, pp. 1–8.

[14] C.-Y. Huang, C.-M. Chen, S.-P. Yu, S.-Y. Hsu, and C.-H. Lin, “Accel-
erate In-line Packet Processing Using Fast Queue,” in Proceedings of
IEEE TENCON 2010, November 2010.

[15] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Gtz, C. Gray, L. Macpherson,
D. Potts, Y. Shen, K. Elphinstone, and G. Heiser, “User-level Device
Drivers: Achieved Performance,” Journal of Computer Science and
Technology, vol. 20, Springer, 2005.

[16] E. J. Vergara and S. Nadjm-Tehrani, “EnergyBox: A Trace-driven Tool
for Data Transmission Energy Consumption Studies,” in Proceedings
of the International Conference on Energy Efficiency in Large Scale
Distributed Systems (EE-LSDS 2013), ser. Lecture Notes in Computer
Science. Springer, April 2013.

[17] J. Sanjuan, “3G Energy-efficient Packet Handling Kernel Module
for Android,” (Student paper), Linköping University, 2012. [Online].
Available: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84507

[18] H. Lagar-cavilla, K. Joshi, A. Varshavsky, J. Bickford, and D. Parra,
“Traffic Backfilling: Subsidizing Lunch for Delay-Tolerant Applications
in UMTS Networks,” in Proceedings of the 3rd ACM SOSP Workshop on
Networking, Systems, and Applications on Mobile Handhelds, MobiHeld
’11, ACM, 2011.

[19] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao, S. Sen,
and O. Spatscheck, “Periodic Transfers in Mobile Applications:
Network-wide Origin, Impact, and Optimization,” in Proceedings of
the 21st International Conference on World Wide Web, ser. WWW ’12.
ACM, 2012, pp. 51–60.

[20] R. Palit, K. Naik, and A. Singh, “Impact of Packet Aggregation on
Energy Consumption in Smartphones,” in Proceedings of the 7th Inter-
national Wireless Communications and Mobile Computing Conference
(IWCMC), July 2011, pp. 589–594.

